帳號:guest(3.12.164.238)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:洪澍薇
作者(英文):Su-Wei Hung
論文名稱:比較不同的無機營養鹽施肥對海水神仙魚類仔魚的生長及存活之影響
論文名稱(英文):Comparation of the effects of fertilization with different inorganic nutrients on the growth and survival of marine angelfishes larvae
指導教授:呂明毅
郭傑民
指導教授(英文):Ming-Yih Leu
Jimmy Kuo
口試委員:呂明毅
郭傑民
楊順德
口試委員(英文):Ming-Yih Leu
Jimmy Kuo
Shun-De Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863009
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:101
關鍵詞:無機營養鹽施肥市售無機肥料淡斑荷包魚福氏刺尻魚仔魚存活及生長
關鍵詞(英文):inorganic fertilizationcommercial inorganic fertilizersChaetodontoplus caeruleopunctatusCentropyge vrolikiilarval survival and growth
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
在養殖仔稚魚時,為了提高養殖池中浮游植物的數量及生長,進而提高浮游動物的數量以作為仔稚魚的食物來源,在養殖水體中以營養鹽施肥是水產養殖業常見的做法。本研究使用化工的無機營養鹽及市售的無機肥料–花寶5號施肥飼養二種海水神仙魚類仔魚﹝淡斑荷包魚(Chaetodontoplus caeruleopunctatus)與福氏刺尻魚(Centropyge vrolikii)﹞,探討比較其對仔魚的生長及存活的影響。實驗共進行2次,分3組,各組三重複:控制組(control treatment)、無機施肥組(inorganic fertilization treatment)及花寶施肥組(HYPONeX fertilization treatment),控制組不施加營養鹽,直接投餵餌料生物;無機營養鹽施肥組第一次實驗將無機營養鹽:氮、磷、鐵及矽濃度控制在700、100、100及1500 μg L-1;第二次實驗則將濃度控制在1400、200、100及1500 μg L-1。花寶施肥組添加花寶5號,第一次實驗將氮濃度控制在700 μg L-1;第二次實驗則將濃度控制在1400 μg L-1。於實驗第6~8天放受精卵,實驗期間每日紀錄水質、營養鹽濃度、活體葉綠素a濃度(total、25~75 µm、< 25 µm)、浮游植物(25~75 µm、0.45 ~ 25 µm)及浮游動物(> 75 µm、25~75 µm)的種類比例密度,並於仔魚首次攝食時測量仔魚的口徑,在仔魚孵化後第十四天(14 dph)時計算活存率及成長並結束實驗。實驗前試驗不同溫度(23°C及27°C)下藻類及浮游動物之生長情況,以確定放入魚卵的時間。結果顯示,在23 °C時於施肥後第9天放卵;在27 °C時於施肥後第5天放卵,能配合到藻類及浮游動物的生長以提升仔魚活存。無機施肥組與花寶施肥組的活體葉綠素a濃度及浮游動物密度皆顯著高於無施肥的控制組(P < 0.001)。在二次實驗中,僅淡斑荷包魚仔魚存活至14 dph,而福氏刺尻魚仔魚僅存活至7 dph。第一次實驗,無機施肥組及花寶施肥組的仔魚活存率(各為0.31 ± 0.16 %及0.22 ± 0.22 %)與控制組(0.22 ± 0.13 %)並無顯著差異(P > 0.05),而仔魚成長形質亦沒有顯著的差異。第二次實驗,無機施肥組的仔魚活存率(2.45 ± 0.66 %)顯著高於控制組(0.09 ± 0.09 %),而花寶施肥組的活存率(1.05 ± 0.53 %)與其他二組並無顯著差異(P < 0.05),仔魚成長則沒有顯著的差異。本研究結果顯示無機施肥與花寶施肥在藻類及浮游動物的生長有相似的密度及生長曲線,二者皆可滿足淡斑荷包魚仔魚度過首次攝食的需求,能有效提升淡斑荷包魚仔魚的活存率,但對福氏刺尻魚仔魚而言,使用無機施肥或花寶施肥並不是適合的方法。而市售的無機肥料花寶5號,雖能產生較多的小型藻類及纖毛蟲等小型浮游動物的密度,但其成分中含有的的氨態氮,可能導致水中有毒營養鹽濃度逐漸升高使仔魚後期死亡,或許是比較適合養殖纖毛蟲等小口徑魚種首次攝食的餌料生物的養殖方式。
In order to increase the number and growth of phytoplankton and additionally increase the number of zooplankton as a food source for larviculture, fertilizing with nutrients in the culture water is a common practice in the aquaculture industry. In this study, we used chemical inorganic nutrients and commercial inorganic fertilizers: HYPONeX (HYPONeX No. 5) fertilizer to culture larvae of marine angelfishes: Chaetodontoplus caeruleopunctatus and Centropyge vrolikii, which compared effects on growth and survival of larvae. We conducted 2 times experiments, divided into 3 treatments, and all treatment in triplicate: the control treatment, the inorganic fertilization treatment and the HYPONeX fertilization treatment. The control treatment did not apply nutrient salts, and it only added zooplankton. The inorganic fertilization treatment added nitrogen, phosphorus, iron and silicon which concentrations at 700, 100, 100 and 1500 μg L-1 in the first experiment, and 1400, 200, 100 and 1500 μg L-1 in the second experiment, respectively. In the HYPONeX fertilization treatment, HYPONeX No. 5 was added and concentrations the nitrogen level at 700 μg L-1 in the first experiment; and 1400 μg L-1 in the second experiment, respectively.
In addition, we measured water quality, nutrient concentration, in vivo chlorophyll a concentration (total, 25~75 μm, < 25 μm), and the density of phytoplankton (25~75 μm, 0.45 ~ 25 μm) and zooplankton (> 75 µm, 25-75 µm), and the relative abundance of phytoplankton daily during the experiments. The gape height of larvae was measured after first feeding. At the end of the experiment, the 14 days post-hatch (dph), we measured the survival rate and the growth of larvae. Before the experiment, the growth of algae and zooplankton at different temperatures (23°C and 27°C) were test to determine the time for stocking eggs. The results showed that stocking eggs on the 9th day after fertilization at 23 °C and on the 5th day after fertilization at 27 °C can match the growth of algae and zooplankton to improve the survival of larvae. the concentration of in vivo chlorophyll a and the zooplankton density in the inorganic fertilization treatment and the HYPONeX fertilization treatment were significantly higher than those in the control treatment (P < 0.001). In both experiments, only Chaetodontoplus caeruleopunctatus larvae survived to 14 dph, and Centropyge vrolikii larvae only survived to 7 dph. In the first experiment, the survival rate of larvae in the inorganic fertilization treatment and HYPONeX fertilization treatment (0.31 ± 0.16 % and 0.22 ± 0.22 %) did not show a significantly different from the control treatment (0.22 ± 0.13 %) (P > 0.05), and there were also no significant differences in larval growth. In the second experiment, the survival rate of larvae in the inorganic fertilization treatment (2.45 ± 0.66 %) was significantly higher than the control treatment (0.09 ± 0.09 %). In comparison, the survival rate of HYPONeX fertilization treatment (1.05 ± 0.53 %) did not show a significantly different from the other two treatments (P > 0.05), and there were no significant differences in larval growth. The results demonstrated that inorganic fertilization and HYPONeX fertilization had similar densities and growth curves of algae and zooplankton. Both can meet the needs of Chaetodontoplus caeruleopunctatus larvae for the first feeding and improve the survival rate. However, to Centropyge vrolikii, inorganic fertilization or HYPONeX fertilization for rearing larvae were unsuitable. Although the commercial inorganic fertilizers HYPONeX No. 5 had brought more microalgae and small zooplankton density, the ammonium contained in its ingredients gradually increased the concentration of toxic nutrients in the water and caused the larvae to be dead. HYPONeX No. 5 may be more suitable for cultivating small zooplankton, such as ciliates, for feeding small gape larvae species at the first feeding.
摘要 I
Abstract III
目錄 VII
圖目錄 XI
第一章 前言 1
1.1海水觀賞魚產業現況 1
1.2海水觀賞魚繁養殖 1
1.3浮性卵仔魚養殖的瓶頸 2
1.4浮游植物 2
1.5浮游動物 3
1.6 綠水養殖 4
1.7無機營養鹽施肥法 5
1.8市售的水產養殖施肥產品 6
1.9實驗物種 7
1.10研究目的 8
第二章 材料與方法 9
2.1實驗設計 9
2.2實驗環境 9
2.3魚卵來源 9
2.4餌料生物培養 10
2.5水質分析 10
2.5.1 水溫 10
2.5.2鹽度 10
2.5.3 溶氧量 11
2.5.4 pH值 11
2.5.5營養鹽測定 11
2.5.5.1硝酸鹽氮 12
2.5.5.2亞硝酸鹽氮 12
2.5.5.3氨態氮 12
2.5.5.4磷酸鹽磷 12
2.5.5.5亞鐵離子 13
2.5.5.6二氧化矽 13
2.6 不同溫度對無機營養鹽施肥法產生之藻類及浮游動物的影響 13
2.6.1葉綠素a測定 14
2.6.2浮游植物種類鑑定與計數 14
2.6.3浮游動物種類鑑定與計數 15
2.7 不同無機營養鹽施肥法對養殖仔魚活存率及成長的影響 15
2.7.1 孵化率計算 16
2.7.2 仔魚活存率計算 16
2.7.3仔魚生長 16
2.7.4 仔魚口徑測定 16
2.8 統計分析 17
第三章 結果 19
3.1 不同溫度對無機營養鹽施肥法產生之藻類及浮游動物的影響 19
3.1.1 水溫 19
3.1.2 鹽度 19
3.1.3 溶氧量 19
3.1.4 pH 20
3.1.5 硝酸鹽氮 20
3.1.6 亞硝酸鹽氮 21
3.1.7 氨態氮 22
3.1.8 磷酸鹽磷 23
3.1.9 二氧化矽 23
3.1.10 亞鐵離子 24
3.1.11 總in vivo Chl a 濃度 25
3.1.12 浮游動物 26
3.2 不同無機營養鹽施肥法對養殖仔魚活存率及成長的影響-N700實驗 26
3.2.1放卵數量及孵化率 26
3.2.2水溫 27
3.2.3 鹽度 27
3.2.4 溶氧量 27
3.2.5 pH 28
3.2.6 硝酸鹽氮 28
3.2.7 亞硝酸鹽氮 29
3.2.8 氨態氮 29
3.2.9 磷酸鹽磷 30
3.2.10 二氧化矽 30
3.2.11 亞鐵離子 31
3.2.12 浮游植物 31
3.2.12.1 總in vivo Chl a 濃度 31
3.2.12.2 25~75 µm in vivo Chl a 濃度 32
3.2.12.3 < 25 µm in vivo Chl a 濃度 33
3.2.12.4 25~75 µm藻種 33
3.2.12.5 0.45~25 µm藻種 34
3.2.13 浮游動物 34
3.2.13.1 > 75 µm浮游動物 34
3.2.13.2 25~75 µm浮游動物 35
3.2.14 仔魚活存率 35
3.2.15 仔魚生長 36
3.3 不同無機營養鹽施肥法對養殖仔魚活存率及成長的影響-N1400實驗 36
3.3.1放卵數量及孵化率 36
3.3.2水溫 36
3.3.3 鹽度 37
3.3.4 溶氧量 37
3.3.5 pH 37
3.3.6 硝酸鹽氮 38
3.3.7 亞硝酸鹽氮 38
3.3.8 氨態氮 39
3.3.9 磷酸鹽磷 39
3.3.10 二氧化矽 40
3.3.11 亞鐵離子 40
3.3.12 浮游植物 41
3.3.12.1 總in vivo Chl a 濃度 41
3.3.12.2 25~75 µm in vivo Chl a 濃度 41
3.3.12.3 < 25 µm in vivo Chl a 濃度 42
3.3.12.4 25~75 µm藻種 42
3.3.12.5 0.45~25 µm藻種 43
3.3.13 浮游動物 44
3.3.13.1 > 75 µm浮游動物 44
3.3.13.2 25~75 µm浮游動物 44
3.3.14 仔魚活存率 44
3.3.15 仔魚生長 45
3.4 仔魚口徑 45
第四章 討論 47
4.1 不同溫度對無機營養鹽施肥法產生之藻類及浮游動物的影響 47
4.1.1不同溫度對藻類的影響 47
4.1.2不同溫度對浮游動物的影響 47
4.1.3 放卵的時機 48
4.2不同無機營養鹽施肥法對養殖仔魚活存率及成長的影響 49
4.2.1養殖水質參數-溶氧量 50
4.2.2 養殖水質參數-pH 51
4.2.3 養殖水質參數-營養鹽 52
4.2.4 浮游植物 55
4.2.5 浮游動物 59
4.2.6仔魚活存率 61
4.2.7 仔魚生長 63
4.2.8仔魚口徑 63
第五章 結論 65
參考文獻 67
附錄 101
Adewumi, A.A., 2006. The growth and gonadal maturation of the African catfish Clarias gariepinus (Burchell) broodstock fed differently heated soybean-based diets. Aquac. Nutr. 12, 267-274. https://doi.org/10.1111/j.1365-2095.2006.00404.x.
Ajiboye, O.O., Yakubu, A.F., Adams, T.E., Olaji, E.D., Nwogu, N.A., 2010. A review of the use of copepods in marine fish larviculture. Rev. Fish. Biol. Fisher. 21, 225-246. https://doi.org/10.1007/s11160-010-9169-3.
Alajmi, F., Zeng, C., 2014. The effects of stocking density on key biological parameters influencing culture productivity of the calanoid copepod, Parvocalanus crassirostris. Aquaculture 434, 201-207. https://doi.org/10.1016/j.aquaculture.2014.08.029.
Allen, G.R., Erdmann, M., 2012. Reef fishs of the east Indies. Conservation International Foundation, Virginia, U.S.A., 1292 pp.
Alonso, A., Camargo, J.A., 2003. Short-term toxicity of ammonia, nitrite, and nitrate to the aquatic snail Potamopyrgus antipodarum (Hydrobiidae, Mollusca). Bull. Environ. Contam. Toxicol. 70, 1006-1012. https://doi.org/10.1007/s00128-003-0082-5.
Anderson, D.M., Glibert, P.M., Burkholder, J.M., 2002. Harmful algal blooms and eutrophication: nutrient sources, composition, and consequences. Estuaries 25, 704-726. https://doi.org/10.1007/bf02804901.
Benoiston, A.S., Ibarbalz, F.M., Bitter, L., Guidi, L., Jahn, O., Dutkiewicz, S., Bowler, C., 2017. The evolution of diatoms and their biogeochemical functions. Phil. Trans. R. Soc. B. 372. https://doi.org/10.1098/rstb.2016.0397.
Bergerhouse, D.L., 2010. Lethal Effects of Elevated pH and Ammonia on Early Life Stages of Hybrid Striped Bass. J. Appl. Aquac. 2, 81-100. https://doi.org/10.1300/J028v02n03_05.
Biondo, M.V., Burki, R.P., 2020. A systematic review of the ornamental fish trade with emphasis on coral reef fishes—an impossible task. Animals 10, 2014. https://doi.org/10.3390/ani10112014.
Blain, S., Queguiner, B. Armand, L., ……..et al., 2007. Effect of natural iron fertilization on carbon sequestration in the southern ocean. Nature 466, 1070-1074. https://doi.org/10.1038/nature05700.
Brzezinski, M.A., 1985. The Si:C:N ratio of marine diatoms: interspecific variability and the effect of some environmental variables. J. Phycol. 21, 347-357. https://doi.org/10.1111/j.0022-3646.1985.00347.x.
Blanda, E., Hansen, B.W., Højgaard, J.K., Jepsen, P.M., Pedersen, M.F., Rayner, T.A., Thoisen, C.V., Jakobsen, H.H., 2016. Inorganic nitrogen addition in a semi-intensive turbot larval aquaculture system: effects on phytoplankton and zooplankton composition. Aquac. Res. 47, 3913-3933. https://doi.org/10.1111/are.12842.
Blue Zoo Aquatics, 2022. https://www.bluezooaquatics.com/productDetail.asp?did=1&pid=149&cid=8 (accessed 16 December 2022).
Bohl, M., 1997. Gas bubble disease of fish. Tierarzl. Prax.25, 284-288.
Bręk-Laitinen, G., Ojala, A., 2011. Grazing of heterotrophic nanoflagellates on the eukaryotic picoautotroph Choricystis sp. Aquat. Microb. Ecol. 62, 49-59. https://doi.org/10.3354/ame01457.
Brownell, C.L., 1980. Water quality requirements for first-feeding in marine fish larvae. I. ammonia, nitrite, and nitrate. J. Exp. Mar. Biol. Ecol. 44, 269-283. https://doi.org/10.1016/0022-0981(80)90158-6.
Brutemark, A., Engström-Öst, J., Vehmaa, A., 2011. Long-term monitoring data reveal pH dynamics, trends and variability in the western Gulf of Finland. Oceanol. Hydrobiol. St. 40, 91-94. https://doi.org/10.2478/s13545-011-0034-3.
Callen. C.K., Burgess, A.I., Rothe, C.R., Touse, R., 2018. Development of feeding methods in the culture of yellow tang, Zebrasoma flavescens. J. World Aquac. Soc. 49, 493-503. https://doi.org/10.1111/jwas.12496.
Chai, F., Lindley, S.T., Barber, R.T., 1996. Origin and maintenance of a high nitrate condition in the equatorial Pacific. Deep Sea Res. 2. 43, 1031-1064. https://doi.org/10.1016/0967-0645(96)00029-X.
Chen, C.Y., Durbin, E.G., 1994. Effects of pH on the growth and carbon uptake of marine phytoplankton. Mar. Ecol. Prog. Ser. 109, 83-94. https://doi.org/10.3354/meps109083.
Chen, H.C., 2020. Evaluation of different densities on coral reef fish larvae survival rate under inorganic fertilization method. MS. Thesis, National Dong Hwa University. 52 pp.
Chen, J. Y., Zeng, C., Jerry, D.R., Cobcroft, J.M., 2019. Recent advances of marine ornamental fish larviculture: broodstock reproduction, live prey and feeding regimes, and comparison between demersal and pelagic spawners. Rev. Aquac. 12, 1518-1541. https://doi.org/10.1111/raq.12394.
Chen, J. Y., Zeng, C., 2021. The effects of live prey and greenwater on the early larval rearing of orchid dottyback Pseudochromis fridmani. Aquaculture 543. https://doi.org/10.1016/j.aquaculture.2021.737008.
Cheng, S.-H., Kâ, S., Kumar, R., Kuo, C.-S., Hwang, J.-S., 2011. Effects of salinity, food level, and the presence of microcrustacean zooplankters on the population dynamics of rotifer Brachionus rotundiformis. Hydrobiol. 666, 289-299. https://doi.org/10.1007/s10750-011-0615-6.
Chihara, M., Murano, M., 1997.An illustrated guide to marine plankton in Japan. Tokai University, Tokyo, 1574 pp.
Chiu, P.S., Leu, M.Y., 2021. Captive spawning, early development and larviculture of the dwarf hawkfish, Cirrhitichthys falco ( Randall, 1963) with experimental evaluation of the effects of temperature, salinity and initial prey on hatching success and first feeding. Aquaculture 542. https://doi.org/10.1016/j.aquaculture.2021.736866.
Ciji, A., Akhtar, M.S., 2019. Nitrite implications and its management strategies in aquaculture: a review. Rev. Aquac. 12, 878-908. https://doi.org/10.1111/raq.12354.
Civitello, D.J., Hite, J.L., Hall, S.R., 2014. Potassium enrichment stimulates the growth and reproduction of a clone of Daphnia dentifera. Oecologia 175, 773-780. https://doi.org/10.1007/s00442-014-2943-5.
Coale, K.H., Johnson, K.lS., Chavez, F.P., Buesseler, K.O., Barber, R.T., Brzezinski,M.A., Cochlan, W.P., Millero, F.J., Falkowski, P.G., Bauer, J.E., Wanninkhof, R.H., Kudela, R.M., Altabet, M.A., Hales, B.E., Takahashi, T., Landry, M.R., Bidigare, R.R., Wang, X., Chase, Z., Strutton, P.G., Friederich, G.E., Gorbunov, M. Y., Lance, V.P., Hilting, A.K., Hiscock, M.R., Demarest, M., Hiscock, W.T., Sullivan, K.F., Tanner, S.J., Gordon, R.M., Hunter, C.N., Elrod, V.A., Fitzwater, S.E., Jones, J.L., Tozzi, S., Koblizek, M., Roberts, A.E., Herndon, J., Brewster, J., Ladizinsky, N., Smith, G., Cooper, D., Timothy, D.,Brown, S.L., Selph, K.E., Sheridan, C.C., Twining, B.S., Johnson, Z.I., 2004. Southern ocean iron enrichment experiment: carbon cycling in high- and low- Si waters. Science 304, 408-414. https://doi.org/10.1126/science.1089778.
Conceição, L.E.C., Yúfera, M., Makridis, P., Morais, S., Dinis, M.T., 2010. Live feeds for early stages of fish rearing. Aquac. Res. 41, 613-640. https://doi.org/10.1111/j.1365-2109.2009.02242.x.
Côrtes, G., Tsuzuki, M.Y., 2012. Effect of different live food on survival and growth of first feeding barber goby, Elacatinus figaro (Sazima, Moura & Rosa, 1997) larvae. Aquac. Res. 43, 831-834. https://doi.org/10.1111/j.1365-2109.2011.02896.x.
Costa, L.D.F., Miranda-Filho, K.C., Severo, M.P., Sampaio, L.A., 2008. Tolerance of juvenile pompano Trachinotus marginatus to acute ammonia and nitrite exposure at different salinity levels. Aquaculture 285, 270-272. https://doi.org/10.1016/j.aquaculture.2008.08.017.
Cugier, P., Billen, G., Guillaud, J.F., Garnier, J., Ménesguen, A., 2005. Modelling the eutrophication of the Seine Bight (France) under historical, present and future riverine nutrient loading. J. Hydrol. 304, 381-396. https://doi.org/10.1016/j.jhydrol.2004.07.049.
Culver, D.A.,1988. Plankton ecology in fish hatchery ponds in Narrandera, NSW,Australia. Verh. Internat. Verein Limnol. 23, 1085-1089. https://doi.org/10.1080/03680770.1987.11899772.
Culver, D.A., 1991. Effects of the N:P ratio in fertilizer for fish hatchery ponds. Verh. Internat. Verein Limnol. 24, 1503-1507. https://doi.org/10.1080/03680770.1989.11899009.
Culver, D.A., Nadon, S. P., Qin, J., 1993. Percid pond production techniques. J. Appl. Aquac. 2, 9-32. https://doi.org/10.1300/J028v02n03_02.
Cushing, D.H., 1990. Plankton production and year-class strength in fish populations: an update of the match/mismatch hypothesis. Adv. Mar. Biol. 26, 249-293. https://doi.org/10.1016/S0065-2881(08)60202-3.
Czerny, J.M.S., Hauss, H., Löscher, C.R., Riebesell, U., 2016. Dissolved N:P ratio changes in the eastern tropical North Atlantic: effect on phytoplankton growth and community structure. Mar. Ecol. Prog. Ser. 545, 49-62. https://doi.org/10.3354/meps11600.
da Annunciação, W.F., Ohs, C.L., Tsuzuki, M.Y., 2020. Influence of food concentration and abiotic parameters on population density growth of the ciliated marine protozoan Euplotes sp. under controlled conditions. Aquac. Res. 51, 523-534. https://doi.org/10.1111/are.14397.
Davidson, K., Gowen, R.J., Tet, P., Bresnan, E., Harrison, P.J., McKinney, A., Milligan, S., Mills, D.K., Silke, J. Crooks, A.-M., 2012. Harmful algal blooms: How strong is the evidence that nutrient ratios and forms influence their occurrence? Estuar. Coast. Shelf Sci. 115, 399-413. https://doi.org/10.1016/j.ecss.2012.09.019.
Deane, E.E., Woo, N.Y., 2007. Impact of nitrite exposure on endocrine, osmoregulatory and cytoprotective functions in the marine teleost Sparus sarba. Aquat. Toxicol. 82, 85-93. https://doi.org/10.1016/j.aquatox.2007.02.004.
Degidio, J.-M.L.A., Yanong, R.P.E., Ohs, C.L., Watson, C.A., Cassiano, E.J., Barden, K., 2018. First feeding parameters of the milletseed butterflyfish Chaetodon miliaris. Aquac. Res. 49, 1087-1094. https://doi.org/10.1111/are.13558.
DiMaggio, M.A., Cassiano, E.J., Barden, K.P., Ramee, S.W., Ohs, C.L., Watson, C.A., 2017. First Record of Captive Larval Culture and Metamorphosis of the Pacific Blue Tang, Paracanthurus hepatus. J. World Aquac. Soc. 48, 393-401. https://doi.org/10.1111/jwas.12426.
Domingues, R.B., Guerra, C.C., Barbosa, A.B., Galvão, H.M., 2015. Are nutrients and light limiting summer phytoplankton in a temperate coastal lagoon? Aquat. Ecol. 49, 127-146. https://doi.org/10.1007/s10452-015-9512-9.
Domingues, R.B., Guerra, C.C., Barbosa, A.B., Galvão, H.M., 2017. Will nutrient and light limitation prevent eutrophication in an anthropogenically-impacted coastal lagoon? Cont. Shelf Res. 141, 11-25. https://doi.org/10.1016/j.csr.2017.05.003.
Donald, D.B., Bogard, M.J., Finlay, K., Bunting, L., Leavitt, P.R., 2013. Phytoplankton-specific response to enrichment of phosphorus-rich surface waters with ammonium, nitrate, and urea. PLoS One. 8, e53277. https://doi.org/10.1371/journal.pone.0053277.
Eddy, F.B., 2005. Ammonia in estuaries and effects on fish. J. Fish Biol. 67, 1495-1513. https://doi.org/10.1111/j.1095-8649.2005.00930.x.
Falkowski, P.G., Raven, J.A., 2007. Aquatic photosynthesis. Princeton University Press, Princeton, U.S.A., 488 pp.
Faulk, C.K., Holt, G.J., 2005. Advances in rearing cobia Rachycentron canadum larvae in recirculating aquaculture systems: live prey enrichment and greenwater culture. Aquaculture. 249, 231-243. https://doi.org/10.1016/j.aquaculture.2005.03.033.
Foissner, W., Chao, A., Katz, L.A., 2007. Diversity and geographic distribution of ciliates (Protista: Ciliophora). Biodivers. Conserv. 17, 345-363. https://doi.org/10.1007/s10531-007-9254-7.
Froese, R. and D. Pauly. Editors. 2022. FishBase. World Wide Web electronic publication.www.fishbase.org, ( 12/2022 ).
Fukami, K., Nishijima, T., Murata, H., Doi, S., Hata, Y., 1991. Distribution of bacteria influential on the development and the decay of Gymnodinium nagasakiense red tide and their effects on algal growth. Bull. Jpn. Soc. Sci. Fish. 57, 2321-2326. https://doi.org/10.2331/suisan.57.2321.
Gamboa, M., Moura, P., Moreira, M., Castanho, S., Ribeiro, L., Goncalves, R., Cunha, M., 2019. The importance of copepods as live feed on larval development of dusky grouper (Epinephelus marginatus Lowe, 1834). Front. Mar. Sci. 5. https://doi.org/10.3389/conf.FMARS.2018.06.00110.
Gleich, S.J., Plough, L.V., Glibert, P.M., 2020. Photosynthetic efficiency and nutrient physiology of the diatom Thalassiosira pseudonana at three growth temperatures. Mar. Biol. 167. https://doi.org/10.1007/s00227-020-03741-7.
Glibert, P.M., Wilkerson, F.P., Dugdale, R.C., Raven, J.A., Dupont, C.L., Leavitt, P.R., Parker, A.E., Burkholder, J.M., Kana, T.M., 2016. Pluses and minuses of ammonium and nitrate uptake and assimilation by phytoplankton and implications for productivity and community composition, with emphasis on nitrogen-enriched conditions. Limnol. Oceanogr. 61, 165-197. https://doi.org/10.1002/lno.10203.
Gómez, F., 2020. Symbioses of Ciliates (Ciliophora) and Diatoms (Bacillariophyceae): Taxonomy and Host–Symbiont Interactions. Oceans 1, 133-155. https://doi.org/10.3390/oceans1030010.
Guo, X., Wang, Z.H., Zhao, J.G., Xiao, L., Jiang, T., 2020. Effects of inorganic nutrients on the phytoplankton community in the sea surface microlayer of Daya Bay, South China Sea. J. Sea Res. 156. https://doi.org/10.1016/j.seares.2019.101830.
Hansen, B.W., Hansen, P.J., Nielsen, T.G., Jepsen, P.M., 2017. Effects of elevated pH on marine copepods in mass cultivation systems: practical implications. J. Plankton Res. 39, 984-993. https://doi.org/10.1093/plankt/fbx032.
Hansen, P.J., 2002. Effect of high pH on the growth and survival of marine phytoplankton: implications for species succession. Aquat. Microb. Ecol. 28, 279-288. https://doi.org/10.3354/ame028279.
Harvey, H.R., Ederington, M.C., Mcmanus, G.B., 1997. Lipid composition of the marine ciliates Pleuronema sp. and Fabrea salina: shifts in response to changes in diet 1. J. Eukaryot. Microbiol. 44, 189-193. https://doi.org/10.1111/j.1550-7408.1997.tb05698.x.
Hinder, S.L., Hays, G.C., Edwards, M., Roberts, E.C., Walne, A.W., Gravenor, M.B., 2012. Changes in marine dinoflagellate and diatom abundance under climate change. Nat. Clim. Change 2, 271–275. https://doi.org/10.1038/nclimate1388.
Hinga, K.R., 2002. Effects of pH on coastal marine phytoplankton. Mar. Ecol. Prog. Ser 238, 281-300. https://doi.org/10.3354/meps238281.
Helal, H.A., Culver, D.A., 2017. N: P ratio and plankton production in fish hatchery ponds. Verh. Int. Verein. Limnol. 24, 1508–1511. https://doi.org/10.1080/03680770.1989.11899010.
Hoek, C.v.d., Mann, D.G., Jahns, H.M., 1995. Algae : an introduction to phycology. Cambridge University press, Cambridge, U.K., 640 pp.
Holt, G.J., 2003. Research on culturing the early life stages of marine ornamental fish. In: Cato, J.C., Brown, C.L. (Eds.), Marine ornamental species: collection, culture & conservation. Wiley-Blackwell, New Jersey, U.S.A., pp. 249-254. https://doi.org/10.1002/9780470752722.ch17.
Hong, G.K., Tew, K.S., 2022. The Advantages of Inorganic Fertilization for the Mass Production of Copepods as Food for Fish Larvae in Aquaculture. Life 12. https://doi.org/10.3390/life12030441.
Howarth, R.W., Marino, R., 2006. Nitrogen as the limiting nutrient for eutrophication in coastal marine ecosystems: evolving views over three decades. Limnol. Oceanogr. 51, 364-376. https://doi.org/10.4319/lo.2006.51.1_part_2.0364.
Huang, M.Y., Hsu, H.W., Liu, W.Y., 2000. Acute Toxicity of Ammonia and Nitrite to the Giant Sea Perch Lates calcarifer juveniles. J. Taiwan Fish Res. 7, 45-51.
Huang, J.C., Shang, C., 2006. Air Stripping. In Advanced Physicochemical Treatment Processes; Humana Press: Totowa, NJ, USA. 47–79.
Humphrey, G.F., 1975. The photosynthesis: respiration ratio of some unicellular marine algae. J. Exp. Mar. Biol. Ecol. 18, 111-119. https://doi.org/10.1016/0022-0981(75)90068-4.
Hung, C.C., 2013. Study on the Acute Toxicity and Tolerance of Nitrite to Juvenile Silver Moony (Monodactylus argenteus). MS. Thesis, National Dong Hwa University. 68 pp.
Jacob, A.P, Culver, D.A., 2010. Experimental evaluation of the impacts of reduced inorganic phosphorus fertilization rates on juvenile saugeye production. Aquaculture 304, 22-33. https://doi.org/10.1016/j.aquaculture.2010.03.019.
Jakobsen, H.H., Blanda, E., Staehr, P.A., Højgård, J.K., Rayner, T.A., Pedersen, M.F., Jepsen, P.M., Hansen, B.W., 2015. Development of phytoplankton communities: Implications of nutrient injections on phytoplankton composition, pH and ecosystem production. J. Exp. Mar. Biol. Ecol. 473, 81-89. https://doi.org/10.1016/j.jembe.2015.08.011.
Jensen, F.B., 2003. Nitrite disrupts multiple physiological functions in aquatic animals. Comp. Biochem. Phys. A. 135, 9-24. https://doi.org/10.1016/S1095-6433(02)00323-9.
Jensen, F.B., Nielsen, K., 2018. Methemoglobin reductase activity in intact fish red blood cells. Comp. Biochem. Phys. A. 216, 14-19. https://doi.org/10.1016/j.cbpa.2017.11.004.
Jing, X., Mi, T., Zhen, Y., Wang, H., Yu, Z., 2019. Influence of N, P, Fe Nutrients Availability on Nitrogen Metabolism- Relevant Genes Expression in Skeletonema marinoi. J. Ocean Univ. China 18, 239-252. https://doi.org/10.1007/s11802-019-3500-y.
Juneja, A., Ceballos, R.M., Murthy, G.S., 2013. Effects of environmental factors and nutrient availability on the biochemical composition of algae for biofuels production: a review. Energies 6, 4607-4638. https://doi.org/10.3390/en6094607.
Kaatz, S.E., Morris, J.E., Rudacille, J.B., Johnson, J.A., Clayton, R.D., 2011. Role of organic fertilizers in walleye (Sander vitreus) production in plastic-lined culture ponds. Aquac. Res. 42, 490-498. https://doi.org/10.1111/j.1365-2109.2010.02644.x.
Kamiyama, T., 1994. The impact of grazing by microzooplankton in northern Hiroshima Bay, the Seto Inland Seam, Jpn. Mar. Biol. 119, 77-88. https://doi.org/10.1007/bf00350109.
Kandathil Radhakrishnan, D., AkbarAli, I., Schmidt, B.V., John, E.M., Sivanpillai, S., Thazhakot Vasunambesan, S., 2019. Improvement of nutritional quality of live feed for aquaculture: An overview. Aquac. Res. 51, 1-17. https://doi.org/10.1111/are.14357.
Kang'ombe, J., Brown, J.A., Halfyard, L.C., 2006. Effect of using different types of organic animal manure on plankton abundance, and on growth and survival of Tilapia rendalli (Boulenger) in ponds. Aquac. Res. 37, 1360-1371. https://doi.org/10.1111/j.1365-2109.2006.01569.x.
King, T.A., 2019. Wild caught ornamental fish: a perspective from the UK ornamental aquatic industry on the sustainability of aquatic organisms and livelihoods. J. Fish Biol. 94, 925-936. https://doi.org/10.1111/jfb.13900.
Kline, M.D., Laidley, C.W., 2015. Development of intensive copepod culture technology for Parvocalanus crassirostris: optimizing adult density. Aquaculture 435, 128-136. https://doi.org/10.1016/j.aquaculture.2014.09.022.
Kuo, J., Chen, C.Y., Han, C.C., Ju, Y.M., Tew, K.S., 2021. Analyses of diet preference of larval orange-spotted grouper (Epinephelus coioides) grown under inorganic fertilization method using next-generation sequencing. Aquaculture 531. https://doi.org/10.1016/j.aquaculture.2020.735916.
Kurten, G.L., Barkoh, A., Begley, D.C., Fries, L.T., 2011. Nutrient manipulation to control the toxic alga Prymnesium parvum: verification of treatments and resolution of the issue of elevated pH. N. Am. J. Aquac. 73, 141-152. https://doi.org/10.1080/15222055.2011.559867.
Ladisa, C., Bruni, M., Lovatelli, A., 2017. Overview of ornamental species aquaculture. FAO Aquacu. Newsl. 56, 38-39. https://www.proquest.com/scholarly-journals/overview-ornamental-species-aquaculture/docview/1914440444/se-2.
Laruelle, G.G., Roubeix, V., . . .et al., 2009. Anthropogenic perturbations of the silicon cycle at the global scale: Key role of the land-ocean transition. Global Biogeochem. Cy. 23. https://doi.org/10.1029/2008GB003267.
Lee, H.Y., 2011. Embryonic, larval development and acute tolerance for ammonia in early stage of silver moony, Monodactylus argenteus (Linnaeus, 1758). MS. Thesis, National Dong Hwa University. 75 pp.
Leu, M.Y., Chou. Y.H., 1996. Induced spawning and larval rearing of captive yellowfin porgy, Acanthopagrus latus(Houttuyn). Aquaculture 143, 155-166. https://doi.org/10.1016/0044-8486(96)01272-0.
Leu, M.Y., Sune, Y.H., Meng, P.J., 2015. First results of larval rearing and development of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck & Schlegel) from hatching through juvenile stage with notes on its potential for aquaculture. Aquac. Res. 46, 1087-1100. https://doi.org/10.1111/are.12265.
Leu, M.Y., Hsu, Y.C., Tu, T.H., Chiu, P.S., Yu, B.H., Wang, J.B., Tew, K.S., Meng, P.J., 2022. Natural spawning, early development and first successful hatchery production of the bluestreak cleaner wrasse, Labroides dimidiatus (Valenciennes, 1839), with application of an inorganic fertilization method in larviculture. Aquaculture. 553. https://doi.org/10.1016/j.aquaculture.2022.738056.
Leu, M.Y., Liou, C.H., Wang, W.H., Yang, S.D., Meng, P.J., 2009. Natural spawning, early development and first feeding of the semicircle angelfish Pomacanthus senicirculatus (Cuvier, 1831) in captivity. Aquac. Res. 40, 1019-1030. https://doi.org/10.1111/j.1365-2109.2009.02192.x.
Leu, M.Y, Meng, P.J., Tew, K.S., Kuo, J., Hung, C.C., 2012. Spawning and development of larvae and juveniles of the indian ocean oriental sweetlips, Plectorhinchus vittatus (Linnaeus, 1758), in the aquarium. J. World Aquac. Soc. 43,595-606. https://doi.org/10.1111/j.1749-7345.2012.00594.x.
Leu, M.Y., Meng, P.J., Huang, C.S., Tew, K.S., Kuo, J., Liou, C.H., 2010. Spawning behaviour, early development and first feeding of the bluestriped angelfish Chaetodontoplus septentrionalis (Temminck & Schlegel, 1844) in captivity. Aquac. Res. 41, 39-52. https://doi.org/10.1111/j.1365-2109.2009.02454.x.
Levich, A.P., Bulgakov, N.G., 1992. Regulation of species and size composition in phytoplankton communities in situ by N:P ratio. Russ. J. Aquat. Ecol. 1, 149-159.
Li, A.K., 2017. Application of high nutrient concentration in coral reef fish larviculture. MS. Thesis, National Dong Hwa University. 69 pp.
Lin, S.H., 2022. Pilot-scale production on application of inorganic fertilization method for larviculture of the golden trevally (Gnathanodon speciosus), the snubnose pompano (Trachinotus blochii) and the bluespotted angelfish (Chaetodontoplus caeruleopunctatus). MS. Thesis, National Dong Hwa University. 131 pp.
Liu, H., Chen, M., Zhu, F., Harrison, P.J., 2016. Effect of Diatom Silica Content on Copepod Grazing, Growth and Reproduction. Front. Mar. Sci. 3. https://doi.org/10.3389/fmars.2016.00089.
Liu, L., Wang, Z., Wang, C., Li, W., Nie, X., 2021. Effects of nitrogen sources and concentrations on the growth of different phytoplankton taxa. J. Ocean Univ. China 20, 721-728. https://doi.org/10.1007/s11802-021-4564-z.
Liu, X., Millero, F.J., 2002. The solubility of iron in seawater, Mar. Chem. 77, 43-54. https://doi.org/10.1016/s0304-4203(01)00074-3.
Lorenz, P., Trommer, G., Stibor, H., 2019. Impacts of increasing nitrogen:phosphorus ratios on zooplankton community composition and whitefish ( Coregonus macrophthalmus ) growth in a pre-alpine lake. Freshwater Biol. 64, 1210-1225. https://doi.org/10.1111/fwb.13296.
Ludwig, G.M., 2002. The effects of increasing organic and inorganic fertilizer on water quality, primary production, zooplankton, and sunshine bass, Morone chrysops×M. saxatilis, fingerling production. J. Appl. Aquac. 12, 1-29. https://doi.org/10.1300/J028v12n02_01.
Lundholm, N., Hansen, P.J., Kotaki, Y., 2004. Effect of pH on growth and domoic acid production by potentially toxic diatoms of the genera Pseudo-nitzschia and Nitzschia. Mar. Ecol. Prog. Ser. 273, 1-15. https://doi.org/10.3354/meps273001.
Ma, Z., Qin, J.G., Hutchinson, W., Chen, B.N., 2013. Food consumption and selectivity by larval yellowtail kingfish Seriola lalandi cultured at different live feed densities. Aquac. Nutr. 19, 523-534. https://doi.org/10.1111/anu.12004.
Madhu, K., Madhu, R., Retheesh, T., 2016. Spawning, embryonic development and larval culture of redhead dottyback Pseudochromis dilectus Lubbock, 1976 under captivity. Aquaculture 459, 73-83. https://doi.org/10.1016/j.aquaculture.2016.03.017.
Maehre, H.K., Hamre, K., Elvevoll, E.O., 2013. Nutrient evaluation of rotifers and zooplankton: feed for marine fish larvae. Aquac. Nutr. 19, 301-311. https://doi.org/10.1111/j.1365-2095.2012.00960.x.
Majoris, J.E., Francisco, F.A., Atema, J., Buston, P.M., 2018. Reproduction, early development, and larval rearing strategies for two sponge-dwelling neon gobies, Elacatinus lori and E. colini. Aquaculture 483, 286-295. https://doi.org/10.1016/j.aquaculture.2017.10.024.
Makareviciute-Fichtner, K., Matthiessen, B., Lotze, H.K., Sommer, U., 2020. Decrease in diatom dominance at lower Si:N ratios alters plankton food webs. J. Plankton Res. 42, 411-424. https://doi.org/10.1093/plankt/fbaa032.
Malviya, S., Scalco, E., Audic, S., Vincent, F., Veluchamy, A., Poulain, J., Wincker, P., Iudicone, D., de Vargas, C., Bittner, L., Zingone, A., Bowler, C., 2016. Insights into global diatom distribution and diversity in the world's ocean. Proc. Natl. Acad. Sci. USA. 113, 1516-1525. https://doi.org/10.1073/pnas.1509523113.
Mann, K.H., Lazier, J.R.N., 2006. Dynamics of Marine Ecosystems: Biological-Physical Interactions in the Oceans. Oceanography 19, 157–159. http://dx.doi.org/10.5670/oceanog.2006.87.
Marschner, H., 1995. Mineral nutrition of higher plants. Academic Press, London.
Mauchline, J., 1998. Biology of calanoid copepods, the advances in marine biology, volume 33. Elsevier Science & Technology, Amsterdam, Netherlands, 720 pp.
Millero, F.J., 1998. The solubility of iron in seawater. Earth Planet. Sci. Lett. 154,329. https://doi.org/10.1016/s0012-821x(97)00179-9.
Moorhead, J.A., Zeng, C., 2010. Development of captive breeding techniques for marine ornamental fish: a review. Rev. Fish. Sci. 18, 315-343. https://doi.org/10.1080/10641262.2010.516035.
Muller-Feuga, A., Moal, J., Kaas, R., 2003. The microalgae of aquaculture. In: Stottrup, J.G., McEvoy, L.A. (Eds.), Live feeds in marine aquaculture. Wiley-Blackwell, New Jersey, U.S.A., pp. 206-252. https://doi.org/10.1002/9780470995143.ch6.
Nagano, N., Iwatsuki, Y., Kamiyama, T., Nakata, H., 2000. Effects of marine ciliates on survivability of the first-feeding larval surgeonfish, Paracanthurus hepatus: laboratory rearing experiments. Hydrobiologia 432, 149-157. https://doi.org/10.1023/a:1004094825739.
Nixon, S.W., 1995. Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia. 41, 199-219. https://doi.org/10.1080/00785236.1995.10422044.
Olivotto, I., Holt, S.A., Carnevali, O., Holt, G.J., 2006. Spawning, early development, and first feeding in the lemonpeel angelfish Centropyge flavissimus. Aquaculture 253, 270-278. https://doi.org/10.1016/j.aquaculture.2004.12.009.
Olivotto, I., Planas, M., Simoes, N., Holt, G.J., Avella, M.A., Calado, R., 2011. Advances in breeding and rearing marine ornamentals. J. World Aquac. Soc. 42, 135-166. https://doi.org/10.1111/j.1749-7345.2011.00453.x.
Olivotto, I., Tokle, N.E., Nozzi, V., Cossignani, L., Carnevali, O., 2010. Preserved copepods as a new technology for the marine ornamental fish aquaculture: A feeding study. Aquaculture 308, 124-131. https://doi.org/10.1016j/.aquaculture.2010.08.033.
Østergaard, P., Munk, P., Janekarn, V., 2004. Contrasting feeding patterns among species of fish larvae from the tropical Andaman Sea. Mar. Biol. 146, 595-606. https://doi.org/10.1007/s00227-004-1458-8.
Palmer, P.J., Burke, M.J., Palmer, C.J., Burke, J.B., 2007. Developments in controlled green-water larval culture technologies for estuarine fishes in Queensland, Australia and elsewhere. Aquaculture 272, 1-21. https://doi.org/10.1016/.aquaculture.2007.06.018.
Palmtag, M.R., 2017. The marine ornamental species trade. In: Calado, R., Olivotto, I., Planas, M., Holt, G.J. (Eds.), Marine Ornamental Species Aquaculture. Wiley Blackwell, Oxford, U.K, pp. 3-14. https://doi.org/10.1002/9781119169147.ch1.
Pancic, M., Torres, R.R., Almeda, R., Kiorboe, T., 2019. Silicified cell walls as a defensive trait in diatoms. Proc Biol Sci. 286. https://doi.org/10.1098/rspb.2019.0184.
Pandey, B.D., Yeragi, S.G., Pal, A.K., 2004. Nutritional value of a heterotrichous ciliate, Fabrea salina with emphasis on its fatty acid profile. Asian Autral. J. Anim. Sci. 17, 995-999. https://doi.org/10.5713/ajas.2004.995.
Park, J., Daniels, H.V., Cho, S.H., 2013. Nitrite toxicity and methemoglobin changes in southern flounder, Paralichthys lethostigma, in brackish water. J. World Aquac. Soc. 44, 726-734. https://doi.org/10.1111/jwas.12064.
Parra, G., Yúfera, M., 2002. Tolerance response to water pH in larvae of two marine fish species, gilthead seabream, Sparus aurata (L.) and Senegal sole, Solea senegalensis (Kaup), during development. Aquac. Res. 33, 747-752. https://doi.org/10.1046/j.1365-2109.2002.00713.x.
Paytan, A., McLaughlin, K., 2007. The oceanic phosphorus cycle. Chem. Rev. 107, 563-576. https://doi.org/10.1021/cr0503613.
Pedersen, F.M., Hansen, P.J., 2003. Effects of high pH on a natural marine planktonic community. Mar. Ecol. Prog. Ser. 260, 19-31. https://doi.org/10.3354/meps260019.
Pedrazzani, A.S., Pham, N.K., Lin, J., Neto, A.O., 2014. Reproductive behavior, embryonic and early larval development of the red head goby, Elacatinus puncticulatus. Anim. Reprod. Sci. 145, 69-74. https://doi.org/10.1016/j.anireprosci.2013.12.013.
Pereira-Davison, E., Callan, C.K., 2018. Effects of photoperiod, light intensity, turbidity and prey density on feed incidence and survival in first feeding yellow tang (Zebrasoma flavescen)(Bennett). Aquac. Res. 49, 890-899. https://doi.org/10.1111/are.13535.
Pick, F.R., Lean, D.R., 1987. The role of macronutrients (C, N, P) in controlling cyanobacterial dominance in temperate lakes. New Zeal. J. Mar. Fresh. 21, 425-434. https://doi.org/10.1080/00288330.1987.9516238.
Pierce, R.H., Weeks, J.M., Prappas, J.M., 1993. Nitrate toxicity to five species of marine fish. J. World Aquac. Soc. 24, 105-107. https://doi.org/10.1111/j.1749-7345.1993.tb00156.x.
Qin, J.,Culver, D.A., 1992.The survival and growth of larval walleye, Stizostedion vitreum, and trophic dynamics in fertilized ponds. Aquaculture 108, 257-276. https://doi.org/10.1016/0044-8486(92)90111-w.
Randall, D.J., Hoar, W.S., 1969. Fish physiology. Academic press, New York, U.S.A., 464 pp.
Rasdi, N.W., Qin, J.G., 2014. Improvement of copepod nutritional quality as live food for aquaculture: a review. Aquac. Res.47, 1-20. https://doi:10.1111/are.12471.
Redfield, A.C., 1958. The biological control of chemical factors in the environment. Sci. Prog. 11, 150-170. https://www.jstor.org/stable/27827150.
Roberts, R.J., 2001. Fish pathology. W.B. Saunders, London, U.K., 492 pp.
Round, F.E., Crawford, R.M., Mann, D.G., 1990. The diatoms : biology and morphology of the genera biology & morphology of the genera. Cambridge University press, New York, U.S.A., 747 pp.
Saravanan, R., Vijayanand, P., Vagelli, A.A., Murugan, A., Shanker, S., Rajagopal, S., Balasubramanian, T., 2013. Breeding and rearing of the two striped cardinalfish, Apogon quadrifasciatus (Cuvier, 1828) in captive condition. Anim Reprod Sci. 137, 237-244. https://doi.org/10.1016/j.anireprosci.2013.01.017.
Søndergaard, M., Lauridsen, T.L., Johansson, L.S., Jeppesen, E., 2017. Nitrogen or phosphorus limitation in lakes and its impact on phytoplankton biomass and submerged macrophyte cover. Hydrobiologia 795, 35-48. https://doi.org/10.1007/s10750-017-3110-x.
Song, D., Xi, B., Sun, J., 2016. Characterization of the growth, chlorophyll content and lipid accumulation in a marine microalgae Dunaliella tertiolecta under different nitrogen to phosphorus ratios. J. Ocean U. China 15, 124-130. https://doi.org/10.1007/s11802-016-2797-z.
Su, H.M., Su, M.S., Liao, I.C., 1997. Collection and culture of live foods for aquaculture in Taiwan. In: Hagiwara, A., Snell, T.W., Lubzens, E., Tamaru, C.S. (Eds.), Live food in aquaculture. Developments in hydrobiology. Springer, Dordrecht, Netherlands, pp. 37-40. https://doi.org/10.1023/A:1003107701367.
Sune, Y.H., 2011. Larval development, microstructures and first feeding of the bluestriped angelfish, Chaetodontoplus septentrionalis (Temminck & Schlegel, 1844). MS. Thesis, National Dong Hwa University. 118 pp.
Svobodová, Z., Vykusová, B., 1991. Diagnostics, prevention and therapy of fish diseases and intoxications : manual for international training course on freshwater fish diseases and intoxications: diagnostics, prophylaxis and therapy. Manual. Research Inst. of Fish Culture and Hydrobiology, Vodnany, Czechoslovakia.
Tew, K.S., Conroy, J.D., Culver, D.A., 2006. Effects of lowered inorganic phosphorus fertilization rates on pond production of percid fingerlings. Aquaculture 255, 436-446. https://doi.org/10.1016/j.aquaculture.2006.01.003.
Tew, K.S., Meng, P.J., Lin, H.S., Chen, J.H., Leu, M.Y., 2013. Experimental evaluation of inorganic fertilization in larval giant grouper (Epinephelus lanceolatus Bloch) production. Aquac. Res. 44, 439-450. https://doi.org/10.1111/j.1365-2109.2011.03051.x.
Tew, K.S., Chang, Y.C., Meng, P.J., Leu, M.Y., Glover, D.C., 2016. Towards sustainable exhibits - application of an inorganic fertilization method in coral reef fish larviculture in an aquarium. Aquac. Res. 47, 2748-2756. https://doi.org/10.1111/are.12725.
Tice, B.J., Soderberg, R.W., Kirby, J.M., Marcinko, M.T., 1996. Growth and survival of walleyes reared in ponds fertilized with organic or inorganic materials. Prog. Fish Culturist. 58, 135-139. https://doi.org/10.1577/1548-8640(1996)058<0135:GASOWR>2.3.CO;2.
Tortell, P.D., Maldonado, M.T., Granger, J., Price, N.M., 1999. Marine bacteria and biogeochemical cycling of iron in the oceans. FEMS Microbiol. Ecol. 29, 1-11. https://doi.org/10.1111/j.1574-6941.1999.tb00593.x.
Townsend, D., 2011. Sustainability, equity and welfare: a review of the tropical marine ornamental fish trade. SPC Live Reef Fish I. 20, 2–12.
Wabnitz, C., Taylor, M., Green, E., Razak, T., 2003. From Ocean to Aquarium: The Global Trade in Marine Ornamental Species. UNEP-WCMC, Cambridge, UK. http://www.unepwcmc.org/resources/publications/UNEP_WCMC_bio_series/17.htm/ (accessed Desember 2022).
Wang, P.H., 2014. Natural spawning and early life history of the semicircle angelfish, Pomacanthus semicirculatus (Cuvier, 1831) in captivity. MS. Thesis, National Dong Hwa University. 81 pp.
Wang, Z., Guo, X., Qu, L., Lin, L., 2017. Effects of nitrogen and phosphorus on the growth of Levanderina fissa: How it blooms in Pearl River Estuary. J. Ocean U. China 16, 114-120. https://doi.org/10.1007/s11802-017-3080-7.
Wang, J.B., 2021. Comparative studies on the natural spawning and early life history of the bluespotted angelfish, Chaetodontoplus caeruleopunctatus (Yasuda & Tominaga, 1976) and pearlscale angelfish, Centropyge vrolikii (Bleeker, 1853) in captivity. MS. Thesis, National Dong Hwa University. 139 pp.
Weirich, C.R., Riche, M., 2006. Acute tolerance of juvenile Florida pompano, Trachinotus carolinus L., to ammonia and nitrite at various salinities. Aquac. Res. 37, 855-861. https://doi.org/10.1111/j.1365-2109.2006.01502.x.
Weisse, T., Gröschl, B., Bergkemper, V., 2016. Phytoplankton response to short-term temperature and nutrient changes. Limnologica 59, 78-89. https://doi.org/10.1016/j.limno.2016.05.002.
Williams, R. J. P., 1970. The biochemistry of sodium, potassium, magnesium, and calcium. Tilden Lecture. Quarterly Reviews, Chemical Society, 24, 331-365.
Wu, S.K., 2015. Study of the increase of inorganic nitrogen concentration on the survival of coral reef fish larvae. MS. Thesis, National Dong Hwa University. 42 pp.
Xu, H., Song, W., Warren, A., Al-Rasheid, K.A.S., Al-Farraj, S.A., Gong, J., Hu, X., 2008. Planktonic protist communities in a semi-enclosed mariculture pond: structural variation and correlation with environmental conditions. J. Mar. Biol. Assoc. U K. 88, 1353-1362. https://doi.org/10.1017/S0025315408002129.
Yamaji, I., 1983. Illustrations of the marine plankton of Japan. Hoikusha, Osaka, 369 pp.
Yang, Y.J., 2012. Studies on the early development and actue tolerance for ammonia, nitrite and nitrate nitrogen of saddleback clownfish, Amphiprion polymnus (Linnaeus, 1758). MS. Thesis, National Dong Hwa University. 139 pp.
Yang, J., Löder, M.G.J., Wiltshire, K.H., 2014. A survey of ciliates at the long-term sampling station “Helgoland Roads”, North Sea. Helgoland Mar. Res. 68, 313-327. https://doi.org/10.1007/s10152-014-0392-5.
Yasuda, F., Tominaga, Y., 1976. A new pomacanthid fish, Chaetodontoplus caeruleopunctatus, from the Philippines. Jpn. J. Ichthyol. 23, 130-132. https://doi.org/10.11369/jji1950.23.130.
Yeh, W.C., 2019. Effect of simulating spring blooms with inorganic fertilization on survival of coral reef fish larvae. MS. Thesis, National Dong Hwa University. 73 pp.
Zeng, C., Shao, L., Ricketts, A., Moorhead, J., 2018. The importance of copepods as live feed for larval rearing of the green mandarin fish Synchiropus splendidus. Aquaculture 491, 65-71. https://doi.org/10.1016/j.aquaculture.2018.03.011.
(此全文20260116後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 人工環境中淡斑荷包魚(Chaetodontoplus caeruleopunctatus) (Yasuda & Tominaga, 1976)及福氏刺尻魚(Centropyge vrolikii) (Bleeker, 1853)的自然產卵及初期生活史之比較研究
2. 銀鱗鯧的胚胎、仔稚魚發育及對氨氮急毒性耐受性之研究
3. 銀鱗鯧稚魚對亞硝酸鹽急毒性耐受性之研究
4. 藍帶荷包魚(Chaetodontoplus septentrionalis)的仔稚魚發育、微細構造及首次攝餌之研究
5. 養殖密度、換水率及添加光合菌(Rhodobium sp.)和藻水對於羅氏沼蝦(Macrobrachium rosenbergii)的成長、活存及水質因子之影響
6. 裂唇魚(Labroides dimidiatus)的自然產卵和初期生活史之研究
7. 擬刺尾鯛(Paracanthurus hepatus)的自然產卵和初期生活史之研究
8. 延遲首次攝食對尖翅燕魚[Platax teira (Forsskål, 1775)]的仔魚成長及活存之影響
9. 虎斑烏賊 (Sepia pharaonis Ehrenberg, 1831) 的初期生活史及其亞幼生對氨氮急毒性耐受性之研究
10. 人工環境中疊波蓋刺魚(Pomacanthus semicirculatus)的自然產卵和初期生活史之研究
11. 淡水馴養的銀鱗鯧稚魚暴露於亞硝酸中之急毒性及亞致死濃度對其形質、離子調節、逆境與能量代謝反應之影響
12. 帶紋斑節海龍 (Dunckerocampus dactyliophorus )的人工繁殖及初期生活史之研究
13. 人工環境中二種不同產卵模式的珊瑚礁魚類自然產卵、初期發育及仔稚魚培育—以飾妝銜鰕虎及鷹金䱵為例
14. 無機氮、磷施肥法對養殖疊波蓋刺魚、擬刺尾鯛及鷹金䱵仔魚初期活存影響之研究
15. 眼斑雙鋸魚稚魚暴露於氨中之急毒性及長期非致死濃度對其生理調控之影響
 
* *