帳號:guest(18.220.187.223)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:康家銘
作者(英文):Chia-Ming Kang
論文名稱:珊瑚胚胎及幼生發育生長之研究
論文名稱(英文):Study on the development and growth of coral embryo and larvae
指導教授:林家興
指導教授(英文):Chia-Hsin Lin
口試委員:林家興
韓僑權
呂明毅
蔡淑君
口試委員(英文):Chia-Hsin Lin
Chiao-Chuan Han
Ming-Yih Leu
Su-June Tsai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863015
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:93
關鍵詞:珊瑚胚胎幼生發育息肉骨架多胚胎胚葉細胞
關鍵詞(英文):coralembryolarvaedevelopmentpolypskeletonpolyembryonyblastomere
相關次數:
  • 推薦推薦:0
  • 點閱點閱:13
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
全球珊瑚日漸減少,以往從事珊瑚復育的研究會選擇將成體珊瑚進行切割,利用珊瑚的高恢復力以無性增殖的方式進行復育,然而此種方式對野外珊瑚的基因多樣性是有影響的,因此近年來復育的方式逐漸轉為提供大量有性生殖產生的珊瑚幼苗到珊瑚貧瘠的海域,使幼苗自然著床並恢復該海域的珊瑚環境。然而大部分的研究均著重於養殖,幾乎無相關研究對活體珊瑚幼體的生長過程細節進行觀察討論。本研究針對四種珊瑚叢生棘杯珊瑚(Galaxea fascicularis)、象鼻斜花珊瑚(Mycedium elephantotus)、疣狀鹿角珊瑚(Pocillopora verrucose)及鈍枝列孔珊瑚(Seriatopora caliendrum)的胚胎及幼生發育進行探討。由潛水員在珊瑚產卵時期於墾丁南灣採集G. fascicularis及M. elephantotus的精卵並於實驗室中培育成幼苗,同時採集成體的P. verrucosa及S. caliendrum以收苗系統收集其幼苗,並在之後將珊瑚幼苗轉移至培養皿中使其著床並培養。珊瑚骨架是從息肉分泌的有機質形成,骨架的表現會受其息肉生長過程中的變化及刺激影響,本研究將珊瑚幼體骨架分成骨包肉及肉包骨兩種型態,其中骨包肉型態的幼體鞘壁會先以外殼的形式環形包覆於息肉外側,而肉包骨型態的幼體其骨架均形成於幼體息肉下方。大部分幼體均形成各自獨立的長條狀觸手,並在無性增殖過程中於共息肉組織上表現出共生藻聚集的現象,同時伴隨著明顯的新個體息肉發育及骨架增長,但M. elephantotus為例外,其觸手彼此相連呈現傘狀且會於後續幼體的生長過程中不停的增長及伸展,並逐漸化為珊瑚群落的共息肉組織。在無性增生時其共息肉組織表現出共生藻出現疏離的現象,且無法觀察到明顯的息肉隆起或觸手生長等息肉發育,僅能觀察到新個體口腔的形成。P. verrucosa及S. caliendrum均為有枝狀結構的珊瑚,但形成的方式卻不同,P. verrucosa有能自行垂直生長的中心個體,而S. caliendrum主要是依靠群落中個體間的相互推擠來向上延伸。另外,珊瑚也是有多胚胎現象的物種之一,多胚胎是一種常見無性生殖方式,利用此性質,可在胚胎數量有限及一定程度的情況下增加胚胎數量或改變胚胎大小。結果顯示G. fascicularis胚葉細胞的分離對於胚胎發育週期並無影響,但降低了其存活率及著床率,其中以1/4胚胎最為明顯,推測是由於胚葉細胞分裂過程其動植物半球分配不均導致部分胚葉細胞在分離後發生營養不足或發育異常等現象所導致,另外幼苗體型縮小可能使其對著床基質的喜好發生改變,進而降低著床率。本研究對於珊瑚養殖及生長的相關研究有實質上的幫助。
For the first part of the study, we examined the embryonic and larval development of four scleractinian corals Galaxea fascicularis, Mycedium elephantotus, Pocillopora verrucosa and Seriatopora caliendrum. Two types of post-settlement larvae were distinguished: skeleton-clad polyp and polyp-clad skeleton. The theca of a skeleton-clad polyp wrapped around the outside of the polyp in the form of a shell, while in a polyp-clad skeleton type developed under the polyp. The majority of coral larvae presented long strip-shaped tentacles. During the process of asexual reproduction, Symbiodiniaceae clustered on the coenosarc which along with polyp development and skeletal growth. M. elephantotus was the exceptional: the tentacles were found umbrella-shaped, and the performance of polyps and Symbiodiniaceae during asexual reproduction was varied from the one observed in the other three corals. P. verrucosa and S. caliendrum presented a branched morphology, however their vertical growth process was different. P. verrucosa had a central individual that grow vertically, whereas S. caliendrum relied on the mutual pushing of individuals in the colony to extend upward. In the second part of the study, early embryonic cells of the coral G. fascicularis were artificially isolated, cultured, and monitored throughout their post-settlement development. Polyembryony is a common asexual reproduction strategy displayed by coral species. By exploiting this breeding phenomenon, it is possible to increase the number and modulate the size of coral embryos to a certain extent. The results from this study showed that artificial isolation did not affect the developmental process of embryonic cells but significantly reduced larval survival and settlement rates. Artificial embryonal isolation effects were particularly evident upon the second division and consequent formation of a 1/4 embryo. Likely due to an uneven distribution of the embryonic cells in the animal and plant hemispheres, separation resulted in some embryonic cells being undernourished or abnormally developed. Moreover, the size reduction might affect the larval adhesion substrate requirements, thereby reducing the settlement rate. This study provides substantial intel and will assist coral breeding and growth research.
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第一章 緒論 1
1.1 珊瑚礁危機 1
1.2 珊瑚胚胎發育 1
1.3 穩固型(Robust)與複雜型(Complex)珊瑚 4
1.4 珊瑚卵研究 6
1.5 多胚胎現象 8
1.6 胚葉細胞 10
1.7 珊瑚幼生 10
1.8 珊瑚養殖 12
1.9 珊瑚冷凍保存 14
1.10 研究目的 15
第二章 材料與方法 17
2.1實驗物種 17
2.1.1 叢生棘杯珊瑚(Galaxea fascicularis) 17
2.1.2 象鼻斜花珊瑚(Mycedium elephantotus) 17
2.1.3 鈍枝列孔珊瑚(Seriatopora caliendrum) 18
2.1.4 疣狀鹿角珊瑚(Pocillopora verrucosa) 18
2.2 採集地點 18
2.3 受精試驗 20
2.4 培育飼養 21
2.5 觀察方式 22
第三章 珊瑚胚胎及幼生發育生長之研究 25
3.1 前言 25
3.2 結果 27
3.2.1 G. fascicularis胚胎及幼苗發育 27
3.2.2 M. elephantotus胚胎及幼苗發育 30
3.2.3 S. caliendrum幼苗發育 32
3.2.4 P. verrucosa 幼苗發育 33
3.2.5 G. fascicularis、P. verrucosa 和 S. caliendrum 個體存活率和幼苗著床率 34
3.3 討論 35
第四章 珊瑚多胚胎分離及發育之研究 67
4.1 前言 67
4.2 結果 68
4.3 討論 70
參考文獻 79
附錄 93
Adams, S. L., Kleinhans, F. W., Mladenov, P. V., & Hessian, P. A. (2003). Membrane permeability characteristics and osmotic tolerance limits of sea urchin (Evechinus chloroticus) eggs. Cryobiology, 47(1), 1-13.
Airi, V., Gizzi, F., Falini, G., Levy, O., Dubinsky, Z., & Goffredo, S. (2014). Reproductive efficiency of a Mediterranean endemic zooxanthellate coral decreases with increasing temperature along a wide latitudinal gradient. PLoS One, 9(3), e91792.
Alcorn, N. J., & Allen, J. D. (2009). How do changes in parental investment influence development in echinoid echinoderms?. Evolution & development, 11(6), 719-727.
Aleza, P., Juárez, J., Ollitrault, P., & Navarro, L. (2010). Polyembryony in non-apomictic citrus genotypes. Annals of Botany, 106(4), 533-545.
Allen, J. D. (2008). Size-specific predation on marine invertebrate larvae. The Biological Bulletin, 214(1), 42-49.
Allen, J. D., Armstrong, A. F., & Ziegler, S. L. (2015). Environmental induction of polyembryony in echinoid echinoderms. The Biological Bulletin, 229(3), 221-231.
Allen, J. D., Zakas, C., & Podolsky, R. D. (2006). Effects of egg size reduction and larval feeding on juvenile quality for a species with facultative-feeding development. Journal of Experimental Marine Biology and Ecology, 331(2), 186-197.
Ayalon, I., Rosenberg, Y., Benichou, J. I., Campos, C. L. D., Sayco, S. L. G., Nada, M. A. L., Baquiran, J. I. P., Ligson, C. A., Avisar, D., Conaco, C., Kuechly, H. U., Kyba, C. C. M., Cabaitan, P. C., & Levy, O. (2021). Coral gametogenesis collapse under artificial light pollution. Current Biology, 31(2), 413-419.
Babcock, R. C., Baird, A. H., Piromvaragorn, S., Thomson, D. P., & Willis, B. L. (2003). Identification of scleractinian coral recruits from Indo-Pacific reefs. ZOOLOGICAL STUDIES-TAIPEI-, 42(1), 211-226.
Baird, A. H., Babcock, R. C., & Mundy, C. P. (2003). Habitat selection by larvae influences the depth distribution of six common coral species. Marine Ecology Progress Series, 252, 289-293.
Beiring, E. A., & Lasker, H. R. (2000). Egg production by colonies of a gorgonian coral. Marine Ecology Progress Series, 196, 169-177.
Biase, F. H., Cao, X., & Zhong, S. (2014). Cell fate inclination within 2-cell and 4-cell mouse embryos revealed by single-cell RNA sequencing. Genome research, 24(11), 1787-1796.
Birrell, C. L., McCook, L. J., Willis, B. L., & Harrington, L. (2008). Chemical effects of macroalgae on larval settlement of the broadcast spawning coral Acropora millepora. Marine Ecology Progress Series, 362, 129-137.
Brazeau, D. A., Sammarco, P. W., & Atchison, A. D. (2011). Micro-scale genetic heterogeneity and structure in coral recruitment: fine-scale patchiness. Aquatic Biology, 12(1), 55-67.
Calvi, S. L., & Maisse, G. (1998). Cryopreservation of rainbow trout (Oncorhynchus mykiss) blastomeres: influence of embryo stage on postthaw survival rate. Cryobiology, 36(4), 255-262.
Cameron, K. A., & Harrison, P. L. (2020). Density of coral larvae can influence settlement, post-settlement colony abundance and coral cover in larval restoration. Scientific reports, 10(1), 1-11.
Cardona-Costa, J., & García-Ximénez, F. (2007). Vitrification of zebrafish embryo blastomeres in microvolumes. Cryoletters, 28(4), 303-309.
Chui, A. P. Y., Wong, M. C., Liu, S. H., Lee, G. W., Chan, S. W., Lau, P. L., Wong, M. C., & Ang, P. (2014). Gametogenesis, embryogenesis, and fertilization ecology of Platygyra acuta in marginal nonreefal coral communities in Hong Kong. Journal of Marine Biology, 2014.
Cirino, L., Tsai, S., Wen, Z. H., Wang, L. H., Chen, H. K., Cheng, J. O., & Lin, C. (2021). Lipid profiling in chilled coral larvae. Cryobiology, 102, 56-67.
Cirino, L., Wen, Z. H., Hsieh, K., Huang, C. L., Leong, Q. L., Wang, L. H., Chen, C. S., Daly, J., Tsai, S., & Lin, C. (2019). First instance of settlement by cryopreserved coral larvae in symbiotic association with dinoflagellates. Scientific reports, 9(1), 1-8.
Daly, J., Zuchowicz, N., Lendo, C. I. N., Khosla, K., Lager, C., Henley, E. M., Bischof, J., Kleinhans, F. W., Lin C., Peters, E. C., & Hagedorn, M. (2018). Successful cryopreservation of coral larvae using vitrification and laser warming. Scientific reports, 8(1), 1-10.
Dan-Sohkawa, M., & Satoh, N. (1978). Studies on dwarf larvae developed from isolated blastomeres of the starfish, Asterina pectinifera.
Dash, S. N., Routray, P., Dash, C., Guru, B. C., Swain, P., & Sarangi, N. (2008). Use of the non-toxic cryoprotectant trehalose enhances recovery and function of fish embryonic stem cells following cryogenic storage. Current Stem Cell Research & Therapy, 3(4), 277-287.
dela Cruz, D. W., & Harrison, P. L. (2017). Enhanced larval supply and recruitment can replenish reef corals on degraded reefs. Scientific reports, 7(1), 1-13.
dela Cruz, D. W., & Harrison, P. L. (2020). Enhancing coral recruitment through assisted mass settlement of cultured coral larvae. Plos one, 15(11), e0242847.
Doropoulos, C., Evensen, N. R., Gómez-Lemos, L. A., & Babcock, R. C. (2017). Density-dependent coral recruitment displays divergent responses during distinct early life-history stages. Royal Society Open Science, 4(5), 170082.
Doropoulos, C., Ward, S., Diaz‐Pulido, G., Hoegh‐Guldberg, O., & Mumby, P. J. (2012). Ocean acidification reduces coral recruitment by disrupting intimate larval‐algal settlement interactions. Ecology letters, 15(4), 338-346.
Edwards, A. J., Guest, J. R., Heyward, A. J., Villanueva, R. D., Baria, M. V., Bollozos, I. S., & Golbuu, Y. (2015). Direct seeding of mass-cultured coral larvae is not an effective option for reef rehabilitation. Marine Ecology Progress Series, 525, 105-116.
Fabina, N. S., Putnam, H. M., Franklin, E. C., Stat, M., & Gates, R. D. (2012). Transmission mode predicts specificity and interaction patterns in coral-Symbiodinium networks.
Feuillassier, L., Martinez, L., Romans, P., Engelmann-Sylvestre, I., Masanet, P., Barthélémy, D., & Engelmann, F. (2014). Survival of tissue balls from the coral Pocillopora damicornis L. exposed to cryoprotectant solutions. Cryobiology, 69(3), 376-385.
Hagedorn, M., Carter, V., Martorana, K., Paresa, M. K., Acker, J., Baums, I. B., Borneman, E., Brittsan, M., Byers, M., Henley, M., Laterveer, M., Leong, J. A., McCarthy, M., Meyers, S., Nelson, B. D., Petersen, D., Tiersch, T., Uribe, R. C., Woods, E., & Wildt, D. (2012). Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PloS one, 7(3), e33354.
Hagedorn, M., Pan, R., Cox, E. F., Hollingsworth, L., Krupp, D., Lewis, T. D., Leong, J. C., Mazur, P., Rall, W. F., MacFarlane, D. R., Fahy, G., & Kleinhans, F. W. (2006). Coral larvae conservation: physiology and reproduction. Cryobiology, 52(1), 33-47.
Hansis, C., Tang, Y., Grifo, J. A., & Krey, L. C. (2001). Analysis of Oct-4 expression and ploidy in individual human blastomeres. Molecular Human Reproduction, 7(2), 155-161.
Hassan, H. M., Khanfar, M. A., Elnagar, A. Y., Mohammed, R., Shaala, L. A., Youssef, D. T., Hifnawy, M. S., & El Sayed, K. A. (2010). Pachycladins A− E, prostate cancer invasion and migration inhibitory eunicellin-based diterpenoids from the Red Sea soft coral Cladiella pachyclados. Journal of natural products, 73(5), 848-853.
Hayward, D. C., Grasso, L. C., Saint, R., Miller, D. J., & Ball, E. E. (2015). The organizer in evolution–gastrulation and organizer gene expression highlight the importance of Brachyury during development of the coral, Acropora millepora. Developmental biology, 399(2), 337-347.
Hayward, D. C., Samuel, G., Pontynen, P. C., Catmull, J., Saint, R., Miller, D. J., & Ball, E. E. (2002). Localized expression of a dpp/BMP2/4 ortholog in a coral embryo. Proceedings of the National Academy of Sciences, 99(12), 8106-8111.
Heyward, A. J., & Negri, A. P. (2010). Plasticity of larval pre-competency in response to temperature: observations on multiple broadcast spawning coral species. Coral Reefs, 29(3), 631-636.
Heyward, A. J., & Negri, A. P. (2012). Turbulence, cleavage, and the naked embryo: a case for coral clones. Science, 335(6072), 1064-1064.
Heyward, A. J., Smith, L. D., Rees, M., & Field, S. N. (2002). Enhancement of coral recruitment by in situ mass culture of coral larvae. Marine Ecology Progress Series, 230, 113-118.
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737-1742.
Hong, N., Li, M., Yuan, Y., Wang, T., Yi, M., Xu, H., Zeng, H., Song, J., & Hong, Y. (2016). Dnd is a critical specifier of primordial germ cells in the medaka fish. Stem Cell Reports, 6(3), 411-421.
Humanes, A., Noonan, S. H., Willis, B. L., Fabricius, K. E., & Negri, A. P. (2016). Cumulative effects of nutrient enrichment and elevated temperature compromise the early life history stages of the coral Acropora tenuis. PLoS One, 11(8), e0161616.
Humanes, A., Ricardo, G. F., Willis, B. L., Fabricius, K. E., & Negri, A. P. (2017). Cumulative effects of suspended sediments, organic nutrients and temperature stress on early life history stages of the coral Acropora tenuis. Scientific reports, 7(1), 1-11.
Hurley, D. L., Angerer, L. M., & Angerer, R. C. (1989). Altered expression of spatially regulated embryonic genes in the progeny of separated sea urchin blastomeres. Development, 106(3), 567-579.
Johnston, E. C., Counsell, C. W., Sale, T. L., Burgess, S. C., & Toonen, R. J. (2020). The legacy of stress: Coral bleaching impacts reproduction years later. Functional Ecology, 34(11), 2315-2325.
Jones, R., Ricardo, G. F., & Negri, A. P. (2015). Effects of sediments on the reproductive cycle of corals. Marine Pollution Bulletin, 100(1), 13-33.
Jorissen, H., Galand, P. E., Bonnard, I., Meiling, S., Raviglione, D., Meistertzheim, A. L., Hédouin, L., Banaigs, B., Payri, C. E., & Nugues, M. M. (2021). Coral larval settlement preferences linked to crustose coralline algae with distinct chemical and microbial signatures. Scientific Reports, 11(1), 1-11.
Katayama, M., Ellersieck, M. R., & Roberts, R. M. (2010). Development of monozygotic twin mouse embryos from the time of blastomere separation at the two-cell stage to blastocyst. Biology of reproduction, 82(6), 1237-1247.
Kawakami, Y., Goto-Kazeto, R., Saito, T., Fujimoto, T., Higaki, S., Takahashi, Y., Arai, K., & Yamaha, E. (2010). Generation of germ-line chimera zebrafish using primordial germ cells isolated from cultured blastomeres and cryopreserved embryoids. International Journal of Developmental Biology, 54(10), 1493-1501.
Keshavmurthy, S., Hsu, C. M., Kuo, C. Y., Denis, V., Leung, J. K. L., Fontana, S., Hsieh, H. J., Tsai, W. S., Su, W. C., & Chen, C. A. (2012). Larval development of fertilized “pseudo-gynodioecious” eggs suggests a sexual pattern of gynodioecy in Galaxea fascicularis (Scleractinia: Euphyllidae). Zoological Studies, 51(2), 143-149.
Kitahara, M. V., Cairns, S. D., Stolarski, J., Blair, D., & Miller, D. J. (2010). A comprehensive phylogenetic analysis of the Scleractinia (Cnidaria, Anthozoa) based on mitochondrial CO1 sequence data. PloS one, 5(7), e11490.
Knutson, S., Downs, C. A., & Richmond, R. H. (2012). Concentrations of Irgarol in selected marinas of Oahu, Hawaii and effects on settlement of coral larval. Ecotoxicology, 21(1), 1-8.
Kopeika, J., Thornhill, A., & Khalaf, Y. (2015). The effect of cryopreservation on the genome of gametes and embryos: principles of cryobiology and critical appraisal of the evidence. Human reproduction update, 21(2), 209-227.
Kuffner, I. B. (2001). Effects of ultraviolet (UV) radiation on larval settlement of the reef coral Pocillopora damicornis. Marine Ecology Progress Series, 217, 251-261.
Kusuda, S., Teranishi, T., & Koide, N. (2002). Cryopreservation of chum salmon blastomeres by the straw method. Cryobiology, 45(1), 60-67.
Kusuda, S., Teranishi, T., Koide, N., Nagai, T., Arai, K., & Yamaha, E. (2004). Pluripotency of cryopreserved blastomeres of the goldfish. Journal of Experimental Zoology Part A: Comparative Experimental Biology, 301(2), 131-138.
Larsson, A. I., Järnegren, J., Strömberg, S. M., Dahl, M. P., Lundälv, T., & Brooke, S. (2014). Embryogenesis and larval biology of the cold-water coral Lophelia pertusa. PLoS One, 9(7), e102222.
Levy, O., Dubinsky, Z., & Achituv, Y. (2003). Photobehavior of stony corals: responses to light spectra and intensity. Journal of Experimental Biology, 206(22), 4041-4049.
Lin, C. Y., Lu, M. Y. J., Yue, J. X., Li, K. L., Le Pétillon, Y., Yong, L. W., Chen, Y. H., Tsai, F. Y., Lyu, Y. F., Chen, C. Y., Hwang, S. P. L., Su, Y. H., & Yu, J. K. (2020). Molecular asymmetry in the cephalochordate embryo revealed by single-blastomere transcriptome profiling. PLoS genetics, 16(12), e1009294.
Lin, C., & Tsai, S. (2012). The effect of chilling and cryoprotectants on hard coral (Echinopora spp.) oocytes during short-term low temperature preservation. Theriogenology, 77(6), 1257-1261.
Lin, C., & Tsai, S. (2020). Fifteen years of coral cryopreservation. Platax, 2020, 53-75.
Lin, C., Thongpoo, P., Juri, C., Wang, L. H., Meng, P. J., Kuo, F. W., & Tsai, S. (2019). Cryopreservation of a thermotolerant lineage of the coral reef dinoflagellate Symbiodinium. Biopreservation and biobanking, 17(6), 520-529.
Livingston, B. T., & Wilt, F. H. (1989). Lithium evokes expression of vegetal-specific molecules in the animal blastomeres of sea urchin embryos. Proceedings of the National Academy of Sciences, 86(10), 3669-3673.
Loya, Y., Lubinevsky, H., Rosenfeld, M., & Kramarsky-Winter, E. (2004). Nutrient enrichment caused by in situ fish farms at Eilat, Red Sea is detrimental to coral reproduction. Marine Pollution Bulletin, 49(4), 344-353.
Marlow, H. Q., & Martindale, M. Q. (2007). Embryonic development in two species of scleractinian coral embryos: Symbiodinium localization and mode of gastrulation. Evolution & development, 9(4), 355-367.
Martínez-Páramo, S., Barbosa, V., Pérez-Cerezales, S., Robles, V., & Herráez, M. P. (2009). Cryoprotective effects of antifreeze proteins delivered into zebrafish embryos. Cryobiology, 58(2), 128-133.
Mass, T., Giuffre, A. J., Sun, C. Y., Stifler, C. A., Frazier, M. J., Neder, M., Tamura, N., Stan, C. V., Marcus, M. A., & Gilbert, P. U. P. A. (2017). Amorphous calcium carbonate particles form coral skeletons. Proceedings of the National Academy of Sciences, 114(37), E7670-E7678.
McAlister, J. S. (2007). Egg size and the evolution of phenotypic plasticity in larvae of the echinoid genus Strongylocentrotus. Journal of experimental marine biology and ecology, 352(2), 306-316.
Moran, A. L., & Allen, J. D. (2007). How does metabolic rate scale with egg size? An experimental test with sea urchin embryos. The Biological Bulletin, 212(2), 143-150.
Nakagawa, M., Kobayashi, T., & Ueno, K. (2002). Production of germline chimera in loach (Misgurnus anguillicaudatus) and proposal of new method for preservation of endangered fish species. Journal of Experimental Zoology, 293(6), 624-631.
Negri, A. P., & Heyward, A. J. (2000). Inhibition of fertilization and larval metamorphosis of the coral Acropora millepora (Ehrenberg, 1834) by petroleum products. Marine Pollution Bulletin, 41(7-12), 420-427.
Negri, A. P., & Heyward, A. J. (2001). Inhibition of coral fertilisation and larval metamorphosis by tributyltin and copper. Marine environmental research, 51(1), 17-27.
Negri, A. P., Smith, L. D., Webster, N. S., & Heyward, A. J. (2002). Understanding ship-grounding impacts on a coral reef: potential effects of anti-foulant paint contamination on coral recruitment. Marine Pollution Bulletin, 44(2), 111-117.
Nilsson, E. E., & Cloud, J. G. (1992). Rainbow trout chimeras produced by injection of blastomeres into recipient blastulae. Proceedings of the National Academy of Sciences, 89(20), 9425-9428.
Nozawa, Y., & Harrison, P. L. (2002). Larval settlement patterns, dispersal potential, and the effect of temperature on settlement of larvae of the reef coral, Platygyra daedalea, from the Great Barrier Reef. In Proceedings of the 9th international coral reef symposium (Vol. 1, pp. 409-416).
Nozawa, Y., & Okubo, N. (2011). Survival dynamics of reef coral larvae with special consideration of larval size and the genus Acropora. The Biological Bulletin, 220(1), 15-22.
Okubo, N. (2016). Restructuring the traditional suborders in the order Scleractinia based on embryogenetic morphological characteristics. Zoological science, 33(1), 116-123.
Okubo, N., & Motokawa, T. (2007). Embryogenesis in the reef-building coral Acropora spp. Zoological science, 24(12), 1169-1177.
Okubo, N., Hayward, D. C., Forêt, S., & Ball, E. E. (2016). A comparative view of early development in the corals Favia lizardensis, Ctenactis echinata, and Acropora millepora-morphology, transcriptome, and developmental gene expression. BMC evolutionary biology, 16(1), 1-12.
Okubo, N., Mezaki, T., Nozawa, Y., Nakano, Y., Lien, Y. T., Fukami, H., Hayward, D. C., & Ball, E. E. (2013). Comparative embryology of eleven species of stony corals (Scleractinia). PLoS One, 8(12), e84115.
Okubo, N., Motokawa, T., & Omori, M. (2007). When fragmented coral spawn? Effect of size and timing on survivorship and fecundity of fragmentation in Acropora formosa. Marine Biology, 151(1), 353-363.
Okubo, N., Toshino, S., Nakano, Y., & Yamamoto, H. H. (2017). Coral individuality–confluence of change physical splitting and developmental ability of embryos. Scientific reports, 7(1), 1-7.
Perrin, J., Vielzeuf, D., Ricolleau, A., Dallaporta, H., Valton, S., & Floquet, N. (2015). Block-by-block and layer-by-layer growth modes in coral skeletons. American Mineralogist, 100(4), 681-695.
Pollock, F. J., Katz, S. M., van de Water, J. A., Davies, S. W., Hein, M., Torda, G., Matz, M. V., Beltran, V. H., Buerger, P., Puill-Stephan, E., Abrego, D., Bourne, D. G., & Willis, B. L. (2017). Coral larvae for restoration and research: a large-scale method for rearing Acropora millepora larvae, inducing settlement, and establishing symbiosis. PeerJ, 5, e3732.
Portune, K. J., Voolstra, C. R., Medina, M., & Szmant, A. M. (2010). Development and heat stress-induced transcriptomic changes during embryogenesis of the scleractinian coral Acropora palmata. Marine genomics, 3(1), 51-62.
Randall, C. J., & Szmant, A. M. (2009). Elevated temperature affects development, survivorship, and settlement of the elkhorn coral, Acropora palmata (Lamarck 1816). The Biological Bulletin, 217(3), 269-282.
Randall, C. J., Negri, A. P., Quigley, K. M., Foster, T., Ricardo, G. F., Webster, N. S., Bay, L. K., Harrison, P. L., Babcock, R. C., & Heyward, A. J. (2020). Sexual production of corals for reef restoration in the Anthropocene. Marine Ecology Progress Series, 635, 203-232.
Reyes-Bermudez, A., Lin, Z., Hayward, D. C., Miller, D. J., & Ball, E. E. (2009). Differential expression of three galaxin-related genes during settlement and metamorphosis in the scleractinian coral Acropora millepora. BMC Evolutionary Biology, 9(1), 1-12.
Reyes‐Nivia, C., Diaz‐Pulido, G., Kline, D., Guldberg, O. H., & Dove, S. (2013). Ocean acidification and warming scenarios increase microbioerosion of coral skeletons. Global Change Biology, 19(6), 1919-1929.
Ricardo, G. F., Jones, R. J., Negri, A. P., & Stocker, R. (2016). That sinking feeling: Suspended sediments can prevent the ascent of coral egg bundles. Scientific reports, 6(1), 1-7.
Rinkevich, B. (2019). Coral chimerism as an evolutionary rescue mechanism to mitigate global climate change impacts. Global Change Biology, 25(4), 1198-1206.
Ritson-Williams, R., Arnold, S. N., Fogarty, N. D., Steneck, R. S., Vermeij, M. J., & Paul, V. J. (2009). New perspectives on ecological mechanisms affecting coral recruitment on reefs. Smithsonian Contributions to the Marine Sciences, 38, 437.
Routray, P., Dash, C., Dash, S. N., Tripathy, S., Verma, D. K., Swain, S. K., Swain, P., & Guru, B. C. (2010). Cryopreservation of isolated blastomeres and embryonic stem‐like cells of Leopard danio, Brachydanio frankei. Aquaculture Research, 41(4), 579-589.
Salomão, A. N., & Allem, A. C. (2001). Polyembryony in angiospermous trees of the Brazilian Cerrado and Caatinga vegetation. Acta botanica brasilica, 15, 369-378.
Schoepf, V., Grottoli, A. G., Levas, S. J., Aschaffenburg, M. D., Baumann, J. H., Matsui, Y., & Warner, M. E. (2015). Annual coral bleaching and the long-term recovery capacity of coral. Proceedings of the Royal Society B: Biological Sciences, 282(1819), 20151887.
Sharp, K. H., Sneed, J. M., Ritchie, K. B., Mcdaniel, L., & Paul, V. J. (2015). Induction of larval settlement in the reef coral Porites astreoides by a cultivated marine Roseobacter strain. The Biological Bulletin, 228(2), 98-107.
Shikina, S., Chiu, Y. L., Chung, Y. J., Chen, C. J., Lee, Y. H., & Chang, C. F. (2016). Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis. Scientific reports, 6(1), 1-11.
Shikina, S., Chiu, Y. L., Lee, Y. H., & Chang, C. F. (2015). From somatic cells to oocytes: a novel yolk protein produced by ovarian somatic cells in a stony coral, Euphyllia ancora. Biology of reproduction, 93(3), 57-1.
Shlesinger, T., & Loya, Y. (2016). Recruitment, mortality, and resilience potential of scleractinian corals at Eilat, Red Sea. Coral Reefs, 35(4), 1357-1368.
Strüssmann, C. A., Nakatsugawa, H., Takashima, F., Hasobe, M., Suzuki, T., & Takai, R. (1999). Cryopreservation of isolated fish blastomeres: effects of cell stage, cryoprotectant concentration, and cooling rate on postthawing survival. Cryobiology, 39(3), 252-261.
Sun, C. Y., Stifler, C. A., Chopdekar, R. V., Schmidt, C. A., Parida, G., Schoeppler, V., Fordyce, B. I., Brau, J. H., Mass, T., Tambutté, S., & Gilbert, P. U. P. A. (2020). From particle attachment to space-filling coral skeletons. Proceedings of the National Academy of Sciences, 117(48), 30159-30170.
Suwa, R., & Nakamura, M. (2018). A precise comparison of developmental series of oocyte growth and oocyte maturation between real-oocytes and pseudo-oocytes in the coral Galaxea fascicularis. Galaxea, Journal of Coral Reef Studies, 20(1), 1-7.
Suzuki, G., Okada, W., Yasutake, Y., Yamamoto, H., Tanita, I., Yamashita, H., Hayashibara, T., Komatsu, T., Kanyama, T., Inoue, M., & Yamazaki, M. (2020). Enhancing coral larval supply and seedling production using a special bundle collection system “coral larval cradle” for large‐scale coral restoration. Restoration Ecology, 28(5), 1172-1182.
Szmant, A. M., & Meadows, M. G. (2006). Developmental changes in coral larval buoyancy and vertical swimming behavior: implications for dispersal and connectivity. In Proc 10th Int Coral Reef Symp (Vol. 1, pp. 431-437).
Tan, E. S., Izumi, R., Takeuchi, Y., Isomura, N., & Takemura, A. (2020). Molecular approaches underlying the oogenic cycle of the scleractinian coral, Acropora tenuis. Scientific reports, 10(1), 1-16.
Tebben, J., Motti, C. A., Siboni, N., Tapiolas, D. M., Negri, A. P., Schupp, P. J., Kitamura, M., Hatta, M., Steinberg, P. D., & Harder, T. (2015). Chemical mediation of coral larval settlement by crustose coralline algae. Scientific reports, 5(1), 1-11.
Thomson, D. P., Babcock, R. C., Evans, R. D., Feng, M., Moustaka, M., Orr, M., Slaeinski, D., Wilson, S. K., & Hoey, A. S. (2021). Coral larval recruitment in north-western Australia predicted by regional and local conditions. Marine Environmental Research, 168, 105318.
Toh, T. C., Guest, J., & Chou, L. M. (2012). Coral larval rearing in Singapore: observations on spawning timing, larval development and settlement of two common scleractinian coral species. Contributions to Marine Science. National University of Singapore, Republic of Singapore, 81, 87.
Tonra, K. J., Wells, C. D., & Lasker, H. R. (2021). Spawning, embryogenesis, settlement, and post‐settlement development of the gorgonian Plexaura homomalla. Invertebrate Biology, 140(2), e12319.
Tsai, S., & Lin, C. (2009). Effects of cryoprotectant on the embryos of banded coral shrimp (Stenopus hispidus); preliminary studies to establish freezing protocols. CryoLetters, 30(5), 373-381.
Tsai, S., Spikings, E., Kuo, F. W., Lin, N. C., & Lin, C. (2010). Use of an adenosine triphosphate assay, and simultaneous staining with fluorescein diacetate and propidium iodide, to evaluate the effects of cryoprotectants on hard coral (Echinopora spp.) oocytes. Theriogenology, 73(5), 605-611.
Van Etten, J., Shumaker, A., Mass, T., Putnam, H. M., & Bhattacharya, D. (2020). Transcriptome analysis provides a blueprint of coral egg and sperm functions. PeerJ, 8, e9739.
Vermeij, M. J. A., Fogarty, N. D., & Miller, M. W. (2006). Pelagic conditions affect larval behavior, survival, and settlement patterns in the Caribbean coral Montastraea faveolata. Marine Ecology Progress Series, 310, 119-128.
Viyakarn, V., Chavanich, S., Chong, G., Tsai, S., & Lin, C. (2018). Cryopreservation of sperm from the coral Acropora humilis. Cryobiology, 80, 130-138.
Wells, C. D., Tonra, K. J., & Lasker, H. R. (2020). Embryogenesis, polyembryony, and settlement in the gorgonian Plexaura homomalla. bioRxiv.
Whalan, S., Abdul Wahab, M. A., Sprungala, S., Poole, A. J., & de Nys, R. (2015). Larval settlement: the role of surface topography for sessile coral reef invertebrates. PloS one, 10(2), e0117675.
Yamaha, E., Mizuno, T., Hasebe, Y., & Yamazaki, F. (1997). Chimeric fish produced by exchanging upper parts of blastoderms in goldfish blastulae. Fisheries science, 63(4), 514-519.
Yasui, G. S., Fujimoto, T., Sakao, S., Yamaha, E., & Arai, K. (2011). Production of loach (Misgurnus anguillicaudatus) germ-line chimera using transplantation of primordial germ cells isolated from cryopreserved blastomeres. Journal of animal science, 89(8), 2380-2388.
Yasuoka, Y., Shinzato, C., & Satoh, N. (2016). The mesoderm-forming gene brachyury regulates ectoderm-endoderm demarcation in the coral Acropora digitifera. Current Biology, 26(21), 2885-2892.
Yeoh, S. R., & Dai, C. F. (2010). The production of sexual and asexual larvae within single broods of the scleractinian coral, Pocillopora damicornis. Marine biology, 157(2), 351-359.
Yin, C., Li, M., Hu, J., Lang, K., Chen, Q., Liu, J., Guo, D., Dong, Y., Luo, J., Song, Z., Walters, J. R., Zhang, W., Li, F., & Chen, X. (2018). The genomic features of parasitism, polyembryony and immune evasion in the endoparasitic wasp Macrocentrus cingulum. BMC genomics, 19(1), 1-18.
Yuan, Y., & Hong, Y. (2017). Medaka insulin-like growth factor-2 supports self-renewal of the embryonic stem cell line and blastomeres in vitro. Scientific reports, 7(1), 1-11.
張惟哲. (2006). 大量魚苗標識與放流之研究. 臺灣大學漁業科學研究所學位論文, 80pp.
戴昌鳳. (1986). 墾丁國家公園海域珊瑚類分類學暨生態學之研究. 158pp.
Coral of the world. http://www.coralsoftheworld.org/page/home/
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *