帳號:guest(3.140.195.206)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林增信
作者(英文):Tseng-Hsin Lin
論文名稱:不同光譜與光強度對細枝鹿角珊瑚生長之影響
論文名稱(英文):Effect of different light spectrum and light intensity on growth of scleractinian coral Pocillopora damicornis
指導教授:朱育民
張桂祥
指導教授(英文):Yu-Min Ju
Kwee-Siong Tew
口試委員:陳德豪
劉弼仁
朱育民
口試委員(英文):Te-Hao Chen
Pi-Jen Liu
Yu-Min Ju
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863017
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:65
關鍵詞:細枝鹿角珊瑚光譜光強度生長率最大光量子產率
關鍵詞(英文):Pocillopora damicornisspectrumlight intensitygrowth ratemaximal photochemical yield
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
珊瑚在自然環境下應暴露在太陽光下但是藍光則是在已知研究裡被證實具有提升珊瑚螢光蛋白的能力而被廣泛地用於水族觀賞養殖中。本研究將細枝鹿角(Pocillopora damicornis)珊瑚暴露在藍光(448 nm)與全光譜(仿太陽光)下分別以三種光強度(全光譜400、200、50 μmol photons m−2,藍光則以全光譜在450nm的功率相等為基準,強光組為1700 mW m-2、中光組為700 mW m-2、低光組為170mW m-2)照射之,並在流水式的養殖系統內以一週餵食三次滋養豐年蝦(Artemia cysts)的方式養殖16週,並量測珊瑚的浮力重量、體積、共生藻密度、葉綠素a濃度、最大光量子產率、珊瑚健康色卡。實驗過程中水質數據皆正常且所有珊瑚的存活率皆為100%,結果顯示全光譜組的生長率顯著大藍光組,且在光強度有顯著與生長率成正比。最大光量子產率的結果顯示所有珊瑚在實驗過程中皆為健康狀態,在本次實驗中我們發現全光譜高光照能有效地增加珊瑚的生長率。
Corals in their natural habitat were exposed to sunlight but blue light has been known to enhance fluorescent protein and has been widely used in aquaculture. In this study , Pocillopora damicornis was cultured in a flow-through aquaculture system using natural seawater, and undergo growth for 112 days under two different spectrum of light (blue light and full spectrum) in three light intensity [high light 400 μmol photons m−2, medium light 200 μmol photons m−2 and low light 50 μmol photons m−2 for full spectrum whereas high light 1700(mW m-2), medium light 700(mW m-2) and low light 170(mW m-2)] along with feeding Artemia cysts (5000 inds L-1,3 times a week). Measurement of the buoyant weight, volume, zooxanthellae density, chlorophyll a concentration, maximal photochemical yield, and coral health color chart of P. damicornis were recorded. During the entire cultivation period, the survival rates of coral was 100% and the water quality were stable. The result revealed that specific growth rate of coral P. damicornis under full spectrum was significantly larger than blue light and light intensity was significantly proportional to growth rate whereas maximum photochemical yield indicated that the corals were healthy during the experiment period. In this study, we concluded that full spectrum in high light intensity can effectively increases the growth rate.
壹、 前言 1
1. 珊瑚介紹與重要性 1
2. 珊瑚的生理 1
3. 珊瑚的水產養殖 6
4. 近年來與光相關的珊瑚繁養殖研究 7
5. 研究物種 8
6. 研究目的 9
貳、 研究方法 11
1. 珊瑚採集 11
2. 實驗設計 11
3. 異營餵食 12
4. 珊瑚生長率測量 12
5. 體積變化率 13
6. 共生藻密度測量 14
7. 葉綠素a濃度測量 14
8. 總蛋白濃度 14
9. 珊瑚顏色追蹤 15
10. 光系統II 的最大量子產率 15
11. 水質測定 16
11.1 磷酸鹽濃度 16
11.2 氨氮(Ammonia Nitrogen)濃度 16
11.3 亞硝酸鹽濃度 17
11.4 硝酸鹽濃度 17
11.5 水質檢測 18
12. 統計分析 18
參、 結果 19
1. 養殖環境 19
2. 珊瑚生長率 19
3. 體積變化率 20
4. 共生藻密度 20
5. 葉綠素a濃度 21
6. 珊瑚顏色追蹤 21
7. 光系統II 的最大量子產率 21
肆、 討論 23
1. 養殖系統 23
2. 光對珊瑚生長的影響 23
3. 光對珊瑚共生藻及葉綠素a的影響 26
4. 光對珊瑚顏色的影響 26
5. 珊瑚萃取方法 27
伍、 結論與未來展望 29
參考文獻 31
表目錄 45
表一、實驗期間水質參數比較 45
表二、細枝鹿角在不同光譜以及不同光強度下的生長率以及特定體積變化率 46
表三、各個因子對珊瑚影響之雙因子變異數分析 47
表四、實驗期間共生藻密度變化的統計結果 48
表五、實驗期間葉綠素a濃度變化的統計結果 49
圖目錄 51
圖一、海水養殖系統以及實驗缸配置示意圖 51
圖二、本次實驗使用之兩種燈具的光譜:(A)藍光譜、(B)全光譜 52
圖三、實驗期間細枝鹿角珊瑚之累積重量改變率 53
圖四、實驗期間細枝鹿角珊瑚之生長率的變化(mean±SE) 54
圖五、細枝鹿角在不同光譜以及不同光強度下的生長率 55
圖六、實驗期間細枝鹿角珊瑚之累積體積改變率 56
圖七、細枝鹿角在不同光譜以及不同光強度下的特定體積變化率 57
圖八、細枝鹿角在不同光譜以及不同光強度下的共生藻密度變化情形 58
圖九、細枝鹿角在不同光譜以及不同光強度下的葉綠素a濃度變化情形 59
圖十、細枝鹿角在不同光譜以及不同光強度下的顏色變化情形 60
圖十一、在第四週時於全光譜高光照組的珊瑚分支末端有色素累積 61
圖十二、細枝鹿角在不同光譜以及不同光強度下的最大光亮子產率變化情形 62
附錄 63
附圖一、形質測量 63
附圖二、生理測量流程 64
附圖三、本次實驗的時間表 65
戴昌鳳、鄭有容(2020)。台灣珊瑚圖鑑(上):石珊瑚。臺北市:貓頭鷹出版。
Aartsma, T. J., & Matysik, J. (2008). Biophysical techniques in photosynthesis.
Akritas, M. G., Arnold, S. F., & Brunner, E. (1997). Nonparametric hypotheses and rank statistics for unbalanced factorial designs. Journal of the American Statistical Association, 92(437), 258-265.
Allemand, D., Tambutté, É., Zoccola, D., & Tambutté, S. (2011). Coral calcification, cells to reefs. Coral reefs: an ecosystem in transition, 119-150.
Anthony, K. R., Connolly, S. R., & Willis, B. L. (2002). Comparative analysis of energy allocation to tissue and skeletal growth in corals. Limnology and Oceanography, 47(5), 1417-1429.
Bachok, Z., Mfilinge, P., & Tsuchiya, M. (2006). Characterization of fatty acid composition in healthy and bleached corals from Okinawa, Japan. Coral Reefs, 25(4), 545-554.
Barton, J. A., Willis, B. L., & Hutson, K. S. (2017). Coral propagation: a review of techniques for ornamental trade and reef restoration. Reviews in Aquaculture, 9(3), 238-256.
Ben-Zvi, O., Eyal, G., & Loya, Y. (2019). Response of fluorescence morphs of the mesophotic coral Euphyllia paradivisa to ultra-violet radiation. Scientific Reports, 9(1), 1-9.
Bessell-Browne, P., Negri, A. P., Fisher, R., Clode, P. L., & Jones, R. (2017). Impacts of light limitation on corals and crustose coralline algae. Scientific Reports, 7(1), 11553.
Bollati, E., D’Angelo, C., Alderdice, R., Pratchett, M., Ziegler, M., & Wiedenmann, J. (2020). Optical feedback loop involving dinoflagellate symbiont and scleractinian host drives colorful coral bleaching. Current Biology, 30(13), 2433-2445. e2433.
Bramanti, L., Iannelli, M., Fan, T.-Y., & Edmunds, P. J. (2015). Using demographic models to project the effects of climate change on scleractinian corals: Pocillopora damicornis as a case study. Coral Reefs, 34, 505-515.
Cairns, S., Hoeksema, B., & van der Land, J. (1999). List of extant stony corals. Atoll research bulletin, 459, 13-46.
Chen, H.-K., Rosset, S. L., Wang, L.-H., & Chen, C.-S. (2021). The characteristics of host lipid body biogenesis during coral-dinoflagellate endosymbiosis. PeerJ, 9, e11652.
Cheng, C.-M., Cheng, Y.-R., Lin, H.-Y., Sun, W.-T., Pan, C.-H., & Ding, D.-S. (2022). Effects of LED Light Illumination on the Growth, Digestive Enzymes, and Photoacclimation of Goniopora columna in Captivity. Animals, 12(3), 306.
Clausen, C., & Roth, A. (1975). Effect of temperature and temperature adaptation on calcification rate in the hermatypic coral Pocillopora damicornis. Marine biology, 33(2), 93-100.
Cohen, I., Dubinsky, Z., & Erez, J. (2016). Light enhanced calcification in hermatypic corals: new insights from light spectral responses. Frontiers in Marine Science, 2, 122.
Coles, S., & Jokiel, P. (1977). Effects of temperature on photosynthesis and respiration in hermatypic corals. Marine Biology, 43(3), 209-216.
Coles, S., & Jokiel, P. L. (1978). Synergistic effects of temperature, salinity and light on the hermatypic coral Montipora verrucosa. Marine Biology, 49(3), 187-195.
Cornwall, C. E., Comeau, S., Kornder, N. A., Perry, C. T., van Hooidonk, R., DeCarlo, T. M., Pratchett, M. S., Anderson, K. D., Browne, N., & Carpenter, R. (2021). Global declines in coral reef calcium carbonate production under ocean acidification and warming. Proceedings of the National Academy of Sciences, 118(21), e2015265118.
Costa, C. (2022). Study Shows Coral Deaths Continue to Rise. Chicago Policy Review (Online).
Crowder, C. M., Liang, W.-L., Weis, V. M., & Fan, T.-Y. (2014). Elevated temperature alters the lunar timing of planulation in the brooding coral Pocillopora damicornis. PLoS One, 9(10), e107906.
D’Angelo, C., Denzel, A., Vogt, A., Matz, M. V., Oswald, F., Salih, A., Nienhaus, G. U., & Wiedenmann, J. (2008). Blue light regulation of host pigment in reef-building corals. Marine Ecology Progress Series, 364, 97-106.
Ding, D.-S., Sun, W.-T., & Pan, C.-H. (2021). Feeding of a Scleractinian Coral, Goniopora columna, on Microalgae, Yeast, and Artificial Feed in Captivity. Animals, 11(11), 3009.
Dobson, K. L., Ferrier-Pagès, C., Saup, C. M., & Grottoli, A. G. (2021). The effects of temperature, light, and feeding on the physiology of Pocillopora damicornis, Stylophora pistillata, and Turbinaria reniformis corals. Water, 13(15), 2048.
Dunne, R., & Brown, B. (2001). The influence of solar radiation on bleaching of shallow water reef corals in the Andaman Sea, 1993–1998. Coral Reefs, 20(3), 201-210.
Evjemo, J. O., Reitan, K. I., & Olsen, Y. (2003). Copepods as live food organisms in the larval rearing of halibut larvae (Hippoglossus hippoglossus L.) with special emphasis on the nutritional value. Aquaculture, 227(1-4), 191-210.
Fabricius, K. E. (2006). Effects of irradiance, flow, and colony pigmentation on the temperature microenvironment around corals: Implications for coral bleaching? Limnology and Oceanography, 51(1), 30-37.
Falkowski, P. G., & Dubinsky, Z. (1981). Light-shade adaptation of Stylophora pistillata, a hermatypic coral from the Gulf of Eilat. Nature, 289(5794), 172-174.
Figueiredo, J., Thomas, C. J., Deleersnijder, E., Lambrechts, J., Baird, A. H., Connolly, S. R., & Hanert, E. (2022). Global warming decreases connectivity among coral populations. Nature Climate Change, 12(1), 83-87.
Finelli, C., Helmuth, B., Pentcheff, N., & Wethey, D. (2007). Intracolony variability in photosynthesis by corals is affected by water flow: role of oxygen flux. Marine Ecology Progress Series, 349, 103-110.
Finelli, C. M., Helmuth, B. S., Pentcheff, N. D., & Wethey, D. S. (2006). Water flow influences oxygen transport and photosynthetic efficiency in corals. Coral Reefs, 25, 47-57.
Furla, P., Galgani, I., Durand, I., & Allemand, D. (2000). Sources and mechanisms of inorganic carbon transport for coral calcification and photosynthesis. Journal of Experimental Biology, 203(22), 3445-3457.
Goreau, T. F., Goreau, N. I., & Yonge, C. (1971). Reef corals: autotrophs or heterotrophs? The Biological Bulletin, 141(2), 247-260.
Grottoli, A. G., Rodrigues, L. J., & Palardy, J. E. (2006). Heterotrophic plasticity and resilience in bleached corals. Nature, 440(7088), 1186-1189.
Hankins, C., Moso, E., & Lasseigne, D. (2021). Microplastics impair growth in two atlantic scleractinian coral species, Pseudodiploria clivosa and Acropora cervicornis. Environmental Pollution, 275, 116649.
Hii, Y.-S., Soo, C.-L., & Liew, H.-C. (2009). Feeding of scleractinian coral, Galaxea fascicularis, on Artemia salina nauplii in captivity. Aquaculture International, 17, 363-376.
Hoegh-Guldberg, O., & Jones, R. J. (1999). Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Marine Ecology Progress Series, 183, 73-86.
Hoegh-Guldberg, O., & Smith, G. J. (1989a). The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. Journal of Experimental Marine Biology and Ecology, 129(3), 279-303.
Hoegh-Guldberg, O., & Smith, G. J. (1989b). Influence of the population density of zooxanthellae and supply of ammonium on the biomass and metabolic characteristics of the reef corals Seriatopora hystrix and Stylophora pistillata. Marine Ecology Progress Series, 173-186.
Hoogenboom, M., Beraud, E., & Ferrier-Pagès, C. (2010). Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs, 29(1), 21-29.
Hoogenboom, M. O., Campbell, D. A., Beraud, E., DeZeeuw, K., & Ferrier-Pages, C. (2012). Effects of light, food availability and temperature stress on the function of photosystem II and photosystem I of coral symbionts. PLoS One, 7(1), e30167.
Houlbrèque, F., Tambutté, E., Allemand, D., & Ferrier-Pagès, C. (2004). Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Biology, 207(9), 1461-1469.
Houlbrèque, F., Tambutté, E., & Ferrier-Pagès, C. (2003). Effect of zooplankton availability on the rates of photosynthesis, and tissue and skeletal growth in the scleractinian coral Stylophora pistillata. Journal of Experimental Marine Biology and Ecology, 296(2), 145-166.
Huang, Y.-L., Mayfield, A. B., & Fan, T.-Y. (2020). Effects of feeding on the physiological performance of the stony coral Pocillopora acuta. Scientific Reports, 10(1), 1-12.
Hughes, T. P., Kerry, J. T., Baird, A. H., Connolly, S. R., Dietzel, A., Eakin, C. M., Heron, S. F., Hoey, A. S., Hoogenboom, M. O., & Liu, G. (2018). Global warming transforms coral reef assemblages. Nature, 556(7702), 492-496.
Hunter, C. E., Lauer, M., Levine, A., Holbrook, S., & Rassweiler, A. (2018). Maneuvering towards adaptive co-management in a coral reef fishery. Marine Policy, 98, 77-84.
Imbs, A. B., & Yakovleva, I. M. (2012). Dynamics of lipid and fatty acid composition of shallow-water corals under thermal stress: an experimental approach. Coral Reefs, 31(1), 41-53.
Jeffrey, S. t., & Humphrey, G. (1975). New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae and natural phytoplankton. Biochemie und physiologie der pflanzen, 167(2), 191-194.
Jiang, S., Zhang, Y., Feng, L., He, L., Zhou, C., Hong, P., Sun, S., Zhao, H., Liang, Y.-Q., & Ren, L. (2020). Comparison of short-and long-term toxicity of microplastics with different chemical constituents on button polyps.(Protopalythoa sp.). ACS Earth and Space Chemistry, 5(1), 12-22.
Khalesi, M. K., Beeftink, H., & Wijffels, R. (2007). Flow-dependent growth in the zooxanthellate soft coral Sinularia flexibilis. Journal of Experimental Marine Biology and Ecology, 351(1-2), 106-113.
Knowlton, N., Brainard, R., Fisher, R., Moews, M., Plaisance, L., Caley, M., & McIntyre, A. (2010). Life in the World’s Oceans: Diversity, Distribution, and Abundance. Blackwell Publishing Ltd, Oxford. doi, 10, 9781444325508.
Kuanui, P., Chavanich, S., Viyakarn, V., Omori, M., Fujita, T., & Lin, C. (2020). Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. Estuarine, Coastal and Shelf Science, 235, 106515.
Leal, M. C., Ferrier‐Pagès, C., Petersen, D., & Osinga, R. (2016). Coral aquaculture: applying scientific knowledge to ex situ production. Reviews in Aquaculture, 8(2), 136-153.
Lemahieu, C., Bruneel, C., Dejonghe, C., Buyse, J., & Foubert, I. (2016). The cell wall of autotrophic microalgae influences the enrichment of long chain omega-3 fatty acids in the egg. Algal research, 16, 209-215.
Lesser, M. P., Weis, V. M., Patterson, M. R., & Jokiel, P. L. (1994). Effects of morphology and water motion on carbon delivery and productivity in the reef coral, Pocillopora damicornis (Linnaeus): diffusion barriers, inorganic carbon limitation, and biochemical plasticity. Journal of Experimental Marine Biology and Ecology, 178(2), 153-179.
Levy, O., Dubinsky, Z., & Achituv, Y. (2003). Photobehavior of stony corals: responses to light spectra and intensity. Journal of Experimental Biology, 206(22), 4041-4049.
Lim, C.-S., Bachok, Z., & Hii, Y.-S. (2017). Effects of supplementary polyunsaturated fatty acids on the health of the scleractinian coral Galaxea fascicularis (Linnaeus, 1767). Journal of Experimental Marine Biology and Ecology, 491, 1-8.
Lynch, M., Conery, J., & Burger, R. (1995). Mutation accumulation and the extinction of small populations. The American Naturalist, 146(4), 489-518.
Maragos, J. E. (1972). A study of the ecology of Hawaiian reef corals. University of Hawai'i at Manoa.
Maxwell, K., & Johnson, G. N. (2000). Chlorophyll fluorescence—a practical guide. Journal of Experimental Botany, 51(345), 659-668.
Mills, M. M., Lipschultz, F., & Sebens, K. P. (2004). Particulate matter ingestion and associated nitrogen uptake by four species of scleractinian corals. Coral Reefs, 23(3), 311-323.
Moberg, F., Nyström, M., Kautsky, N., Tedengren, M., & Jarayabhand, P. (1997). Effects of reduced salinity on the rates of photosynthesis and respiration in the hermatypic corals Porites lutea and Pocillopora damicornis. Marine Ecology Progress Series, 157, 53-59.
Muscatine, L., & Cernichiari, E. (1969). Assimilation of photosynthetic products of zooxanthellae by a reef coral. The Biological Bulletin, 137(3), 506-523.
Naihong, X., Xuequan, Y., & Zhimin, L. (2009). Setup and operation of recirculation aquaculture system for Malabar grouper and half-smooth tongue-sole. Fishey Modernization, 36(3), 21-25.
Nishiguchi, S., Wada, N., Yamashiro, H., Ishibashi, H., & Takeuchi, I. (2018). Continuous recordings of the coral bleaching process on Sesoko Island, Okinawa, Japan, over about 50 days using an underwater camera equipped with a lens wiper. Marine Pollution Bulletin, 131, 422-427.
Ohs, C. L., Chang, K. L., Grabe, S. W., DiMaggio, M. A., & Stenn, E. (2010). Evaluation of dietary microalgae for culture of the calanoid copepod Pseudodiaptomus pelagicus. Aquaculture, 307(3-4), 225-232.
Osinga, R., Schutter, M., Griffioen, B., Wijffels, R. H., Verreth, J. A., Shafir, S., Henard, S., Taruffi, M., Gili, C., & Lavorano, S. (2011). The biology and economics of coral growth. Marine Biotechnology, 13(4), 658-671.
Oxborough, K., & Baker, N. R. (1997). Resolving chlorophyll a fluorescence images of photosynthetic efficiency into photochemical and non-photochemical components–calculation of qP and Fv-/Fm-; without measuring Fo. Photosynthesis Research, 54(2), 135-142.
Palardy, J. E., Grottoli, A. G., & Matthews, K. A. (2006). Effect of naturally changing zooplankton concentrations on feeding rates of two coral species in the Eastern Pacific. Journal of Experimental Marine Biology and Ecology, 331(1), 99-107.
Palmer, C. V., Modi, C. K., & Mydlarz, L. D. (2009). Coral fluorescent proteins as antioxidants. PLoS One, 4(10), e7298.
Pan, Y. J., Sadovskaya, I., Hwang, J. S., & Souissi, S. (2018). Assessment of the fecundity, population growth and fatty acid composition of Apocyclops royi (Cyclopoida, Copepoda) fed on different microalgal diets. Aquaculture Nutrition, 24(3), 970-978.
Pan, Y. J., Souissi, S., Souissi, A., Wu, C. H., Cheng, S. H., & Hwang, J. S. (2014). Dietary effects on egg production, egg‐hatching rate and female life span of the tropical calanoid copepod Acartia bilobata. Aquaculture Research, 45(10), 1659-1671.
Papina, M., Meziane, T., & Van Woesik, R. (2007). Acclimation effect on fatty acids of the coral Montipora digitata and its symbiotic algae. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 147(4), 583-589.
Patton, J., Abraham, S., & Benson, A. A. (1977). Lipogenesis in the intact coral Pocillopora capitata and its isolated zooxanthellae: evidence for a light-driven carbon cycle between symbiont and host. Marine Biology, 44(3), 235-247.
Poirier, M. A., Coltman, D. W., Pelletier, F., Jorgenson, J., & Festa‐Bianchet, M. (2019). Genetic decline, restoration and rescue of an isolated ungulate population. Evolutionary Applications, 12(7), 1318-1328.
Ray, G. C. (1988). Ecological diversity in coastal zones and oceans. National Academy Press Washington, DC.
Reynaud, S., Ferrier-Pages, C., Sambrotto, R., Juillet-Leclerc, A., Jaubert, J., & Gattuso, J.-P. (2002). Effect of feeding on the carbon and oxygen isotopic composition in the tissues and skeleton of the zooxanthellate coral Stylophora pistillata. Marine Ecology Progress Series, 238, 81-89.
Rhyne, A. L., Tlusty, M. F., Szczebak, J. T., & Holmberg, R. J. (2017). Expanding our understanding of the trade in marine aquarium animals. PeerJ, 5, e2949.
Richmond, R. H. (1987). Energetic relationships and biogeographical differences among fecundity, growth and reproduction in the reef coral Pocillopora damicornis. Bulletin of Marine Science, 41(2), 594-604.
Rocha, R. J., Bontas, B., Cartaxana, P., Leal, M. C., Ferreira, J. M., Rosa, R., Serôdio, J., & Calado, R. (2015). Development of a standardized modular system for experimental coral culture. Journal of the World Aquaculture Society, 46(3), 235-251.
Rønnestad, I., Helland, S., & Lie, Ø. (1998). Feeding Artemia to larvae of Atlantic halibut (Hippoglossus hippoglossus L.) results in lower larval vitamin A content compared with feeding copepods. Aquaculture, 165(1-2), 159-164.
Roth, M. S., Latz, M. I., Goericke, R., & Deheyn, D. D. (2010). Green fluorescent protein regulation in the coral Acropora yongei during photoacclimation. Journal of Experimental Biology, 213(21), 3644-3655.
Salih, A., Larkum, A., Cox, G., Kühl, M., & Hoegh-Guldberg, O. (2000). Fluorescent pigments in corals are photoprotective. Nature, 408(6814), 850-853.
Schlacher, T. A., Stark, J., & Fischer, A. B. (2007). Evaluation of artificial light regimes and substrate types for aquaria propagation of the staghorn coral Acropora solitaryensis. Aquaculture, 269(1-4), 278-289.
Schlecker, L., Page, C., Matz, M., & Wright, R. M. (2022). Mechanisms and potential immune tradeoffs of accelerated coral growth induced by microfragmentation. PeerJ, 10, e13158.
Schubert, P., & Wilke, T. (2018). Coral microcosms: Challenges and opportunities for global change biology. Corals in a Changing World, 143-175.
Schutter, M., Crocker, J., Paijmans, A., Janse, M., Osinga, R., Verreth, A., & Wijffels, R. H. (2010). The effect of different flow regimes on the growth and metabolic rates of the scleractinian coral Galaxea fascicularis. Coral Reefs, 29, 737-748.
Schutter, M., Kranenbarg, S., Wijffels, R. H., Verreth, J., & Osinga, R. (2011). Modification of light utilization for skeletal growth by water flow in the scleractinian coral Galaxea fascicularis. Marine Biology, 158, 769-777.
Sebens, K. P., Witting, J., & Helmuth, B. (1997). Effects of water flow and branch spacing on particle capture by the reef coral Madracis mirabilis (Duchassaing and Michelotti). Journal of Experimental Marine Biology and Ecology, 211(1), 1-28.
Sella, I., & Benayahu, Y. (2010). Rearing cuttings of the soft coral Sarcophyton glaucum (Octocorallia, Alcyonacea): Towards mass production in a closed seawater system. Aquaculture Research, 41(12), 1748-1758.
Shikina, S., Chiu, Y.-L., Chung, Y.-J., Chen, C.-J., Lee, Y.-H., & Chang, C.-F. (2016). Oocytes express an endogenous red fluorescent protein in a stony coral, Euphyllia ancora: a potential involvement in coral oogenesis. Scientific Reports, 6(1), 1-11.
Siebeck, U., Marshall, N., Klüter, A., & Hoegh-Guldberg, O. (2006). Monitoring coral bleaching using a colour reference card. Coral Reefs, 25(3), 453-460.
Skrede, A., Mydland, L., Ahlstrøm, Ø., Reitan, K., Gislerød, H., & Øverland, M. (2011). Evaluation of microalgae as sources of digestible nutrients for monogastric animals. J Anim Feed Sci, 20(1), 131-142.
Smith, L. W., & Birkeland, C. (2007). Effects of intermittent flow and irradiance level on back reef Porites corals at elevated seawater temperatures. Journal of Experimental Marine Biology and Ecology, 341(2), 282-294.
Spalding, M., Spalding, M. D., Ravilious, C., & Green, E. P. (2001). World Atlas of Coral Reefs. Univ of California Press.
Spencer Davies, P. (1989). Short-term growth measurements of corals using an accurate buoyant weighing technique. Marine Biology, 101(3), 389-395.
Szmant, A., & Gassman, N. (1990). The effects of prolonged “bleaching” on the tissue biomass and reproduction of the reef coral Montastrea annularis. Coral Reefs, 8(4), 217-224.
Tagliafico, A., Rudd, D., Rangel, M., Kelaher, B. P., Christidis, L., Cowden, K., Scheffers, S. R., & Benkendorff, K. (2017). Lipid-enriched diets reduce the impacts of thermal stress in corals. Marine Ecology Progress Series, 573, 129-141.
Titlyanov, E., Bil', K., Fomina, I., Titlyanova, T., Leletkin, V., Eden, N., Malkin, A., & Dubinsky, Z. (2000). Effects of dissolved ammonium addition and host feeding with Artemia salina on photoacclimation of the hermatypic coral Stylophora pistillata. Marine Biology, 137, 463-472.
Titlyanov, E., & Titlyanova, T. (2002). Reef-building corals—symbiotic autotrophic organisms: 2. Pathways and mechanisms of adaptation to light. Russian Journal of Marine Biology, 28, S16-S31.
Titlyanov, E., Titlyanova, T., Tsukahara, J., Van Woesik, R., & Yamazato, K. (1999). Experimental increases of zooxanthellae density in the coral Stylophora pistillata elucidate adaptive mechanisms for zooxanthellae regulation. Symbiosis.
Toh, T. C., Ng, C. S. L., Peh, J. W. K., Toh, K. B., & Chou, L. M. (2014). Augmenting the post-transplantation growth and survivorship of juvenile scleractinian corals via nutritional enhancement. PLoS One, 9(6), e98529.
van der Meeren, T., Olsen, R. E., Hamre, K., & Fyhn, H. J. (2008). Biochemical composition of copepods for evaluation of feed quality in production of juvenile marine fish. Aquaculture, 274(2-4), 375-397.
van Os, N., Massé, L. M., Séré, M. G., Sara, J. R., Schoeman, D. S., & Smit, A. J. (2012). Influence of heterotrophic feeding on the survival and tissue growth rates of Galaxea fascicularis (Octocorralia: Occulinidae) in aquaria. Aquaculture, 330, 156-161.
Watanabe, T., Kitajima, C., & Fujita, S. (1983). Nutritional values of live organisms used in Japan for mass propagation of fish: a review. Aquaculture, 34(1-2), 115-143.
Wijgerde, T., Henkemans, P., & Osinga, R. (2012). Effects of irradiance and light spectrum on growth of the scleractinian coral Galaxea fascicularis—Applicability of LEP and LED lighting to coral aquaculture. Aquaculture, 344, 188-193.
Wijgerde, T., van Melis, A., Silva, C. I., Leal, M. C., Vogels, L., Mutter, C., & Osinga, R. (2014). Red light represses the photophysiology of the scleractinian coral Stylophora pistillata. PLoS One, 9(3), e92781.
Wolff, N. H., Mumby, P. J., Devlin, M., & Anthony, K. R. (2018). Vulnerability of the Great Barrier Reef to climate change and local pressures. Global Change Biology, 24(5), 1978-1991.
Yap, H., Alvarez, R., Custodio III, H., & Dizon, R. (1998). Physiological and ecological aspects of coral transplantation. Journal of Experimental Marine Biology and Ecology, 229(1), 69-84.
Zaneveld, J. R., Burkepile, D. E., Shantz, A. A., Pritchard, C. E., McMinds, R., Payet, J. P., Welsh, R., Correa, A., Lemoine, N. P., & Rosales, S. (2016). Overfishing and nutrient pollution interact with temperature to disrupt coral reefs down to microbial scales. Nature Communications, 7(1), 1-12.
Zhukova, N. V., Imbs, A. B., & Yi, L. F. (1998). Diet-induced changes in lipid and fatty acid composition of Artemia salina. Comparative Biochemistry and Physiology Part B: Biochemistry and Molecular Biology, 120(3), 499-506.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *