帳號:guest(3.144.3.183)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳怡純
作者(英文):I-Chun Chen
論文名稱:圈養白鯨之糞便細菌菌相分析
論文名稱(英文):Analysis of Bacterial Communities in Feces from Captive Beluga Whales (Delphinapterus leucas)
指導教授:郭傑民
指導教授(英文):Jimmy Kuo
口試委員:郭傑民
林重宏
張桂祥
口試委員(英文):Jimmy Kuo
Chorng-Horng Lin
Kwee-Siong Tew
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863011
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:61
關鍵詞:奈米孔定序(nanopore sequencing)白鯨(Delphinapterus leucas)16S rRNA基因
關鍵詞(英文):nanopore sequencingbelugaDelphinapterus leucas16S rRNA gene
相關次數:
  • 推薦推薦:0
  • 點閱點閱:3
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
哺乳動物的消化道微生物相一直是個學術界研究的熱門領域,因胃腸道的微生物菌相與宿主的消化、免疫反應和新陳代謝有著重要作用。然而,在海洋動物糞便微生物菌相研究方面,常因檢體不易採集,特別是海洋哺乳類消化道的微生物群落資訊比其他物種少。在本研究中,採集國立海洋生物博物館三頭白鯨(Delphinapterus leucas)例行健檢或消化道異常時之糞便,利用奈米孔定序(nanopore sequencing)進行16S rRNA定序微生物菌相的組成和多樣性。本次總共獲得了253,926個序列,共有2,197個(OTU;97% 序列相似性),共得13個細菌菌門,較高豐富度的是厚壁菌門Firmicutes (71%)、變形菌門Proteobacteria(14%)、梭桿菌門Fusobacteria (9%)和放線菌門Actinobacteria(5%)等。本次也發現在冬季樣本中放線菌門Actinobacteria的豐富度顯著較高(P<0.05)。然而,冬季樣本中鯨桿菌屬Cetobacterium、分枝桿菌屬Mycolicibacter、變形桿菌屬Proteus的豐富度也顯著較高(P<0.05)。本研究結果可提供動物醫療照護上參考的資訊。
The study of the digestive tract microbiota in mammals is now a popular topic because they may play an important role in digestion, metabolism and immune function of the host. However, information on the microbiome of the gastrointestinal tract of marine animal, especially mammals, is less available because of the difficulty in sample collection. In this study, the feces of three captive beluga whales (Delphinapterus leucas) at the National Museum of Marine Biology and Aquarium (NMMBA) were collected during routine health checks or abnormal digestive conditions and used to analyze gastrointestinal bacteria in belugas. The composition and diversity of bacteria was analyzed by high-throughput 16S rRNA amplicon sequencing using nanopore technology. A total of 253,926 sequences were obtained and clustered to 2,197 operational taxonomic units (OTUs; 97% sequence similarity), 13 bacterial phyla and revealed abundant of phyla Firmicutes (71%), Proteobacteria (14%), Fusobacteria (9%), and Actinobacteria (5%). We also found that the abundance of Actinobacteria was significantly higher in the winter samples (P<0.05). However, the abundance of Cetobacterium, Mycolicibacter, Proteus, and Mycobacterium were significantly higher in the winter samples (P<0.05). The results of this study can be used as reference information for animal medical care.
致謝 I
摘要 III
Abstract V
圖目錄 IX
表目錄 XI
第一章 緒論 1
第一節 前言 1
第二節 微生物與宿主之相關性 1
第三節 微生物菌相與16S rRNA基因定序 3
第四節 動物消化道及糞便常見的菌相 4
第五節 腸道菌相與環境之相關性 5
第六節 白鯨簡介 6
第七節 研究目的與動機 7
第二章 實驗材料與方法 9
第一節 藥品與儀器 9
第二節 樣本採集 10
第三節 萃取糞便所含細菌之基因體DNA (genomic DNA) 10
第四節 16S rRNA序列鑑定 11
第五節 序列處理及比對 12
第三章 結果 17
第一節 序列處理及分析 17
第二節 Alpha多樣性分析(alpha diversity analysis) 18
第三節 Beta多樣性分析(beta diversity analysis) 19
第四節 菌群分析 20
第四章 討論 43
第一節 與其他哺乳動物及圈養的海洋哺乳動物差異 43
第二節 糞便細菌探討 43
第三節 季節上有顯著差異的菌門 46
第五章 結論與建議 49
參考文獻 51
Aquilina, G., Bories, G., Chesson, A., Cocconcelli, P. S., Knecht, J. D., Dierick, N. A., Gralak, M. A., Gropp, J., Halle, I., Hogstrand, C., Kroker, R., Leng, L., Puente, S. L., Lundebye Haldorsen, A.K., Mantovani, A., Martelli, G., Mézes, M., Renshaw, D., Saarela, M., Sejrsen, K., and Westendorf, J. (2012). Guidance on the safety assessment of Enterococcus faecium in animal nutrition. EFSA Journal, 10(5), 2682.

Agarwal, A. (2008). Nobel Prize Winners in Physics. Delhi, India: APH Publishing.

Amann, R. I., Krumholz, L., and Stahl, D. A. (1990). Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. Journal of Bacteriology, 172(2), 762-770.

Amann, R. I., Ludwig, W., and Schleifer, K.-H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews, 59(1), 143-169.

Anee, I. J., Alam, S., Begum, R. A., Shahjahan, R. M., and Khandaker, A. M. (2021). The role of probiotics on animal health and nutrition. The Journal of Basic and Applied Zoology, 82, 1-16.

Apprill, A. (2017). Marine animal microbiomes: toward understanding host–microbiome interactions in a changing ocean. Frontiers in Marine Science, 4, 222.

Bai, S., Zhang, P., Zhang, C., Du, J., Du, X., Zhu, C., Liu, J., Xie, P., and Li, S. (2021). Comparative study of the gut microbiota among four different marine mammals in an aquarium. Frontiers in Microbiology, 12, 769012.

Bermudez-Brito, M., Plaza-Díaz, J., Muñoz-Quezada, S., Gómez-Llorente, C., and Gil, A. (2012). Probiotic mechanisms of action. Annals of Nutrition and Metabolism, 61(2), 160-174.

Bocci, V. (1992). The neglected organ: bacterial flora has a crucial immunostimulatory role. Perspectives in Biology and Medicine, 35(2), 251-260.

Bossart, G. D. (2011). Marine mammals as sentinel species for oceans and human health. Veterinary Pathology, 48(3), 676-690.

Burokas, A., Moloney, R. D., Dinan, T. G., and Cryan, J. F. (2015). Microbiota regulation of the mammalian gut–brain axis. Advances in Applied Microbiology, 91, 1-62.

Cohen, S. H., Gerding, D. N., Johnson, S., Kelly, C. P., Loo, V. G., McDonald, L. C., et al. (2010). Clinical practice guidelines for Clostridium difficile infection in adults: 2010 update by the society for healthcare epidemiology of America (SHEA) and the infectious diseases society of America (IDSA). Infection Control & Hospital Epidemiology, 31(5), 431-455.

Cole, J. R., Chai, B., Farris, R. J., Wang, Q., Kulam-Syed-Mohideen, A., McGarrell, D. M., Bandela, A. M., Cardenas, E., Garrity, G. M., and Tiedje, J. M. (2007). The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Research, 35(suppl_1), D169-D172.

Costa, M. C., Arroyo, L. G., Allen-Vercoe, E., Stämpfli, H. R., Kim, P. T., Sturgeon, A., and Weese, J. S. (2012). Comparison of the fecal microbiota of healthy horses and horses with colitis by high throughput sequencing of the V3-V5 region of the 16S rRNA gene. Public Library of Science One 7(7), e41484.

Cruaud, P., Vigneron, A., Lucchetti-Miganeh, C., Ciron, P. E., Godfroy, A., and Cambon-Bonavita, M.-A. (2014). Influence of DNA extraction method, 16S rRNA targeted hypervariable regions, and sample origin on microbial diversity detected by 454 pyrosequencing in marine chemosynthetic ecosystems. Applied and Environmental Microbiology, 80(15), 4626-4639.

Cubillos-Ruiz, A., Alcantar, M. A., Donghia, N. M., Cárdenas, P., Avila-Pacheco, J., and Collins, J. J. (2022). An engineered live biotherapeutic for the prevention of antibiotic-induced dysbiosis. Nature Biomedical Engineering, 6(7), 910-921.

Cui, H., Li, Y., and Zhang, X. (2016). An overview of major metagenomic studies on human microbiomes in health and disease. Quantitative Biology, 4, 192-206.

Dallas, J. W., and Warne, R. W. (2022). Captivity and animal microbiomes: potential roles of microbiota for influencing animal conservation. Microbial Ecology, 1-19.

Dayan, K., Neufeld, D., Zissin, R., Bernheim, J., Paran, H., Schwartz, I., and Freund, U. (1996). Actinomycosis of the large bowel: unusual presentations and their surgical treatment. The European Journal of Surgery, 162(8), 657-660.

Delport, T. C., Power, M. L., Harcourt, R. G., Webster, K. N., and Tetu, S. G. (2016). Colony location and captivity influence the gut microbial community composition of the Australian sea lion (Neophoca cinerea). Applied and Environmental Microbiology, 82(12), 3440-3449.

Den Besten, G., Van Eunen, K., Groen, A. K., Venema, K., Reijngoud, D.-J., and Bakker, B. M. (2013). The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. Journal of Lipid Research, 54(9), 2325-2340.

Dobell, C. (1932). Antony van Leeuwenhoek and his" Little Animals." Being Some Account of the Father of Protozoology and Bacteriology and his Multifarious Discoveries in these Disciplines. Collected, Translated, and Edited, from his Printed Works, Unpublished Manuscripts, and Contemporary Records. Published on the 300th Anniversary of his Birth. Nature, 130, 679–680.

Dubos, R. J. (1951). Louis Pasteur. Free lance of Science. AMA Arch Intern Med, 87(2), 327.

Eckburg, P. B., Bik, E. M., Bernstein, C. N., Purdom, E., Dethlefsen, L., Sargent, M., Gill, S. R., Nelson, K. E., and Relman, D. A. (2005). Diversity of the human intestinal microbial flora. Science, 308(5728), 1635-1638.

Elliott, D. R., Wilson, M., Buckley, C. M., and Spratt, D. A. (2005). Cultivable oral microbiota of domestic dogs. Journal of Clinical Microbiology, 43(11), 5470-5476.

Embley, T., and Stackebrandt, E. (1994). The molecular phylogeny and systematics of the actinomycetes. Annual Review of Microbiology, 48(1), 257-289.

Enck, P., Zimmermann, K., Menke, G., Müller‐Lissner, S., Martens, U., and Klosterhalfen, S. (2008). A mixture of Escherichia coli (DSM 17252) and Enterococcus faecalis (DSM 16440) for treatment of the irritable bowel syndrome–a randomized controlled trial with primary care physicians. Neurogastroenterology & Motility, 20(10), 1103-1109.

Erwin, P. M., Rhodes, R. G., Kiser, K. B., Keenan-Bateman, T. F., McLellan, W. A., and Pabst, D. A. (2017). High diversity and unique composition of gut microbiomes in pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales. Scientific Reports, 7(1), 7205.

Finegold, S. M., Vaisanen, M.-L., Molitoris, D. R., Tomzynski, T. J., Song, Y., Liu, C., Collins, M. D., and Lawson, P. A. (2003). Cetobacterium somerae sp. nov. from human feces and emended description of the genus Cetobacterium. Systematic and Applied Microbiology, 26(2), 177-181.

Folkens, P. A., and Reeves, R. R. (2002). Guide to Marine Mammals of the World, New York, USA: Knopf doubleday publishing.

Foster, G., Ross, H., Naylor, R., Collins, M., Ramos, C. P., Garayzabal, F. F., and Reid, R. (1995). Cetobacterium ceti gen. nov., sp. nov., a new Gram‐negative obligate anaerobe from sea mammals. Letters in Applied Microbiology, 21(3), 202-206.

Foster, J. A., and Neufeld, K. A. M. (2013). Gut–brain axis: how the microbiome influences anxiety and depression. Trends in Neurosciences, 36(5), 305-312.

Fuhrman, J., McCallum, K., and Davis, A. (1993). Phylogenetic diversity of subsurface marine microbial communities from the Atlantic and Pacific Oceans. Applied and Environmental Microbiology, 59(5), 1294-1302.

Gan, L., Xu, Z., Ma, J., Xu, C., Wang, X., Chen, K., Chen, L. Q., and Li, E. (2016). Effects of salinity on growth, body composition, muscle fatty acid composition, and antioxidant status of juvenile Nile tilapia Oreochromis niloticus (Linnaeus, 1758). Journal of Applied Ichthyology, 32(2), 372-374.

Gibson, G. R., and Roberfroid, M. B. (1995). Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. The Journal of Nutrition, 125(6), 1401-1412.

Glad, T., Kristiansen, V. F., Nielsen, K. M., Brusetti, L., Wright, A.-D. G., and Sundset, M. A. (2010). Ecological characterisation of the colonic microbiota in arctic and sub-arctic seals. Microbial Ecology, 60, 320-330.

Grice, E. A., Kong, H. H., Renaud, G., Young, A. C., Bouffard, G. G., Blakesley, R. W., Wolfsberg, T. G., Turner, M. L., and Segre, J. A. (2008). A diversity profile of the human skin microbiota. Genome Research, 18(7), 1043-1050.

Handelsman, J., Rondon, M. R., Brady, S. F., Clardy, J., and Goodman, R. M. (1998). Molecular biological access to the chemistry of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 5(10), R245-R249.

Holman, D. B., Brunelle, B. W., Trachsel, J., and Allen, H. K. (2017). Meta-analysis to define a core microbiota in the swine gut. MSystems, 2(3), e00004-00017.

Hopkins, M., Sharp, R., and Macfarlane, G. (2001). Age and disease related changes in intestinal bacterial populations assessed by cell culture, 16S rRNA abundance, and community cellular fatty acid profiles. Gut, 48(2), 198-205.

Huttenhower, C., Gevers, D., Knight, R., Abubucker, S., Badger, J. H., Chinwalla, A. T., Creasy, H. H., Earl, A. M., FitzGerald, M. G., Fulton, R. S., et al.(2012). Structure, function and diversity of the healthy human microbiome. Nature, 486(7402), 207-214.

Jakubiec-Krzesniak, K., Rajnisz-Mateusiak, A., Guspiel, A., Ziemska, J., and Solecka, J. (2018). Secondary metabolites of actinomycetes and their antibacterial, antifungal and antiviral properties. Polish Journal of Microbiology, 67(3), 259-272.

Krawczyk, B., Wityk, P., Gałęcka, M., and Michalik, M. (2021). The many faces of Enterococcus spp. commensal, probiotic and opportunistic pathogen. Microorganisms, 9(9), 1900.

Kuo, J., Yang, Y.-T., Lu, M.-C., Wong, T.-Y., Sung, P.-J., and Huang, Y.-S. (2019). Antimicrobial activity and diversity of bacteria associated with Taiwanese marine sponge Theonella swinhoei. Annals of Microbiology, 69, 253-265.

Ley, R. E., Hamady, M., Lozupone, C., Turnbaugh, P. J., Ramey, R. R., Bircher, J. S., Schlegel, M. L., Tucker, T. A., Schrenel, M. D., Knight, R., and Gordon, J. I. (2008). Evolution of mammals and their gut microbes. Science, 320(5883), 1647-1651.

Ley, R. E., Turnbaugh, P. J., Klein, S., and Gordon, J. I. (2006). Human gut microbes associated with obesity. Nature, 444(7122), 1022-1023.

Lo, C. I., Mishra, A. K., Padhmanabhan, R., Samb Ba, B., Sow, A. G., Robert, C., Couderc, C., Faye, N., Raoult, D., Fournier, P. E., and Fenollar, F. (2013). Non-contiguous finished genome sequence and description of Clostridium dakarense sp. nov. Standards in Genomic Sciences, 9, 14-27.

Long-Smith, C., O'Riordan, K. J., Clarke, G., Stanton, C., Dinan, T. G., and Cryan, J. F. (2020). Microbiota-gut-brain axis: new therapeutic opportunities. Annual Review of Pharmacology and Toxicology, 60, 477-502.

Magnúsdóttir, S., Ravcheev, D., de Crécy-Lagard, V., and Thiele, I. (2015). Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Frontiers in Genetics, 6, 148.

Martiny, J. B. H., Bohannan, B. J., Brown, J. H., Colwell, R. K., Fuhrman, J. A., Green, J. L., Horner-Devine, M. C., Kane, M., Krumins, J. A., Kuske, C. R., Morin, P. J., Naeem, S., Øvreås, L., Reysenbach, A. L., Smith, V. H., and Kuske, C. R. (2006). Microbial biogeography: putting microorganisms on the map. Nature Reviews Microbiology, 4(2), 102-112.

Mazmanian, S. K., Liu, C. H., Tzianabos, A. O., and Kasper, D. L. (2005). An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell, 122(1), 107-118.

Metges, C. C. (2000). Contribution of microbial amino acids to amino acid homeostasis of the host. The Journal of Nutrition, 130(7), 1857S-1864S.

Miller, D. L., Brazer, S., Murdoch, D., Reller, L. B., and Corey, G. R. (2001). Significance of Clostridium tertium bacteremia in neutropenic and nonneutropenic patients: review of 32 cases. Clinical Infectious Diseases, 32(6), 975-978.

Montalto, M., Arancio, F., Izzi, D., Cuoco, L., Curigliano, V., Manna, R., and Gasbarrini, G. (2002). Probiotics: history, definition, requirements and possible therapeutic applications. Annali Italiani di Medicina Interna, 17(3), 157-165.

Mountzouris, K., Tsitrsikos, P., Palamidi, I., Arvaniti, A., Mohnl, M., Schatzmayr, G., and Fegeros, K. (2010). Effects of probiotic inclusion levels in broiler nutrition on growth performance, nutrient digestibility, plasma immunoglobulins, and cecal microflora composition. Poultry Science, 89(1), 58-67.

Murray, P. R., Baron, E. J., Pfaller, M. A., Tenover, F. C., Yolken, R. H., and Morgan, D. R. (1995). Manual of Clinical Microbiology (6th edn). Trends in Microbiology, 3(11), 449-449.

Musso, G., Gambino, R., and Cassader, M. (2011). Interactions between gut microbiota and host metabolism predisposing to obesity and diabetes. Annual Review of Medicine, 62, 361-380.

Nelson, T. M., Rogers, T. L., and Brown, M. V. (2013). The gut bacterial community of mammals from marine and terrestrial habitats. Public Library of Science One, 8(12), e83655.

Neuman, C., Hatje, E., Zarkasi, K. Z., Smullen, R., Bowman, J. P., and Katouli, M. (2016). The effect of diet and environmental temperature on the faecal microbiota of farmed Tasmanian Atlantic Salmon (Salmo salar). Aquaculture Research, 47(2), 660-672.

Olsen, U., International Human Genome Sequencing Consortium (2001). Initial sequencing and analysis of the human genome. Nature, 409(6822), 860-921.

Parry, D. (1949). The structure of whale blubber, and a discussion of its thermal properties. Journal of Cell Science, 3(9), 13-25.

Plaza-Diaz, J., Ruiz-Ojeda, F. J., Gil-Campos, M., and Gil, A. (2019). Mechanisms of action of probiotics. Advances in Nutrition, 10(1), S49-S66.

Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K. S., Manichanh, C., Yamada, T., et al. (2010). A human gut microbial gene catalogue established by metagenomic sequencing. Nature, 464(7285), 59-65.

Rijkers, G. T., Bengmark, S., Enck, P., Haller, D., Herz, U., Kalliomaki, M., Kudo, S., Lenoir-Wijnkoop, I., Mercenier, A., Myllyluoma, E., Rabot, S., Rafter, J., Szajewska, H., Watzl, B., Wells, J., Wolvers, D., and Myllyluoma, E. (2010). Guidance for substantiating the evidence for beneficial effects of probiotics: current status and recommendations for future research. The Journal of Nutrition, 140(3), 671S-676S.

Ringø, E., and Strøm, E. (1994). Microflora of Arctic charr, Salvelinus alpinus (L.): gastrointestinal microflora of free‐living fish and effect of diet and salinity on intestinal microflora. Aquaculture Research, 25(6), 623-629.

Roberfroid, M. (2000). Prebiotics and probiotics: Are they functional food ingredients. Modern Nutrition. Florida, USA: CRC press.

Roeselers, G., Mittge, E. K., Stephens, W. Z., Parichy, D. M., Cavanaugh, C. M., Guillemin, K., and Rawls, J. F. (2011). Evidence for a core gut microbiota in the zebrafish. International Society for Microbial Ecology , 5(10), 1595-1608.

Salazar, J., Durán, P., Díaz, M. P., Chacín, M., Santeliz, R., Mengual, E., Gutiérrez, E., León, X. O., Díaz, A., Bernal, M., Escalona, D., Parra Hernández, L. A., and Bernal, M. (2023). Exploring the relationship between the gut microbiota and ageing: a possible age modulator. International Journal of Environmental Research and Public Health, 20(10), 5845.

Sanders, J. G., Beichman, A. C., Roman, J., Scott, J. J., Emerson, D., McCarthy, J. J., and Girguis, P. R. (2015). Baleen whales host a unique gut microbiome with similarities to both carnivores and herbivores. Nature Communications, 6(1), 8285.

Savage, D. C. (1977). Microbial ecology of the gastrointestinal tract. Annual Review of Microbiology, 31(1), 107-133.

Šeol, B., Gomerčić, M. Đ., Naglić, T., Gomerčić, T., Galov, A., and Gomerčić, H. (2006). Isolation of Clostridium tertium from a Striped Dolphin (Stenella coeruleoalba) in the Adriatic Sea. Journal of Wildlife Diseases, 42(3), 709-711.

Shanahan, F. (2002). The host–microbe interface within the gut. Best Practice & Research Clinical Gastroenterology, 16(6), 915-931.

Shendure, J., and Ji, H. (2008). Next-generation DNA sequencing. Nature Biotechnology, 26(10), 1135-1145.

Speirs, G., Warren, R., and Ramp, A. (1988). Clostridium tertium septicemia in patients with neutropenia. Journal of Infectious Diseases, 158(6), 1336-1340.

Struntz, D., Mclellan, W. A., Dillaman, R., Blum, J. E., Kucklick, J. R., and Pabst, D. A. (2004). Blubber development in bottlenose dolphins (Tursiops truncatus). Journal of Morphology, 259(1), 7-20.

Suau, A., Bonnet, R., Sutren, M., Godon, J.-J., Gibson, G. R., Collins, M. D., and Doré, J. (1999). Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Applied and Environmental Microbiology, 65(11), 4799-4807.

Sullam, K. E., Essinger, S. D., Lozupone, C. A., O’connor, M. P., Rosen, G. L., Knight, R., Kilham, S. S., and Russell, J. A. (2012). Environmental and ecological factors that shape the gut bacterial communities of fish: a meta‐analysis. Molecular Ecology, 21(13), 3363-3378.

Suzuki, A., Segawa, T., Sawa, S., Nishitani, C., Ueda, K., Itou, T., Asahina, K., Suzuki, M. (2019). Comparison of the gut microbiota of captive common bottlenose dolphins Tursiops truncatus in three aquaria. Journal of Applied Microbiology, 126(1), 31-39.

Thursby, E., and Juge, N. (2017). Introduction to the human gut microbiota. Biochemical Journal, 474(11), 1823-1836.

Tsuchiya, C., Sakata, T., and Sugita, H. (2008). Novel ecological niche of Cetobacterium somerae, an anaerobic bacterium in the intestinal tracts of freshwater fish. Letters in Applied Microbiology, 46(1), 43-48.

Umesaki, Y., Okada, Y., Matsumoto, S., Imaoka, A., and Setoyama, H. (1995). Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and induce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex‐germ‐free mouse. Microbiology and Immunology, 39(8), 555-562.

van Kessel, M. A., Dutilh, B. E., Neveling, K., Kwint, M. P., Veltman, J. A., Flik, G., , Jetten, M. S., Klaren, P. H., and Op den Camp, H. J. (2011). Pyrosequencing of 16S rRNA gene amplicons to study the microbiota in the gastrointestinal tract of carp (Cyprinus carpio L.). AMB Express, 1(1), 1-9.

Vemuri, R., Gundamaraju, R., Shastri, M. D., Shukla, S. D., Kalpurath, K., Ball, M., Tristram, S., Shankar, E. M., Ahuja, K., and Eri, R. (2018). Gut microbial changes, interactions, and their implications on human lifecycle: an ageing perspective. BioMed Research International, 2018.

Waksman, S. A., Schatz, A., and Reynolds, D. M. (2010). Production of antibiotic substances by actinomycetes. Annals of the New York Academy of Sciences, 1213(1), 112.

Weinstock, G. M. (2012). Genomic approaches to studying the human microbiota. Nature, 489(7415), 250-256.

Wilson, D. E., and Reeder, D. M. (2005). Mammal Species of the World (Vol. 1). MD, USA : JHU press.

Wu, G. D., Chen, J., Hoffmann, C., Bittinger, K., Chen, Y.-Y., Keilbaugh, S. A., Bewra, M., Knights, D., Walters, W. A., Knight, R., Sinha, R., Gilroy, E., Gupta, K., Baldassano, R., Nessel, L., Li, H., Bushman, F. D., and Knight, R. (2011). Linking long-term dietary patterns with gut microbial enterotypes. Science, 334(6052), 105-108.

Wu, S., Wang, G., Angert, E. R., Wang, W., Li, W., and Zou, H. (2012). Composition, diversity, and origin of the bacterial community in grass carp intestine. Public Library of Science One, 7(2), e30440.

Zhou, Z., Tang, L., Yan, L., Jia, H., Xiong, Y., Shang, J., Shao, C., Zhang, Q., Wang, H., He, L., Hu, D., and Zheng, L. (2022). Wild and captive environments drive the convergence of gut microbiota and impact health in threatened equids. Frontiers in Microbiology, 13, 832410.

衛生福利部,(2018)。訂定「原料『糞腸球菌(Enterococcus faecalis)』及『屎腸球菌(Enterococcus faecium)』之使用限制」,並自中華民國一百零八年七月一日生效。衛授食字第1071302587。https://www.fda.gov.tw/
(此全文20250808後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *