帳號:guest(3.147.80.202)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許啓鴻
作者(英文):Chi-Hung Hsu
論文名稱:小葉蕨藻(Caulerpa microphysa)及粗龍鬚菜(Gracilaria firma)對於養殖水質之影響
論文名稱(英文):The influence of Caulerpa microphysa and Gracilaria firma on aquaculture water quality
指導教授:孟培傑
指導教授(英文):Pei-Jie Meng
口試委員:孟培傑
王志騰
張桂祥
口試委員(英文):Pei-Jie Meng
Jih-Terng Wang
Kwee-Siong Zhang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863007
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:66
關鍵詞:生物過濾小葉蕨藻粗龍鬚菜水質營養鹽
關鍵詞(英文):BiofiltrationCaulerpa microphysaGracilaria firmaWater qualityNutrients
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
使用大型海藻對水產養殖廢水中之營養鹽進行生物過濾,是一種生態友善的養殖方式,並且獲得了全球廣泛的關注。本研究以小葉蕨藻(Caulerpa microphysa)及粗龍鬚菜(Gracilaria firma)為實驗材料,分別以三種比例(100%小葉蕨藻/0%粗龍鬚菜;0%小葉蕨藻/100%粗龍鬚菜;50%小葉蕨藻/50%粗龍鬚菜)蓄養於海水養殖廢水中,依時間序列分析其水質參數(包括:溶氧、pH、未解離氨、亞硝酸鹽、硝酸鹽、磷酸鹽、氮磷比)、魚類存活率及海藻成長率差異之變化情形。本實驗歷經二週期程,養殖缸以LED燈提供119 ± 27 μmol m-2 s-1的光照,光週期為12L : 12D,水溫介於27.0 ~ 31.1°C,鹽度控制在30 ± 0.5 psu之間。三種不同比例海藻組合生物過濾效率之分析結果顯示,粗龍鬚菜組在實驗期間能夠顯著提升溶氧和pH且去除最多的亞硝酸鹽和磷酸鹽;小葉蕨藻組對未解離氨及亞硝酸鹽相較其他組別具較快速之吸收能力;混合組水體中未解離氨及硝酸鹽濃度具最低值,其氮磷比平均值亦最低且數值波動亦最小,而其魚類存活率相較其他組別則為三個組別中最高者。此外,混合組的粗龍鬚菜具有最高的成長率,產量比起單一藻種蓄養時增加了33.0%。綜合分析結果顯示,不同的藻種及不同藻種混合比例會對水質產生顯著不同的影響,因此實際操作時,可依據本實驗結果及操作需求加以選擇運用。
Using macroalgae to treat aquaculture wastewater is an eco-friendly biofiltration technique that has attracted extensive attention worldwide. In this experiment, Caulerpa microphysa and Gracilaria firma were used in three combinations (100% C. microphysa/0% G. firma; 0% C. microphysa/100% G. firma; 50% C. microphysa/50% G. firma) to treat marine aquaculture wastewater for two weeks. Water quality (including dissolved oxygen, pH, un-ionized ammonia nitrogen (UIAN), nitrite, nitrate, phosphate, nitrogen to phosphorus ratio), as well as fish survival rate and seaweed growth rate, were analyzed in time series. LED lights were provided in the experiment tanks at 119 ± 27 μmol m-2 s-1 light intensity, at a light/dark period of 12L : 12D. The water temperature ranged from 27.0 ~ 31.1°C, and salinity was controlled at 30 ± 0.5 psu. The results showed that the G. firma group can significantly increase the dissolved oxygen and pH and remove the most nitrite and phosphate. The C. microphysa group has a faster absorption capacity for UIAN and nitrite than other groups. The mixed group has the lowest concentration of UIAN and nitrate, the lowest nitrogen to phosphorus ratio with the smallest fluctuation, and the highest fish survival rate among the three groups. The highest growth rate of G. firma was recorded in the mixed group, increased by 33.0% as compared to the monoalgal group. The results imply that different algal species and combinations will have significantly different effects on water quality, and they can be used as a practical guide to treat target nutrients in various aquaculture ponds.
序~論文戰士 I
謝辭 III
中文摘要 V
ABSTRACT VII
目錄 IX
圖目錄 XIII
表目錄 XV
附錄目錄 XVII
第一章 前言 1
1.1研究動機 1
1.2研究目的 3
第二章 文獻回顧 5
2.1海藻 5
2.2蕨藻屬(Caulerpa) 7
2.2.1小葉蕨藻(Caulerpa microphysa) 8
2.3江蘺屬(Gracilaria) 8
2.3.1粗龍鬚菜(Gracilaria firma) 9
2.4整合型多營養層級水產養殖(Integrated multi-trophic aquaculture, IMTA) 10
第三章 材料與方法 13
3.1實驗設計 13
3.2藻類取得 14
3.3魚類取得 15
3.4水質檢測 15
3.4.1溫度(Temperature) 15
3.4.2鹽度(Salinity) 15
3.4.3溶氧(Dissolved oxygen) 16
3.4.4氫離子濃度指數(pH) 16
3.4.5未解離氨(UIAN) 17
3.4.6亞硝酸鹽(Nitrite) 18
3.4.7硝酸鹽(Nitrate) 18
3.4.8磷酸鹽(Phosphate) 19
3.5統計方法 19
第四章 結果與討論 21
4.1溫度(Temperature) 21
4.2鹽度(Salinity) 21
4.3溶氧(Dissolved oxygen) 21
4.4氫離子濃度指數(pH) 23
4.5未解離氨(UIAN) 23
4.6亞硝酸鹽(Nitrite) 25
4.7硝酸鹽(Nitrate) 26
4.8磷酸鹽(Phosphate) 28
4.9氮磷比(Nitrogen to phosphorus ratio) 29
4.10魚類存活率(Fish survival rate) 30
4.11海藻成長率(Seaweed growth rate) 30
第五章 結論與建議 33
5.1結論 33
5.2建議 34
參考文獻 35
圖列 49
表列 57
附錄 63

李孟洲, 施玟玲, 葉翰揚. 2019. 臺灣原生種海藻 小葉蕨藻. 漁業推廣月刊 393:8-11.
林柏亦. 2010. 大型海藻龍鬚菜應用於鹹水型人工濕地廢水處理可行性之研究. 國立中山大學海洋環境及工程學系研究所碩士論文.
施建宏. 2008. 臺灣蕨藻之調查與養殖研究. 國立中山大學海洋生物研究所碩士論文.
馬場将輔. 2015. オゴノリ類6種の成長と生残に及ぼす温度,光量,塩分の影響. 海洋生物環境研究所研究報告 20:41-56.
莊梅鈺. 2012. 探討小葉蕨藻萃取物之抗氧化性及其對血癌細胞生長之影響. 靜宜大學食品營養學系碩士論文.
黃俊翰. 2005. 龍鬚菜的養殖與應用. 水試專訊 11:44-46.
黃淑芳. 1998. 墾丁海藻~鄉土教學活動資源手冊. 屏東縣自然史教育館.
黃瑞珉. 2005. 養殖廢污以龍鬚菜充分利用型之循環水系統設計. 國立臺灣大學生物環境系統工程學系碩士論文.
臺灣物種名錄. 2021. 網路電子版 version 2021. (網址:http://taibnet.sinica.edu.tw)
顏榮韋. 2018. 以生物絮凝技術改善養殖用水環境之研究. 國立中山大學海洋環境及工程學系碩士論文.
顏靜雅. 1998. 兩種蕨藻(Caulerpa racemosa and Caulerpa sertularioides)之光合作用,無機氮鹽吸收作用及在循環式水族系統中之應用. 國立臺灣海洋大學水產養殖學系碩士論文.
Abreu, M. H., R. Pereira, A. H. Buschmann, I. Sousa-Pinto, and C. Yarish. 2011. Nitrogen uptake responses of Gracilaria vermiculophylla (Ohmi) Papenfuss under combined and single addition of nitrate and ammonium. Journal of Experimental Marine Biology and Ecology 407:190-199.
Ahtiainen, H., and J. Vanhatalo. 2012. The value of reducing eutrophication in European marine areas — A Bayesian meta-analysis. Ecological Economics 83:1-10.
Allan, G. L., G. B. Maguire, and S. J. Hopkins. 1990. Acute and chronic toxicity of ammonia to juvenile Metapenaeus macleayi and Penaeus monodon and the influence of low dissolved-oxygen levels. Aquaculture 91:265-280.
Alonso, A., and J. A. Camargo. 2003. Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bulletin of Environmental Contamination and Toxicology 70:1006-1012.
Araño, K. G., G. C. Trono Jr., N. E. Montaño, A. Q. Hurtado, and R. D.Villanueva. 2000. Growth, agar yield and quality of selected agarophyte species from the Philippines. Botanica Marina 43:517-524.
Ashkenazi, D. Y., A. Israel, and A. Abelson. 2019. A novel two-stage seaweed integrated multi-trophic aquaculture. Reviews in Aquaculture 11:246-262.
Bambaranda, B. V. A. S. M., N. Sasaki, A. Chirapart, K. R. Salin, and T. W. Tsusaka. 2019. Optimization of macroalgal density and salinity for nutrient removal by Caulerpa lentillifera from aquaculture effluent. Processes 7:303.
Bansal, A., O. Shinde, and S. Sarkar. 2018. Industrial wastewater treatment using phycoremediation technologies and co-production of value-added products. Journal of Bioremediation & Biodegradation 9:428.
Bastianoni, S., F. Coppola, E. Tiezzi, A. Colacevich, F. Borghini, and S. Focardi. 2008. Biofuel potential production from the Orbetello lagoon macroalgae: A comparison with sunflower feedstock. Biomass and Bioenergy 32:619-628.
Bower, C. E., and J. P. Bidwell. 1978. Ionization of ammonia in seawater: effects of temperature, pH, and salinity. Journal of the Fisheries Research Board of Canada 35:1012-1016.
Bracken, M. E. S., and J. J. Stachowicz. 2006. Seaweed diversity enhances nitrogen uptake via complementary use of nitrate and ammonium. Ecology 87:2397-2403.
Buschmann, A. H., O. A. Mora, P. Gómez, M. Böttger, S. Buitano, C. Retamales, P. A. Vergara, and A. Gutierrez. 1994. Gracilaria chilensis outdoor tank cultivation in Chile: use of land-based salmon culture effluents. Aquacultural Engineering 13:283-300.
Buschmann, A. H., D. A. Varela, M. C. Hernández-González, and P. Huovinen. 2008. Opportunities and challenges for the development of an integrated seaweed-based aquaculture activity in Chile: determining the physiological capabilities of Macrocystis and Gracilaria as biofilters. Journal of Applied Phycology 20:571-577.
Cahill, P. L., C. L. Hurd, and M. Lokman. 2010. Keeping the water clean — Seaweed biofiltration outperforms traditional bacterial biofilms in recirculating aquaculture. Aquaculture 306:153-159.
Caldeira, K., and M. E. Wickett. 2003. Anthropogenic carbon and ocean pH. Nature 425:365.
Castelar, B., M. D. Pontes, W. d. M. Costa, L. C. F. Moura, G. E. Dias, F. S. Landuci, and R. P. Reis. 2015. Biofiltering efficiency and productive performance of macroalgae with potential for integrated multi-trophic aquaculture (IMTA). Boletim do Instituto de Pesca 41:763-770.
Chan, P. T., P. Matanjun, S. M. Yasir, and T. S. Tan. 2015. Antioxidant activities and polyphenolics of various solvent extracts of red seaweed, Gracilaria changii. Journal of Applied Phycology 27:2377-2386.
Cheng, F., L. Li, X. L. Yin, Z. F. Gu, Y. H. Shi, and A. M. Wang. 2017. Comparison on purification effect of three macroalgae species on ammonia salt in inorganic and organic water. Genomics and Applied Biology 36:1084-1089.
Chirapart, A., and M. Ohno. 1993. Growth in tank culture of species of Gracilaria from the Southeast Asian waters. Botanica Marina 36:9-13
Chopin, T., A. H. Buschmann, C. Halling, M. Troell, N. Kautsky, A. Neori, G. P. Kraemer, J. A. Zertuche-González, C. Yarish, and C. Neefus. 2001. Integrating seaweeds into marine aquaculture systems: a key toward sustainability. Journal of Phycology 37:975-986.
Chou, S. T., H. C. Lin, M. Y. Chuang, and T. H. Chiu. 2014. Treatment with Caulerpa microphysa pepsin-digested extract induces apoptosis in murine leukemia WEHI-3 Cells. Journal of Food Biochemistry 38:469-479.
Connan, S., F. Delisle, E. Deslandes, and E. A. Gall. 2006. Intra-thallus phlorotannin content and antioxidant activity in Phaeophyceae of temperate waters. Botanica Marina 49:39-46.
Crab, R., Y. Avnimelech, T. Defoirdt, P. Bossier, and W. Verstraete. 2007. Nitrogen removal techniques in aquaculture for a sustainable production. Aquaculture 270:1-14.
Deviller, G., C. Aliaume, M. A. F. Nava, C. Casellas, and J. P. Blancheton. 2004. High-rate algal pond treatment for water reuse in an integrated marine fish recirculating system: effect on water quality and sea bass growth. Aquaculture 235:331-344.
dos Santos Silva, M. J., F. F. B. da Costa, F. P. Leme, R. Takata, D. C. Costa, C. C. Mattioli, R. K. Luz, and K. C. Miranda-Filho. 2018. Biological responses of Neotropical freshwater fish Lophiosilurus alexandri exposed to ammonia and nitrite. Science of the Total Environment 616-617:1566-1575.
Duan, Y. L., N. Yang, M. Hu, Z. L. Wei, H. S. Bi, Y. Z. Huo, and P. M. He. 2019. Growth and nutrient uptake of Gracilaria lemaneiformis under different nutrient conditions with implications for ecosystem services: A case study in the laboratory and in an enclosed mariculture area in the East China Sea. Aquatic Botany 153:73-80.
Fleckenstein, L. J., T. W. Tierney, J. C. Fisk, and A. J. Ray. 2019. Effects of supplemental LED lighting on water quality and Pacific white shrimp (Litopenaeus vannamei) performance in intensive recirculating systems. Aquaculture 504:219-226.
Fleurence, J. 1999. Seaweed proteins: biochemical, nutritional aspects and potential uses. Trends in Food Science & Technology 10:25-28.
Fong, P., K. E. Boyer, K. Kamer, and K. A. Boyle. 2003. Influence of initial tissue nutrient status of tropical marine algae on response to nitrogen and phosphorus additions. Marine Ecology Progress Series 262:111-123.
Goldman, J. C., K. R. Tenore, J. H. Ryther, and N. Corwin. 1974a. Inorganic nitrogen removal in a combined tertiary treatment—marine aquaculture system--I. Removal efficiences. Water Research 8:45-54.
Goldman, J. C., K. R. Tenore, and H. I. Stanley. 1974b. Inorganic nitrogen removal in a combined tertiary treatment-marine aquaculture system--II. Algal bioassays. Water Research 8:55-59.
González, C., J. Marciniak, S. Villaverde, P. A. García-Encina, and R. Muñoz. 2008. Microalgae-based processes for the biodegradation of pretreated piggery wastewaters. Applied Microbiology and Biotechnology 80:891-898.
Grote, B. 2016. Bioremediation of aquaculture wastewater: evaluating the prospects of the red alga Palmaria palmata (Rhodophyta) for nitrogen uptake. Journal of Applied Phycology 28:3075-3082.
Guttman, L., S. E. Boxman, R. Barkan, A. Neori, and M. Shpigel. 2018. Combinations of Ulva and periphyton as biofilters for both ammonia and nitrate in mariculture fishpond effluents. Algal Research 34:235-243.
Hamlin, H. J., J. T. Michaels, C. M. Beaulaton, W. F. Graham, W. Dutt, P. Steinbach, T. M. Losordo, K. K. Schrader, and K. L. Main. 2008. Comparing denitrification rates and carbon sources in commercial scale upflow denitrification biological filters in aquaculture. Aquacultural Engineering 38:79-92.
Huo, Y. Z., H. L. Wu, Z. Y. Chai, S. N. Xu, F. Han, L. Dong, and P. M. He. 2012. Bioremediation efficiency of Gracilaria verrucosa for an integrated multi-trophic aquaculture system with Pseudosciaena crocea in Xiangshan harbor, China. Aquaculture 326-329:99-105.
Ihsan, Y. N., R. K. Bangsa, K. Fellatami, and T. D. K. Pribadi. 2018. The ability of Gracilaria sp. to absorb ammoniac (NH3-N) and its effect on chlorophyll content and growth. Omni-Akuatika 14:96-105.
John, E. M., S. Sureshkumar, T. V. Sankar, and K. R. Divya. 2020. Phycoremediation in aquaculture; a win-win paradigm. Environmental Technology Reviews 9:67-84.
Kalimuthu, K., S. M. Lin, L. C. Tseng, K. Murugan, and J. S. Hwang. 2014. Bio-efficacy potential of seaweed Gracilaria firma with copepod, Megacyclops formosanus for the control larvae of dengue vector Aedes aegypti. Hydrobiologia 741:113-123.
Kalimuthu, K., C. Panneerselvam, C. Chou, S. M. Lin, L. C. Tseng, K. H. Tsai, K. Murugan, and J. S. Hwang. 2017. Predatory efficiency of the copepod Megacyclops formosanus and toxic effect of the red alga Gracilaria firma-synthesized silver nanoparticles against the dengue vector Aedes aegypti. Hydrobiologia 785:359-372.
Kang, K. H., and Z. H. Sui. 2010. Removal of eutrophication factors and heavy metal from a closed cultivation system using the macroalgae, Gracilaria sp.(Rhodophyta). Chinese Journal of Oceanology and Limnology 28:1127-1130.
Kang, Y. H., S. R. Park, and I. K. Chung. 2011. Biofiltration efficiency and biochemical composition of three seaweed species cultivated in a fish-seaweed integrated culture. Algae 26:97-108.
Khan, W., U. P. Rayirath, S. Subramanian, M. N. Jithesh, P. Rayorath, D. M. Hodges, A. T. Critchley, J. S. Craigie, J. Norrie, and B. Prithiviraj. 2009. Seaweed extracts as biostimulants of plant growth and development. Journal of Plant Growth Regulation 28:386-399.
Krom, M. D., S. Ellner, J. van Rijn, and A. Neori. 1995. Nitrogen and phosphorus cycling and transformations in a prototype 'non-polluting' integrated mariculture system, Eilat, Israel. Marine Ecology Progress Series 118:25-36.
Kuhn, D. D., D. D. Drahos, L. Marsh, and G. J. Flick Jr. 2010. Evaluation of nitrifying bacteria product to improve nitrification efficacy in recirculating aquaculture systems. Aquacultural Engineering 43:78-82.
Kuo, C. M., J. F. Jian, T. H. Lin, Y. B. Chang, X. H. Wan, J. T. Lai, J. S. Chang, and C. S. Lin. 2016. Simultaneous microalgal biomass production and CO2 fixation by cultivating Chlorella sp. GD with aquaculture wastewater and boiler flue gas. Bioresource Technology 221:241-250.
Lababpour, A. 2014. Bioremediation of municipal wastewater using macroalga genus Gracilaria. Acta Horticulturae 1054:215-219.
Lavania-Baloo, S. Azman, M. I. Mohd Said, F. Ahmad, and M. Mohamad. 2014. Biofiltration potential of macroalgae for ammonium removal in outdoor tank shrimp wastewater recirculation system. Biomass and Bioenergy 66:103-109.
Lawton, R. J., L. Mata, R. de Nys, and N. A. Paul. 2013. Algal bioremediation of waste waters from land-based aquaculture using Ulva: selecting target species and strains. PLoS ONE 8:e77344.
Lewis Jr., W. M., and D. P. Morris. 1986. Toxicity of nitrite to fish: a review. Transactions of the American Fisheries Society 115:183-195.
Lin, H. C., S. T. Chou, M. Y. Chuang, T. Y. Liao, W. S. Tsai, and T. H. Chiu. 2012. The effects of Caulerpa microphysa enzyme-digested extracts on ACE-inhibitory activity and in vitro anti-tumour properties. Food Chemistry 134:2235-2241.
Mook, W. T., M. H. Chakrabarti, M. K. Aroua, G. M. A. Khan, B. S. Ali, M. S. Islam, and M. A. Abu Hassan. 2012. Removal of total ammonia nitrogen (TAN), nitrate and total organic carbon (TOC) from aquaculture wastewater using electrochemical technology: A review. Desalination 285:1-13.
Nardelli, A. E., V. G. Chiozzini, E. S. Braga, and F. Chow. 2019. Integrated multi-trophic farming system between the green seaweed Ulva lactuca, mussel, and fish: a production and bioremediation solution. Journal of Applied Phycology 31:847-856.
Neori, A. 2008. Essential role of seaweed cultivation in integrated multi-trophic aquaculture farms for global expansion of mariculture: an analysis. Journal of Applied Phycology 20:567-570.
Neori, A., T. Chopin, M. Troell, A. H. Buschmann, G. P. Kraemer, C. Halling, M. Shpigel, and C. Yarish. 2004. Integrated aquaculture: rationale, evolution and state of the art emphasizing seaweed biofiltration in modern mariculture. Aquaculture 231:361-391.
Neori, A., I. Cohen, and H. Gordin. 1991. Ulva lactuca biofilters for marine fishpond effluents II. Growth rate, yield and C: N ratio. Botanica Marina 34:483-489.
Neori, A., F. E. Msuya, L. Shauli, A. Schuenhoff, F. Kopel, and M. Shpigel. 2003. A novel three-stage seaweed (Ulva lactuca) biofilter design for integrated mariculture. Journal of Applied Phycology 15:543-553.
Ng, P. K., S. M. Lin, P. E. Lim, A. Q. Hurtado, S. M. Phang, Y. Y. Yow, and Z. Sun. 2017. Genetic and morphological analyses of Gracilaria firma and G. changii (Gracilariaceae, Rhodophyta), the commercially important agarophytes in western Pacific. PLoS ONE 12:e0182176.
Nyenje, P. M., J. W. Foppen, S. Uhlenbrook, R. Kulabako, and A. Muwanga. 2010. Eutrophication and nutrient release in urban areas of sub-Saharan Africa — A review. Science of the Total Environment 408:447-455.
Ojanen, S., E. Tyystjärvi, H. Holmberg, M. Kouhia, and P. Ahtila. 2017. Can bacterial biofiltration be replaced by autotrophic organisms in recirculating fresh water aquaculture? Aquaculture International 25:1427-1440.
Pandya, K. Y., R. V. Patel, R. T. Jasrai, and N. H. Brahmbhatt. 2017. Preliminary study on potential of seaweeds in decolorization efficacy of synthetic dyes effluent. International Journal of Plant, Animal and Environmental Sciences 7:59-69.
Paul, N. A., and R. de Nys. 2008. Promise and pitfalls of locally abundant seaweeds as biofilters for integrated aquaculture. Aquaculture 281:49-55.
Prathumchai, N., C. Polprasert, and A. J. Englande Jr. 2016. Phosphorus leakage from fisheries sector – A case study in Thailand. Environmental Pollution 219:967-975.
Radulovich, R., S. Umanzor, R. Cabrera, and R. Mata. 2015. Tropical seaweeds for human food, their cultivation and its effect on biodiversity enrichment. Aquaculture 436:40-46.
Raikar, V., and M. Wafar. 2006. Evaluation of kinetics of nitrogen uptake by five macroalgal species in eutrophic coastal waters using 15N. Tropical Agricultural Research 18.
Redfield, A. C. 1958. The biological control of chemical factors in the environment. American Scientist 46:205-221.
Rees, T. A. V., B. C. Dobson, M. Bijl, and B. Morelissen. 2007. Kinetics of nitrate uptake by New Zealand marine macroalgae and evidence for two nitrate transporters in Ulva intestinalis L. Hydrobiologia 586:135-141.
Rosenberg, G., and J. Ramus. 1984. Uptake of inorganic nitrogen and seaweed surface area: volume ratios. Aquatic Botany 19:65-72.
Ryther, J. H., W. M. Dunstan, K. R. Tenore, and J. E. Huguenin. 1972. Controlled eutrophication—increasing food production from the sea by recycling human wastes. BioScience 22:144-152.
Ryther, J. H. 1971. Recycling human wastes to enhance food production from the sea. Environmental Letters 1:79-87.
Ryther, J. H., J. C. Goldman, C. E. Gifford, J. E. Huguenin, A. S. Wing, J. P. Clarner, L. D. Williams, and B. E. Lapointe. 1975. Physical models of integrated waste recycling-marine polyculture systems. Aquaculture 5:163-177.
San Pascual, J. C. K., M. S. Lacsamana, M. A. O. Torio, and M. G. Q. Diaz. 2017. Isolation of a lectin from Gracilaria firma Chang & Xia and determination of some of its biological activities. Journal of Nature Studies 16:66-83.
Schuenhoff, A., M. Shpigel, I. Lupatsch, A. Ashkenazi, F. E. Msuya, and A. Neori. 2003. A semi-recirculating, integrated system for the culture of fish and seaweed. Aquaculture 221:167-181.
Schuler, D. J., G. D. Boardman, D. D. Kuhn, and G. J. Flick. 2010. Acute toxicity of ammonia and nitrite to Pacific white shrimp, Litopenaeus vannamei, at low salinities. Journal of the World Aquaculture Society 41:438-446.
Sharrer, M. J., Y. Tal, D. Ferrier, J. A. Hankins, and S. T. Summerfelt. 2007. Membrane biological reactor treatment of a saline backwash flow from a recirculating aquaculture system. Aquacultural Engineering 36:159-176.
Shpigel, M., L. Guttman, D. Ben-Ezra, J. Yu, and S. Chen. 2019. Is Ulva sp. able to be an efficient biofilter for mariculture effluents? Journal of Applied Phycology 31:2449-2459.
Skriptsova, A. V., and N. V. Miroshnikova. 2011. Laboratory experiment to determine the potential of two macroalgae from the Russian Far-East as biofilters for integrated multi-trophic aquaculture (IMTA). Bioresource Technology 102:3149-3154.
Stewart, N. T., G. D. Boardman, and L. A. Helfrich. 2006. Characterization of nutrient leaching rates from settled rainbow trout (Oncorhynchus mykiss) sludge. Aquacultural Engineering 35:191-198.
Tanaka, Y., A. Ashaari, F. S. Mohamad, and N. Lamit. 2020. Bioremediation potential of tropical seaweeds in aquaculture: low-salinity tolerance, phosphorus content, and production of UV-absorbing compounds. Aquaculture 518:734853.
Thomas, T. E., and P. J. Harrison. 1987. Rapid ammonium uptake and nitrogen interactions in five intertidal seaweeds grown under field conditions. Journal of Experimental Marine Biology and Ecology 107:1-8.
Troell, M., C. Halling, A. Neori, T. Chopin, A. H. Buschmann, N. Kautsky, and C. Yarish. 2003. Integrated mariculture: asking the right questions. Aquaculture 226:69-90.
Troell, M., A. Joyce, T. Chopin, A. Neori, A. H. Buschmann, and J. G. Fang. 2009. Ecological engineering in aquaculture — Potential for integrated multi-trophic aquaculture (IMTA) in marine offshore systems. Aquaculture 297:1-9.
van Rijn, J., Y. Tal, and H. J. Schreier. 2006. Denitrification in recirculating systems: Theory and applications. Aquacultural Engineering 34:364-376.
Vega, J., F. Álvarez-Gómez, L. Güenaga, F. L. Figueroa, and J. L. Gómez-Pinchetti. 2020. Antioxidant activity of extracts from marine macroalgae, wild-collected and cultivated, in an integrated multi-trophic aquaculture system. Aquaculture 522:735088.
Waite, T., and R. Mitchell. 1972. The effect of nutrient fertilization on the benthic alga Ulva lactuca. Botanica Marina 15:151-156.
Wang, Y. B., W. J. Zhang, W. F. Li, and Z. R. Xu. 2006. Acute toxicity of nitrite on tilapia (Oreochromis niloticus) at different external chloride concentrations. Fish Physiology and Biochemistry 32:49-54.
Whitfield, M. 1974. The hydrolysis of ammonium ions in sea water-A theoretical study. Journal of the Marine Biological Association of the United Kingdom 54:565-580.
Withyachumnarnkul, B., I. Palang, J. Reungsri, S. Sirithammajak, S. Jitrakorn, W. Kiatpathomchai, V. Saksmerprome, P. Pongtippatee, and B. Withyachumnarnkul. 2017. Nile tilapia reared under full-strength seawater: Hemato-immunological changes and susceptibility to pathogens. Aquaculture 480:42-50.
Wu, R. S. S. 1995. The environmental impact of marine fish culture: Towards a sustainable future. Marine Pollution Bulletin 31:159-166.
Zeitoun, M. M., K. E. D. M. EL-Azrak, M. A. Zaki, B. R. Nemat-Allah, and E. S. E. Mehana. 2016. Effects of ammonia toxicity on growth performance, cortisol, glucose and hematological response of Nile Tilapia (Oreochromis niloticus). Aceh Journal of Animal Science 1:21-28.
Zhang, Q. T., and G. K. Hu. 2011. Effect of nitrogen to phosphorus ratios on cell proliferation in marine micro algae. Chinese Journal of Oceanology and Limnology 29:739-745.
Zhou, Y., H. S. Yang, H. Y. Hu, Y. Liu, Y. Z. Mao, H. Zhou, X. L. Xu, and F. S. Zhang. 2006. Bioremediation potential of the macroalga Gracilaria lemaneiformis (Rhodophyta) integrated into fed fish culture in coastal waters of north China. Aquaculture 252:264-276.
Zou, S. Q., L. Guan, D. P. Taylor, D. Kuhn, and Z. He. 2018. Nitrogen removal from water of recirculating aquaculture system by a microbial fuel cell. Aquaculture 497:74-81.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *