帳號:guest(18.116.8.83)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Hewa Pathirannahelage Athri Thathsarani Weerakoon
作者(英文):Hewa Pathirannahelage Athri Thathsarani Weerakoon
論文名稱:海草床對珊瑚礁生態系之影響-中觀生態缸實驗
論文名稱(英文):Assessing the effect of seagrass meadow to coral reef ecosystem - A mesocosm study
指導教授:張桂祥
指導教授(英文):Kwee-Siong Tew
口試委員:林重宏
劉弼仁
張桂祥
口試委員(英文):Chorng-Horng Lin
Pi-Jen Liu
Kwee-Siong Tew
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863019
出版年(民國):110
畢業學年度:110
語文別:英文
論文頁數:89
關鍵詞:海草床珊瑚礁沉積物營養鹽共生藻ProrocentrumAlexandrium
關鍵詞(英文):SeagrassCoral reefSedimentationNutrientSymbiodiniumProrocentrumAlexandrium
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
在熱帶沿海地區,海草床和珊瑚礁為生態敏感的海洋生物棲息地,它們所構成的生態系具有各自的功能和重要性,且大多相互連接並有緊密的交互作用。然而,對於珊瑚礁-海草生態系如何影響生活在其中的動植物瞭解仍少。本研究使用六個珊瑚礁中觀生態缸進行兩個實驗,實驗為期各六週。實驗I為瞭解海草床對珊瑚礁生態系中的微細浮游藻及微細附著藻的影響;而實驗II進行了真實海草(n = 3)與人工海草(n = 3)的比較,以確認實驗I中的差異是否為生物或物化因素的影響。在兩個實驗中,我們檢測了物化水質因子、沉積物、水中及沉積的營養鹽濃度(PO43-、SiO2、NH4+、NO2-、NO3-)、葉綠素a濃度、浮游植物和附著藻、以及浮游及底棲細菌。實驗I的結果顯示,海草床組水體中的SiO2濃度、附著藻葉綠素a濃度、和沈積物總量顯著高於對照組。海草床組之浮游藻群聚中,共生藻(Symbiodinium sp.)的相對豐度高於對照組,且潛在有毒甲藻物種(Prorocentrum sp.、Alexandrium sp.、Cochlodinium sp.)在微細附著藻相中也顯著高於控制組。實驗II結果顯示,真實海草與人工海草組別的水體中和沈積物中的營養鹽、以及沉積物總重量沒有顯著差異,但真實海草中浮游藻的葉綠素a濃度顯著較高。實驗結果顯示,珊瑚礁生態系統中海草床的存在將在物理上增加沉積物的積累,使附著藻生產力及營養鹽增加。然而,海草床可能會負面影響珊瑚與共生藻間的穩定性,且海草床可能會促進對人類及魚類有害的有毒藻類之生長。
In the tropical coastal region, seagrass meadows and coral reefs are ecologically sensitive marine habitats that can mostly be found connecting to each other. Both ecosystems have their functions and importance which are closely interrelated. However, the linkage distribution of seagrass forms benefits or threats for other fauna and flora that live in the coral reefs. The study was carried out in two experiments by using coral reef mesocosms over six weeks period at 28oC. In Experiment I, effects of seagrass meadows on the coral reef ecosystem were examined, in triplicates of control (without seagrass) vs. seagrass mesocosms. Experiment II was conducted in triplicate mesocosm of real seagrass vs. artificial seagrass to confirm whether the changes in Experiment I were affected by physiological or biological processes. In both experiments, we measured the water quality, sedimentation, nutrient concentrations in water and deposited sediments (PO43-, SiO2, NH4+, NO2-, NO3-), chlorophyll a concentration, relative abundance of phytoplankton and benthic microalgae (in Experiment I) and plankton and benthic bacteria (in Experiment II). The results of Experiment I showed silicate concentration of water, chlorophyll a concentration of benthic microalgae, and total sediment accumulation were significantly higher in seagrass mesocosms than the control. High relative abundance of symbiotic dinoflagellates (Symbiodinium sp.) was in the phytoplankton community, and a higher relative abundance of potentially toxic dinoflagellates species (Prorocentrum sp., Alexandrium sp., Cochlodinium sp.) were in the benthic microalgal community in seagrass mesocosms than in the control. The Experiment II results showed an insignificant difference of nutrient of water deposited sediment and sedimentation among real seagrass and artificial seagrass mesocosms, but significantly higher chlorophyll a concentration of phytoplankton in real seagrass mesocosms. The results suggest that the presence of seagrass meadow in a coral reef ecosystem will physically enhance sediment accumulation, which increases benthic productivity and nutrient availability. However, it might negatively affect coral by destabilizing the coral-dinoflagellate symbiotic relationship. Seagrass meadows may potentially increase the toxic algal species that are harmful to the human and fish.
Acknowledgments I
Abstract III
中文摘要 V
Table of Content VII
List of Tables IX
List of Figures XI
Chapter – 1 1
1.0 Introduction 1
Chapter – 2 7
2.0 Materials and Methods 7
2.1 Coral reef mesocosm setup 7
2.2 Experiment design 8
2.3 Biotic parameters 9
2.4 Physico-chemical parameters 12
2.5 Statistical Analysis 16
Chapter - 3 17
3.0 Results 17
3.1 Experiment I 17
3.2 Experiment II 22
Chapter - 4 27
4.0 Discussion 27
Chapter - 5 39
5.0 Conclusion 39
References 41
Annexes 51
Appendix 85

Adams, M. P., R. K. Hovey, M. R. Hipsey, L. C. Bruce, M. Ghisalberti, R. J. Lowe, R. K. Gruber, L. Ruiz-Montoya, P. S. Maxwell, D. P. Callaghan, G. A. Kendrick, and K. R. O'Brien. 2016. Feedback between sediment and light for seagrass: where is it important? Limnology and Oceanography 61(6):1937-1955.
Adesalu, T. A., O. A. Kunrunmi, and M. O. Lawal. 2015. Plankton and microbenthos communities of freshwater habitats in Kogi State, North-Central Nigeria. Centrepoint 21(1):35- 53.
Agawin, N. S. R., and C. M. Duarte. 2002. Evidence of direct particle trapping by a tropical seagrass meadow. Estuaries 25:1205-1209.
Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. Molecular Biology 215(3):403-410.
Amesbury, S. S., and J. H. Francis. 1988. The role of seagrass communities in the biology of coral reef fishes: experiments with artificial seagrass beds. Quarterly 10:1-6.
Bekkby, T., E. Rinde, L. Erikstad, and V. Bakkestuen. 2008. Spatial probability modelling of eelgrass (Zostera marina) distribution on the west coast of Norway. ICES Journal of Marine Science 65:1093-1101.
Blidberg, E. 2004. Ecotoxicological studies on giant clams (Tridacnidae): environmental problems and future concerns, Stockholm :51.
Bos, A. R., and M. M. van Katwijk. 2007. Planting density, hydrodynamic exposure and mussel beds affect survival of transplanted intertidal eelgrass. Marine Ecology Progress Series 336:121-129.
Bourne, D. G., and N. S. Webster. 2013. Coral reef bacterial communities. The Prokaryotes :163–187.
Cahoon, L. 1999. The role of benthic microalgae in neritic ecosystems. Oceanography and Marine Biology 37:47-86.
Canfield, D., B. B. Jorgensen, H. Fossing, and R. N. Glud. 1993. Pathways of organic carbon oxidation in three continental margin sediments. Marine Geology 113:27-40.
Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, F. D. Bushman, E. K. Costello, N. Fierer, A. G. Pena, J. K. Goodrich, J. I. Gordon, G. A. Huttley, S. T. Kelley, D. Knights, J. E. Koenig, R. E. Ley, C. A. Lozupone, D. McDonald, B. D. Muegge, M. Pirrung, J. Reeder, J. R. Sevinsky, P. J. Turnbaugh, W. A. Walters, J. Widmann, T. Yatsunenko, J. Zaneveld, and R. Knight. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7(5):335-336.
Cheng, A. 2016. Benthic algae and diatom communities in seagrass meadows under three different human impact regimes in Bocas del Toro, Panama. Independent study project (ISP) collection :2491.
Claire, H. D., A. Coughlan, and A. J. Richardson. 2016. A database of marine phytoplankton abundance, biomass and species composition in Australian waters. Scientific data 3:160043.
Clarke, K. R., and R. M. Warwick. 1994. Changes in marine communities: an approach to statistical analysis and interpretation. Plymouth Marine Laboratory, UK.
Cornwall, C. E., and C. L. Hurd. 2016. Experimental design in ocean acidification research: problems and solutions. ICES Journal of Marine Science 73(3):572–581.
Dauby, P., A. J. Bale, N. Bloomer, and C. Canon. 1995. Particle fluxes over a Mediterranean seagrass bed: a one year case study. Marine Ecology Progress Series 126(1-3):233-246.
De los Santos, C., I. Olive, M. Moreira, A. Silva, C. Freitas, R. A. Luna, H. Q. Ferreira, M. Martins, M. M. Costa, J. Silva, M. E. Cunha, F. Soares, P. P. Ferreira, and R. Santos. 2020. Seagrass meadows improve inflowing water quality in aquaculture ponds. Aquaculture 528:735502.
Deng, Y., S. Liu, J. Feng, Y. Wu, and C. Maoa. 2021. What drives putative bacterial pathogens removal within seagrass meadows? Marine Pollution Bulletin 166:112229.
Donatelli, C., N. K. Ganju, S. Fagherazzi, and N. Leonardi. 2018. Seagrass impact on sediment exchange between tidal flats and salt marsh, and the sediment budget of shallow bays. Geophysical Research Letters 45(10):4933-4943.
Falkenberg, L. J., B. D. Russell, and S. D. Connell. 2016. Design and performance evaluation of a mesocosm facility and techniques to simulate ocean acidification and warming. Limnology and Oceanography; Methods 14:278–291.
Felisberto, P., S. M. Jesus, F. Zabel, Rui Santos, J. Silva, S. Gobert, S. Beer, M. Bjork, S. Mazzuca, G. Procaccini, J. W. Runcie, W. Champenois, and B. A. V. 2015. Acoustic monitoring of O2 production of a seagrass meadow. Journal of Experimental Marine Biology and Ecology 464:75–87.
Fraser, M. W., D. B. Gleeson, P. F. Grierson, B. Laverock, and G. A. Kendrick. 2018. Metagenomic evidence of microbial community responsiveness to phosphorus and salinity gradients in seagrass sediments. Frontiers in Microbiology 9:1703.
Fraser, M. W., J. Statton, R. K. Hovey, B. Laverock, and G. A. Kendrick. 2016. Seagrass derived organic matter influences biogeochemistry, microbial communities, and seedling biomass partitioning in seagrass sediments. Plant Soil 400:133–146.
Fucik, P., A. Zajicek, M. Kaplicka, R. Duffkova, J. Peterkova, J. Maxova, and S. Takacova. 2017. Incorporating rainfall-runoff events into nitrate-nitrogen and phosphorus load assessments for small tile-drained catchments. Water 9:712.
Gacia, E., C. M. Duarte, N. Marba, J. Terrados, H. Kennedy, F. M. D., and N. H. Tri. 2003. Sediment deposition and production in SE-Asia seagrass meadows. Estuarine, Coastal and Shelf Science 56:909–919.
Gacia, E., T. C. Granata, and C. M. Duarte. 1999. An approach to measurement of particle flux and sediment retention within seagrass (Posidonia oceanica) meadows. Aquatic Botany 65:255-268.
Glass, J. E., and G. Swift. 1989. Agricultural and synthetic polymers, biodegradation and utilization. American chemical society, Washington DC :9-64.
Gonzalez, A. R. M., M. C. Brustolin, L. Laureno, and M. Junior. 2020. Composition and abundance of benthic microalgae from the estuarine complex of Paranagua bay (Southern Brazil) with special emphasis on toxic species. Ocean and Costal Reaserchs 68:20276.
Haapalainen, M. 2014. Biology and epidemics of Candidatus Liberibacter species, psyllid-transmitted plant-pathogenic bacteria. Annals of applied biology 165(2):172-198.
Hartog, C. D. 1970. Relationship between the tropical seagrass bed characteristics and the structure of the associated fish community. North Holland publishing company, Amsterdams.
Heiss, W. M., A. M. Smith, and P. K. Probert. 2000. Influence of the small intertidal seagrass Zostera novazelandica on linear water flow and sediment texture. New Zealand Journal of Marine and Freshwater Research 34:689-694.
Hendriks, I. E., T. Sintes, T. J. Bouma, and C. M. Duarte. 2008. Experimental assessment and modeling evaluation of the effects of the seagrass Posidonia oceanica on flow and particle trapping. Marine Ecology-Progress Series 356:163-173.
Hollaway, M., and I. Tibbetts. 1995. Meiobenthos of the Brisbane River and Moreton Bay: evidence of mullet as potential consumers. Page 57 International larval fish conference and Australian society for fish biology abstracts. University of Sydney :57.
Hoppenrath, M., S. A. Murray, N. Chomerat, and T. Horiguchi. 2014. Marine benthic dinoflagellates - unveiling their worldwide biodiversity. Kleine Senckenberg-Reihe publishing, Germany :276.
Huan, Y. H., C. L. Lee, C. Y. Chung, S. C. Hsiao, and H. J. Lin. 2015. Carbon budgets of multispecies seagrass beds at Dongsha Island in the South China Sea. Marine Environmental Research 106:92-102.
Huang, R., and A. D. Boney. 1984. Growth interactions between littoral diatoms and juvenile marine algae. Journal of Experimental Marine Biology and Ecology 81(1):21-45.
Jeong, H. J., A. S. Lim, P. J. S. Franks, K. H. Lee, J. H. Kim, N. S. Kang, M. J. Lee, S. H. Jang, S. Y. Lee, E. Y. Yoon, J. Y. Park, Y. D. Yoo, K. A. Seong, J. E. Kwon, and T. Y. Jang. 2015. A hierarchy of conceptual models of red-tide generation: nutrition, behavior, and biological interactions. Harmful Algae 47:97–115.
Jones, R., N. Giofre, H. M. Luter, T. L. Neoh, R. Fisher, and A. Duckworth. 2020. Responses of corals to chronic turbidity. Scientific Reports 10.
Kasim, M., and H. Mukai. 2006. Contribution of benthic and epiphytic diatoms to clam and oyster production in the Akkeshi-ko estuary. Journal of Oceanography 62:267 - 281.
Koch, E. W. 2001. Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements. Estuaries 24:1–17.
Koop, K., D. Booth, A. Broadbent, J. Brodie, D. Bucher, D. Capone, J. Coll, W. Dennison, M. Erdmann, P. Harrison, O. Hoegh-Guldberg, P. Hutchings, G. B. Jones, A. W. Larkum, J. O'Neil, A. Steven, E. Tentori, S. Ward, J. Williamson, and D. Yellowlees. 2001. The effect of nutrient enrichment on coral reefs. synthesis of results and conclusions. Marine Pollution Bulletin 42:91–120.
Kuo, J., K. S. Tew, Y. X. Ye, J. O. Cheng, P. J. Meng, and D. C. Glover. 2014. Picoplankton dynamics and picoeukaryote diversity in a hyper-eutrophic subtropical lagoon. Journal of Environmental Science and Health, Part A Toxic/Hazardous Substances & Environmental Engineering 49(1):116-124.
Lamb, J. B., J. van de Water, D. G. Bourne, C. Altier, M. Y. Hein, E. A. Fiorenza, N. Abu, J. Jompa, and C. D. Harvell. 2017. Seagrass ecosystems reduce exposure to bacterial pathogens of humans, fishes, and invertebrates. Science 355:731-733.
Lapointe, B. E., and M. D. Hanisak. 1997. Algal blooms in coastalwaters: eutrophication on coral reefs of southeast Florida. Florida Sea grant project R/C-E, 34.
Lee, C. L., C. K. C. Wen, Y. H. Huang, C. Y. Chung, and H. J. Lin. 2019. Ontogenetic habitat usage of juvenile carnivorous fish among seagrass-coral mosaic habitats. Diversity-Basel 11(2):17.
Lewis, E., D. Wallace, and L. J. Allison. 1998. Program developed for CO2 system calculations United States. doi:10.15485/1464255
Lin, H. J., C. L. Lee, S. E. Peng, M. C. Hung, P. J. Liu, and A. B. Mayfield. 2018. The effects of El Nino-Southern Oscillation events on intertidal seagrass beds over a long-term timescale. Global Change Biology 24(10):4566-4580.
Lin, H. J., and K. T. Shao. 1998. Temporal changes in the abundance and growth of intertidal Thalassia hemprichii seagrass beds in southern Taiwan. Botanical Bulletin of Academia Sinica 39:191-198.
Littler, M. M., D. S. Littler, and B. L. Brooks. 2006. Harmful algae on tropical coral reefs: bottom-up eutrophication and top-down herbivory. Harmful Algae 5:565–585.
Littler, M. M., D. S. Littler, and E. A. Titlyanov. 1991. Comparisons of N and P limited productivity between highgranitic islands versus low carbonate atolls in the Seychelles Archipelago: a test of the relative-dominance paradigm. Coral Reefs 10:199–209.
Liu, D., J. K. Keesing, P. He, Z. Wang, Y. Shi, and Y. Wang. 2013. The world’s largest macroalgal bloom in the Yellow Sea, China: formation and implications. Estuarine, Coastal and Shelf Science 129:2-10.
Liu, P. J., S. J. Ang, A. B. Mayfield, and H. J. Lin. 2020. Influence of the seagrass Thalassia hemprichii on coral reef mesocosms exposed to ocean acidification and experimentally elevated temperatures. Science of the Total Environment 700:134464.
Liu, P. J., M. C. Hsin, Y. H. Huang, T. Y. Fan, P. J. Meng, C. C. Lu, and H. J. Lin. 2015. Nutrient enrichment coupled with sedimentation favors sea anemones over corals. PLOS One. doi:10.1371/journal.pone.0125175
Liu, P. J., S. M. Lin, T. Y. Fan, P. J. Meng, K. T. Shao, and H. J. Lin. 2009. Rates of overgrowth by macroalgae and attack by sea anemones are greater for live coral than dead coral under conditions of nutrient enrichment. Limnology and Oceanography 54(4):1167–1175.
Mabrouk, L., M. B. Brahim, A. Hamza, M. Mahfoudhi, and M. N. Bradai. 2014. A comparison of abundance and diversity of epiphytic microalgal assemblages on the leaves of the seagrasses Posidonia oceanica (L.) and Cymodocea nodosa (Ucria) Asch in Eastern Tunisia. Journal of Marine Biology 2014:10.
Mabrouk, L., A. Hamza, M. Ben Brahim, and M. N. Bradai. 2013. Variability in the structure of epiphyte assemblages on leaves and rhizomes of Posidonia oceanica in relation to human disturbances in a seagrass meadow off Tunisia. Aquatic Botany 108:33–40.
Mackin, J. E. 1989. Relationships between Si, Al, and Fe deposited on filter-covered glass substrates in marine sediments and in suspensions of sediments and standard clays. Marine Chemistry 26(2):101-117.
Madsen, J. D., P. A. Chambers, W. F. James, E. W. Koch, and D. F. Westlake. 2001. The interaction between water movement, sediment dynamics and submersed macrophytes. Hydrobiologia 444:71–84.
Magoc, T., and S. L. Salzberg. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27(21):2957-2963.
Magurran, A. 1991. Ecological diversity and its measurement, Princeton university press, Princeton :178.
Maheswari, R. U., V. Naganathan, and J. K. Patterson. 2011. Interrelation among coral reef and sea-grass habitats in the Gulf of Mannar. International Journal of Biodiversity and Conservation 3(6):193-205.
Maron, P. A., A. Sarr, A. Kaisermann, J. Leveque, O. Mathieu, J. Guigue, B. Karimi, L. Bernard, S. Dequiedt, S. Terrat, A. Chabbi, and L. Ranjarda. 2018. High microbial diversity promotes soil ecosystem functioning. Applied and Environmental Microbiology 84(9). doi:10.1128/AEM.02738-17
Martinez, M. G., A. L. Lopez, M. L. Calleja, N. Marba, and C. M. Duarte. 2009. Bacterial community dynamics in a seagrass (Posidonia oceanica) meadow sediment. Estuaries Coasts 32:276–286.
Maxwell, P. S., K. A. Pitt, A. D. Olds, D. Rissik, and R. M. Connolly. 2015. Identifying habitats at risk: simple models can reveal complex ecosystem dynamics. Ecological Applications 25:573–587. doi:10.1890/14-0395.1
McClanahan, T. R., and J. Maina. 2003. Response of coral assemblages to the interaction between natural temperaturevariation and rare warm-water events. Ecosystems 6(2):551– 563.
McCormick, V. H., T. Kahlke, K. Petrou, T. Jeffries, P. J. Ralph, and J. R. Seymour. 2019. Regional and microenvironmental scale characterization of the Zostera muelleri seagrass microbiome. Frontiers in Microbiology. doi:10.3389/fmicb.2019.01011
Middelburg, J. J., C. Barranguet, H. T. S. Boschker, P. M. J. Herman, T. Moens, and C. H. R. Heip. 2000. The fate of intertidal microphytobenthos carbon: an in situ 13C-labeling study. Limnology and Oceanography 45(6):1224–1234.
Miyajima, S., I. Koikel, H. Yamano, and H. Iizumi. 1998. Accumulation and transport of seagrass-derived organic matter in reef flat sediment of Green Island, Great Barrier Reef Marine ecological progress series 175:251-259.
Moriarty, D. J. W., and P. I. Boon. 1989. Interactions of seagrasses with sediment and water. In biology of seagrasses, a treatise on the biology of seagrasses with special reference to Australian region. Elsevier Science :500-535.
Morris, L. A., C. R. Voolstra, K. M. Quigley, D. G. Bourne, and L. K. Bay. 2019. Nutrient availability and metabolism affect the stability of coral–symbiodiniaceae symbioses. Trends in Microbiology 27(8):678-689.
Murchie, E. H., and T. Lawson. 2013. Chlorophyll fluorescence analysis: a guide to good practice and understanding some new applications. Experimental Botany 64(13):3983–3998.
Nakamura, Y., K. Hirota, T. Shibuno, and Y. Watanabe. 2012. Variability in nursery function of tropical seagrass beds during fish ontogeny: timing of ontogenetic habitat shift. Marine Biology 159(6):1305–1315.
Nascimento, S. M., F. Salgueriro, M. Menezes, F. Oliveira, V. C. P. Magalhaes, D. P. J. C., and S. Morris. 2016. Prorocentrum lima from the South Atlantic: morphological, molecular and toxicological characterization. Harmful Algae 57:39-48.
Nunan, L. M., C. R. Pantoja, S. Gomez-Jimenez, and D. V. Lightner. 2013. “Candidatus Hepatobacter penaei,” an intracellular pathogenic enteric bacterium in the Hepatopancreas of the marine shrimp Penaeus vannamei (crustacea: Decapoda). Applied and Environmental Microbiology 79:1407–1409.
Osinga, R., M. Janssen, and M. Janse. 2008. Advances in coral husbandry in public aquariums: The role of light in coral physiology and its implications for coral husbandry. Burgers' zoo, Arnhem, Netherlands :173-184.
Palmer, E. J., R. Gallego, A. R. Laca, E. Kunselman, K. Cribari, M. Horwith, and R. P. Kelly. 2020. A halo of reduced dinoflagellate abundances In and around eelgrass beds. PeerJ 8:e8869.
Parsons, T. R., Y. Maita, and C. M. Lalli. 1984. A manual of chemical & biological methods for seawater analysis. Pergamon Press, Oxford, New York, Toronto, Sydney, Paris, Frankfurt :173
Rigaud, S., B. Deflandre, O. Maire, G. Bernard, and J. C. Duchene. 2018. Transient biogeochemistry in intertidal sediments: new insights from tidal pools in Zostera noltei meadows of Arcachon bay (France). Marine Chemistry. doi:10.1016/j.marchem.2018.02.002
Risk, M., and E. Edinger. 2011. Impacts of sediment on coral reefs. Encyclopedia of Modern Coral Reefs:575-586. doi:10.1007/978-90-481-2639-2_25
Rodriguez, A., J. E. Mancera, and B. Gavio. 2010a. Survey of benthic dinoflagellates associated to beds of Thalassia testudinum in San Andrés Island, Seaflower Biosphere Reserve, Caribbean Colombia. Acta Biológica Colombiana 15(2):229-246.
Rogers, C. S. 1990. Responses of coral reefs and reef organisms to sedimentation. Marine Ecology Progress Series 62:185-202.
Rouze, H., G. Lecellier, X. Pochon, G. Torda, and V. B. Lecellier. 2019. Unique quantitative Symbiodiniaceae signature of coral colonies revealed through spatiotemporal survey in Moorea. Scientific Reports 9:7921.
Schulz, H. N., and H. D. Schulz. 2005. Large sulfur bacteria and the formation of phosphorite. Science 307:416–418.
Scoffin, T. P. 1970. Trapping and binding of subtidal carbonate sediments by marine vegetation in Bimini Lagoon, Bahamas. Journal of Sedimentary Petrology 40:249-273.
Scott, A. L., P. H. York, C. Duncan, P. I. Macreadie, R. M. Connolly, M. T. Ellis, J. C. Jarvis, K. I. Jinks, H. Marsh, and M. A. Rasheed. 2018. The role of herbivory in structuring tropical seagrass ecosystem service delivery. Frontiers in Plant Science 9:127.
Setiabudi, G. I., D. G. Bengen, H. Effendi, and O. K. Radjasa. 2016. The community structure of phytoplankton in seagrass ecosystem and its relationship with environmental characteristics Biosaintifika 8(3):257-269.
Simon, N., A. L. Cras, E. Foulon, and R. Lemee. 2009. Diversity and evolution of marine phytoplankton Diversite et evolution du phytoplancton marin. Biologies 332(2-3):159-170.
Spagnoli, F., and M. C. Bergamini. 1997. Water-sediment exchange of nutrients during early diagenesis and resuspension of anoxic sediments from the Northern Adriatic Sea shelf. Water, Air, and Soil Pollution 99:541–556.
Strickland, J. D. H., and T. R. Parsons. 1972. A practical hand book of seawater analysis. 2 edition. Fisheries research board of Canada Bulletin 157 :310.
Szmant, A. M. 2002. Nutrient enrichment on coral reefs: is it a major cause of coral reef decline? Estuaries 25:743-766.
Tew, K. S., Y. S. Jhange, P. J. Meng, and M. Y. Leu. 2017a. Environmental factors influencing the proliferation of microscopic epiphytic algae on giant kelp under aquarium conditions. Journal of Applied Phycology 29(6):2877-2886.
Tew, K. S., J. Kuo, J. O. Cheng, F. C. Ko, P. J. Meng, A. B. Mayfield, and P. J. Liu. 2021. Impacts of seagrass on benthic microalgae and phytoplankton communities in an experimentally warmed coral reef mesocosm. Frontiers in Marine Science 8:679683.
Tew, K. S., P. J. Meng, and M. Y. Leu. 2012. Factors correlating with deterioration of giant kelp Macrocystis pyrifera (Laminariales, Heterokontophyta) in an aquarium setting. Journal of Applied Phycology 24(5):1269-1277.
Tew, K. S., Y. J. Siao, P. J. Liua, W. T. Loc, and P. J. Meng. 2017b. Taiwanese marine microbenthic algal communities remain similar yet chlorophyll a concentrations rise in mesocosms with elevated CO2 and temperature. Marine Pollution Bulletin 124:929-937.
Tran, T. 2017. Standard methods for the examination of water and wastewater. 23 edition. Americon public health association, American water works association, water environment federation, Americon public health association, 800 1.street, NW. Washington, DC 20001-3710.
Trench, R. K. 1993. Microalgal-invertebrate symbiosis: a review. Endocyt Cell Researches 9:135–175
Turki, S. 2005. Distribution of toxic dinoflagellates along the leaves of seagrass Posidonia oceanica and Cymodosa nodosa from the Gulf of Tunis. Cahiers de Biologie Marine 46:29-34.
Ugarelli, K., S. Chakrabarti, P. Laas, and U. Stingl. 2017. The seagrass holobiont and its microbiome. Microorganisms 5:81.
Underwood, A. J., and M. G. Chapman. 1995. Coastal marine ecology of temperate Australia. Institute of marine ecology, University of Sydney. UNSW Press.
Underwood, G. J. C., and J. C. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29:93-153.
Unsworth, R. K. F., C. J. Collier, G. M. Henderson, and L. J. McKenzie. 2012. Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters 7(2):024026.
Unsworth, R. K. F., L. M. Nordlund, and L. C. Cullen-Unsworth. 2019b. Seagrass meadows support global fisheries production. Conservation Letters:12566.
Valentine, J. F., and J. E. Duffy. 2006. The central role of grazing in seagrass ecosystems, Seagrasses: Biology, Ecology and Conservation Netherlands :463-501. doi:10.1007/1-4020-2983-7_20
van Keulen, M., and M. A. Borowitzka. 2003. Seasonal variability in sediment distribution along an exposure gradient in a seagrass meadow in Shoalwater Bay, Western Australia. Estuarine Coastal and Shelf Science 57:587-592.
Vogel, M. A., O. U. Mason, and T. E. Miller. 2020. Host and environmental determinants of microbial community structure in the marine phyllosphere. PLOS One. doi: 10.1371/journal.pone.0235441
Wainright, S. C. 1990. Sediment to water fluxes of particulate material and microbes by resuspension and their contribution to the planktonic food web. Marine Ecology Progress Series 62:271–281.
Wang, C. C., M. Kumar, C. J. Lan, and J. G. Lin. 2011. Landfill-leachate treatment by simultaneous partial nitrification, anammox and denitrification (SNAD) process. Desalination and Water Treatment 32:4–9.
Widdows, J., N. D. Pope, M. D. Brinsley, H. Asmus, and R. M. Asmus. 2008. Effects of seagrass beds (Zostera noltii and Z. marina) on near-bed hydrodynamics and sediment resuspension. Marine Ecology-Progress Series 358:125-136.
Yamashita, H., G. Suzuki, S. Kai, T. Hayashibara, and K. Koike. 2014. Establishment of coral–algal symbiosis requires attraction and selection. PLOS One. doi: 10.1371/journal.pone.0097003
Yang, Y. P., S. C. Fong, and H. Y. Liu. 2002. Taxonomy and distribution of seagrasses in Taiwan. Taiwania 47(1):54-61.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *