帳號:guest(18.216.211.142)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:杜恩純
作者(英文):Toh En Chun
論文名稱:珊瑚細胞冷凍保存
論文名稱(英文):Cryopreservation and cryobanking of coral cells
指導教授:林家興
指導教授(英文):Chia-Hsin Lin
口試委員:林家興
蔡淑君
陳勇輝
口試委員(英文):Chia-Hsin Lin
Su-June Tsai
Yung-Hui Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610863020
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:113
關鍵詞:珊瑚冷凍保存細胞冷凍基因庫
關鍵詞(英文):coralcryopreservationcellcryobank
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
珊瑚礁生態系為海洋中生產力及生物多樣性最高的生態系,而現今海洋環境在人爲污染及全球暖化的影響下,導致了珊瑚礁受到破壞,因此珊瑚礁的復育及保育刻不容緩,而珊瑚細胞的冷凍保種正是方法之一。本研究的目的是發展珊瑚細胞的低溫冷凍保存條件,並建立其冷凍基因庫,同時比較野生及養殖珊瑚物種細胞在生理、生化、結構上的不同,分析在二段式冷凍保存後細胞在抗凍劑適用性、存活率、所需平衡時間、萃取時間及共生藻含量的差異。從本研究中發現珊瑚細胞有支持細胞(Supporting cell)、腺細胞(Gland cell)、表皮刺絲囊(Epidermal nematocyst)、共生藻(Symbiodiniaceae)和共生藻內胚層細胞(Symbiotic Endoderm Cell),其中大部分的珊瑚以紡綞細胞(Spindle cell)和簇細胞(Cluster cell)爲主,胃皮層刺絲囊(Gastrodermal nematocyst)最不常見的。本研究的結果顯示,珊瑚細胞冷凍保存的條件會根據細胞大小、形狀、脂質含量、抗凍劑影響、冷凍敏感性和冰晶的形成而有所不同,雖然從26種珊瑚細胞中可以識別出9種細胞,但這些細胞會因黏液和季節變化等因素而對冷凍保存產生影響。另外,從本研究結果發現一半以上的測試珊瑚細胞適用於使用DMSO作為冷凍保護劑進行冷凍保存,而使用MeOH和EG作為抗凍劑可以成功冷凍保存另一半約40種的珊瑚內的細胞,其中珊瑚A. tenuis、C. ocellina、P. clavus、P. cactus、P. lobata、P. lutea、P. pini、T. peltata、T. stellulata、M. valenciennesi和M. colemani適用於所有本研究中測試的冷凍條件,與此同時,我們也發現共生藻平均佔總珊瑚細胞的6%。另一方面,相同種類的野生和養殖珊瑚細胞在大小、形狀、抗凍劑的適用性、平衡和萃取時間方面,並沒有顯著差異。相比五種養殖珊瑚,80%的野生珊瑚物種都擁有共生藻內胚層細胞,而大多數珊瑚的細胞種類沒有顯著差異。此外,比較同種但不同環境的珊瑚,本研究發現支持細胞在野生H. coerulea和培養的H. coerulea、P. cactus、P. damicornis含量較多。野生E. lamellosa中的共生藻和野生P. damicornis中的支持細胞以及野生S. caliendrum中的蟲黃藻內胚層細胞與其養殖同類相比具有顯著更高的含量。共生藻也普遍大於所有珊瑚細胞,並且在野生和養殖珊瑚之間的支持細胞和共生藻大小沒有顯著差異。除了養殖珊瑚中的共生藻外,大多數珊瑚除了養殖的珊瑚E. lamellosa和S. caliendrum明顯比它們的野生同類大,上述的結果推測和野外及養殖珊瑚的細胞發育環境、細胞反應和細胞結構而導致細微差異。最後,在我們所建立的珊瑚細胞冷凍基因庫中,每種珊瑚至少低溫冷凍保存了14組冷凍麥管的珊瑚細胞,共超過1884組冷凍麥管(0.5毫升/組),平均濃度為每毫升6.4x106。本研究對於珊瑚冷凍保存技術、珊瑚冷凍基因庫建立及未來珊瑚的保育都具有實質上的益助。
As coral reefs have suffered as a result of global pollution and climate change, they have been deteriorated and require the assistance of scientists, in which case research into suitable cryopreservation procedures and the physiological differences between wild and cultured corals becomes necessary. This, however, has yet to be done. The main objective of this study was to develop a protocol that examines the suitability of each coral species to freezing in order to establish the first-ever coral cell cryobank and compare the differences between wild and cultured coral species in terms of cryopreservation on factors such as CPA suitability, viability rate, equilibrium time, extraction time, type of cell identification, and Symbiodiniaceae concentration. Coral cells including supporting and gland cells, epidermal nematocysts, Symbiodiniaceae and symbiotic endoderm cells (SEC) were found from the extracted protocol. Approximately half of the corals from the experimental corals consisted spindle and cluster cells. Gastrodermal nematocysts were the least common. The freezing protocol conducted in this study was executed with specific compatibility depending on size, shape, lipid content, CPA impact, chilling sensitivity, and ice formation. Although, 9 types of cell functions out of 26 types of cells were able to be identified, it was clear that limiting variables like mucus and seasonal change might have an impact on the effectiveness of cryopreservation. The result showed that freezing using DMSO as a cryoprotectant was suitable for over half of the tested coral, while the other half could be successfully frozen using MeOH and EG as CPAs. A. tenuis, C. ocellina, P. clavus, P. cactus, P. lobata, P. lutea, P. pini, T. peltata, T. stellulata, M. valenciennesi, and M. colemani could be cryopreserved with all types of CPAs. The identified Symbiodiniaceae accounted for 6% of the average from total cell concentration. On the other hand, the same species of wild and cultured coral cells had no significant difference in terms of size, shape, suitability of CPAs, equilibration and extraction time for majority of the coral species examined. Eight out of ten wild coral species consisted of Symbiotic Endoderm Cell (SEC) compared to five cultured corals. Also, there was no significant different in the cell type abundance for most of the corals as supporting cells were the dominant cells except for wild H. coerulea and cultured H. coerulea, P. cactus, P. damicornis. Additionally, the Symbiodiniaceae in wild E. lamellosa, and supporting cells in wild P. damicornis, as well as SEC in wild S. caliendrum have significantly higher abundance compared to their culture counterparts. The cell diameter of symbiodiniaceae was generally larger than the supporting cells in all coral species and there were no significant differences observed in cell diameter of supporting cells and Symbiodiniaceae between wild and cultured corals for most of the corals with the exception of the Symbiodiniaceae in cultured corals E. lamellosa and S. caliendrum which were noticeably larger than theirs wild counterparts. The minor differences found could be related to the cell development environment, cell responses, and cell structures. This study has cryo-banked coral cells from at least 14 straws from each species, accounting for more than 1884 straws (0.5 mL) with an average concentration of 6.4x106 per ml and the findings will undoubtedly aid in coral cryobanking and conservation in the future.
ACKNOWLEDGEMENT I
中文摘要 III
ABSTRACT V
TABLE OF CONTENTS VII
LIST OF TABLES XI
LIST OF FIGURES XIII
LIST OF APPENDICES XVII
CHAPTER 1: INTRODUCTION 1
1.1. Coral reefs 1
1.1.1. Importance of coral reefs 5
1.1.2. Coral metabolism 5
1.1.3. Relationships between Symbiodiniaceae and coral 5
1.1.4. Coral cell identification 7
1.2. Coral reef crisis 7
1.2.1. Climate changes 7
1.2.2. Stress on coral 8
1.2.3. Coral diseases 8
1.2.4. Coral bleaching 9
1.3. Global effort on reduction of coral reefs crisis 9
1.4. Cryopreservation 10
1.4.1. An update on the study of coral cryopreservation 11
1.5. Coral cell cultures 14
1.5.1. Types of coral cell extraction 17
1.5.2. Methods for measuring cultured cell viability 18
1.5.3. Challenges in cell culture 18
1.5.4. Application of cultured cell 19
1.6. Cryobanking 19
1.6.1. Cryobanking procedure 23
1.6.2. Database management of a cryobank 24
1.6.3. Problem of cryobanking for coral and other marine invertebrates 24
1.6.4. Aim of the research 26
CHAPTER 2: MATERIALS AND METHODS 27
2.1. Coral collection 27
2.2. Coral identification 27
2.3. Host cell and Symbiodiniaceae extraction 27
2.4. Cryopreservation 28
2.5. Viability assay 28
2.6. Coral cryobanking 29
2.7. Classification of cell size abundance 29
2.8. Statistical analysis 30
CHAPTER 3: CRYOPRESERVATION AND CRYOBANKING OF
CORAL CELLS 33
3.1. Introduction 33
3.2. Results 36
3.3. Discussion 51
3.3.1. Coral cell type and function 53
3.3.2. ATP assay 55
3.3.3. Limitation of successful cryopreservation 55
3.4. Conclusion 56
CHAPTER 4: CORAL CELL TYPE, SIZE, AND DENSITY BETWEEN WILD AND CULTURED CORALS 57
4.1. Introduction 57
4.2. Results 59
4.3. Discussion 77
4.3.1. Cryoprotectant suitability between wild and cultured corals 77
4.3.2. Coral cellulation and differentiation 78
4.3.3. Coral cells density and formation 79
4.4. Conclusion 82
REFERENCES 83
APPENDICES 111
Abrego, D., Willis, B. L., & van Oppen, M. J. (2012). Impact of light and temperature on the uptake of algal symbionts by coral juveniles. PloS one, 7(11), e50311. https://doi.org/10.1371/journal.pone.0050311
Abrina, T. A. S., & Bennett, J. (2021). A benefit-cost comparison of varying scales and methods of coral reef restoration in the Philippines. Sci. Total Environ, 799, 149325, 1-10. https://doi.org/10.1016/j.scitotenv.2021.149325
Ainsworth, T., Kvennefors, E., Blackall, L., Fine, M., & Hoegh-Guldberg, O. (2007). Disease and cell death in white syndrome of Acroporid corals on the Great Barrier Reef. Mar. Biol, 151(1), 19-29. https://doi.org/10.1007/s00227-006-0449-3
Alasalvar, C., Taylor, K., Zubcov, E., Shahidi, F., & Alexis, M. (2002). Differentiation of cultured and wild sea bass (Dicentrarchus labrax): total lipid content, fatty acid and trace mineral composition. Food Chem, 79(2), 145-150. https://doi.org/10.1016/S0308-8146(02)00122-X
Altman-Kurosaki, N. T., Smith, C. M., & Franklin, E. C. (2021). O ‘ahu’s marine protected areas have limited success in protecting coral reef herbivores. Coral Reefs, 40(2), 305-322. https://doi.org/10.1007/s00338-021-02054-5
Alvarez-Filip, L., Estrada-Saldivar, N., Perez-Cervantes, E., Molina-Hernandez, A., & Gonzalez-Barrios, F. J. (2019). A rapid spread of the stony coral tissue loss disease outbreak in the Mexican Caribbean. PeerJ, 7, e8069, 1-17. https://doi.org/10.7717/peerj.8069
Anchordoguy, T. J., Rudolph, A. S., Carpenter, J. F., & Crowe, J. H. (1987). Modes of interaction of cryoprotectants with membrane phospholipids during freezing. Cryobiology, 24(4), 324-331. https://doi.org/10.1016/0011-2240(87)90036-8
Anthony, K. R., & Fabricius, K. E. (2000). Shifting roles of heterotrophy and autotrophy in coral energetics under varying turbidity. J. Exp. Mar. Biol. Ecol, 252(2), 221-253. https://doi.org/10.1016/s0022-0981(00)00237-9
Anthony, K. R., & Hoegh-Guldberg, O. (2003). Kinetics of photoacclimation in corals. Oecologia, 134(1), 23-31. https://doi.org/10.1007/s00442-002-1095-1
Aquino, J. I. L., Elliott, L., Zeng, C., & Paris, D. B. (2022). Recent developments in male fertility evaluation, sperm cryopreservation and artificial fertilisation, and their potential application to decapod crustacean aquaculture. Rev. Aquac, 14(2), 848-889.
Arotsker, L., Siboni, N., Ben-Dov, E., Kramarsky-Winter, E., Loya, Y., & Kushmaro, A. (2009). Vibrio sp. as a potentially important member of the Black Band Disease (BBD) consortium in Favia sp. corals. FEMS Microbiol. Ecol, 70(3), 515-524. https://doi.org/10.1111/j.1574-6941.2009.00770.x
Asahina, E., & Takahashi, T. (1978). Freezing tolerance in embryos and spermatozoa of the sea urchin. Cryobiology, 15(1), 122-127. https://doi.org/10.1016/0011-2240(78)90016-0
Ault, J. S. (2004). Why have no-take marine protected areas? American Fisheries Society Symposium,
Auzoux-Bordenave, S., & Domart-Coulon, I. (2010). Short review marine invertebrate cell cultures as tools for biomineralization studies. J. Sci. Hal. Aquat, 2, 42-47.
Bai, J., Li, Y., & Zhang, G. (2017). Cell cycle regulation and anticancer drug discovery. Cancer Biol. Med, 14(4), 348-362. https://doi.org/10.20892/j.issn.2095-3941.2017.0033
Bak, R. O., Gomez-Ospina, N., & Porteus, M. H. (2018). Gene Editing on Center Stage. Trends Genet, 34(8), 600-611. https://doi.org/10.1016/j.tig.2018.05.004
Bak, R. P., Nieuwland, G., & Meesters, E. H. (2005). Coral reef crisis in deep and shallow reefs: 30 years of constancy and change in reefs of Curacao and Bonaire. Coral Reefs, 24(3), 475-479.
Beckmann, A., & Ozbek, S. (2012). The nematocyst: a molecular map of the cnidarian stinging organelle. Int. J. Dev. Biol, 56(6-8), 577-582. https://doi.org/10.1387/ijdb.113472ab
Bellwood, D. R., Hughes, T. P., Folke, C., & Nystrom, M. (2004). Confronting the coral reef crisis. Nature, 429(6994), 827-833. https://doi.org/10.1038/nature02691
Ben-Haim, Y., Zicherman-Keren, M., & Rosenberg, E. (2003). Temperature-regulated bleaching and lysis of the coral Pocillopora damicornis by the novel pathogen Vibrio coral liilyticus. Appl. Environ. Microbiol, 69(7), 4236-4242. https://doi.org/10.1128/AEM.69.7.4236-4242.2003
Bereded, N. K., Abebe, G. B., Fanta, S. W., Curto, M., Waidbacher, H., Meimberg, H., & Domig, K. J. (2021). The Impact of Sampling Season and Catching Site (Wild and Aquaculture) on Gut Microbiota Composition and Diversity of Nile Tilapia (Oreochromis niloticus). Biology (Basel), 10(3), 180. https://doi.org/10.3390/biology10030180
Berkelmans, R., & Van Oppen, M. J. (2006). The role of zooxanthellae in the thermal tolerance of corals: a ‘nugget of hope’for coral reefs in an era of climate change. Proc. R. Soc. Lond. B. Biol. Sci, 273(1599), 2305-2312.
Berzins, I. K., Yanong, R. P., LaDouceur, E. E., & Peters, E. C. (2021). Cnidaria: Invertebrate Histology (pp. 55-86). John Wiley & Sons. https://doi.org/10.1002/9781119507697.ch3
Best, B. P. (2015). Cryoprotectant Toxicity: Facts, Issues, and Questions. Rejuvenation Res, 18(5), 422-436. https://doi.org/10.1089/rej.2014.1656
Bhagooli, R., & Hidaka, M. (2004). Photoinhibition, bleaching susceptibility and mortality in two scleractinian corals, Platygyra ryukyuensis and Stylophora pistillata, in response to thermal and light stresses. Comp. Biochem. Physiol. A. Mol. Integr. Physiol, 137(3), 547-555. https://doi.org/10.1016/j.cbpb.2003.11.008
Bonilla, K. G., Guest, J. R., dela Cruz, D. W., & Baria-Rodriguez, M. V. (2021). Onset of sexual maturity of sexually propagated and wild colonies of the massive coral Favites abdita in northwestern Philippines. Invertebr. Reprod. Dev, 65(3), 201-209. https://doi.org/10.1080/07924259.2021.1935334
Borneman, E. (2008). Introduction to the husbandry of corals in aquariums: A review. Advances in coral husbandry in public aquariums. Arnhem: Burgers’ Zoo, 3-14.
Bosch, T. C., & David, C. N. (1984). Growth regulation in Hydra: relationship between epithelial cell cycle length and growth rate. Dev. Biol, 104(1), 161-171. https://doi.org/10.1016/0012-1606(84)90045-9
Bostrom-Einarsson, L., Babcock, R. C., Bayraktarov, E., Ceccarelli, D., Cook, N., Ferse, S. C. A., Hancock, B., Harrison, P., Hein, M., Shaver, E., Smith, A., Suggett, D., Stewart-Sinclair, P. J., Vardi, T., & McLeod, I. M. (2020). Coral restoration - A systematic review of current methods, successes, failures and future directions. PloS one, 15(1), e0226631, 1-24. https://doi.org/10.1371/journal.pone.0226631
Bourne, D. G., Boyett, H. V., Henderson, M. E., Muirhead, A., & Willis, B. L. (2008). Identification of a ciliate (Oligohymenophorea: Scuticociliatia) associated with brown band disease on corals of the Great Barrier Reef. Appl. Environ. Microbiol, 74(3), 883-888. https://doi.org/10.1128/AEM.01124-07
Brambilla, V., Barbosa, M., Dehnert, I., Madin, J., Maggioni, D., Peddie, C., & Dornelas, M. (2022). Shaping coral traits: plasticity more than filtering. Mar. Ecol. Prog. Ser, 692, 53-65. https://doi.org/10.3354/meps14080
Brown, B. (1997). Coral bleaching: causes and consequences. Coral Reefs, 16(1), S129-S138.
Brown, B., & Bythell, J. (2005). Perspectives on mucus secretion in reef corals. Mar. Ecol. Prog. Ser, 296, 291-309. https://doi.org/10.3354/meps296291
Bruckner, A. W. (2002). Life-saving products from coral reefs. Issues Sci. Technol, 18(3), 39-44. https://www.jstor.org/stable/43314163
Bruckner, A. W. (2016). History of coral disease research. Diseases of Coral, 1st ed.; Woodley, CM, Downs, CA, Bruckner, AW, Porter, JW, Galloway, SB, Eds, 52-84.
Brunner, B. (2012). The ocean at home: an illustrated history of the aquarium (pp. 1-167). Reaktion Books.
Bruno, J. F., & Edmunds, P. J. (1997). Clonal variation for phenotypic plasticity in the coral Madracis mirabilis. Ecology, 78(7), 2177-2190. https://doi.org/10.1890/0012-9658(1997)078[2177:CVFPPI]2.0.CO;2
Burke, L., Reytar, K., & Spalding, M. (2012). Reefs at risk revisited in the Coral Triangle.
Burmester, E. M., Breef-Pilz, A., Lawrence, N. F., Kaufman, L., Finnerty, J. R., & Rotjan, R. D. (2018). The impact of autotrophic versus heterotrophic nutritional pathways on colony health and wound recovery in corals. Ecol. Evol, 8(22), 10805-10816. https://doi.org/10.1002/ece3.4531
Bury, N., & Olive, P. (1993). Ultrastructural observations on membrane changes associated with cryopreserved spermatozoa of two polychaete species and subsequent mobility induced by quinacine. Invertebr. Reprod. Dev, 23(2-3), 139-150.
Bythell, J. C., & Wild, C. (2011). Biology and ecology of coral mucus release. J. Exp. Mar. Biol. Ecol, 408(1-2), 88-93. https://doi.org/10.1016/j.jembe.2011.07.028
Cabrita, E., Martínez-Páramo, S., Gavaia, P. J., Riesco, M. F., Valcarce, D., Sarasquete, C., Herráez, M., & Robles, V. (2014). Factors enhancing fish sperm quality and emerging tools for sperm analysis. Aquaculture, 432, 389-401. https://doi.org/10.1016/j.aquaculture.2014.04.034
Camaya, A. P. (2017). Growth, cell division and dysfunction of coral tissues and symbiotic zooxanthellae in the scleractinian Pocillopora damicornis (Linnaeus) revealed by light and electron microscopy [Doctoral dissertation, Kochi University]. https://ci.nii.ac.jp/naid/500001066846
Campos, S., Troncoso, J., & Paredes, E. (2021). Major challenges in cryopreservation of sea urchin eggs. Cryobiology, 98, 1-4. https://doi.org/10.1016/j.cryobiol.2020.11.008
Carr, L., & Mendelsohn, R. (2003). Valuing coral reefs: a travel cost analysis of the Great Barrier Reef. Ambio, 32(5), 353-357. https://doi.org/10.1579/0044-7447-32.5.353
Cervino, J. M., Hayes, R. L., Polson, S. W., Polson, S. C., Goreau, T. J., Martinez, R. J., & Smith, G. W. (2004). Relationship of Vibrio species infection and elevated temperatures to yellow blotch/band disease in Caribbean corals. Appl. Environ. Microbiol, 70(11), 6855-6864. https://doi.org/10.1128/AEM.70.11.6855-6864.2004
Cervino, J. M., Thompson, F. L., Gomez-Gil, B., Lorence, E. A., Goreau, T. J., Hayes, R. L., Winiarski-Cervino, K. B., Smith, G. W., Hughen, K., & Bartels, E. (2008). The Vibrio core group induces yellow band disease in Caribbean and Indo-Pacific reef-building corals. J. Appl. Microbiol, 105(5), 1658-1671. https://doi.org/10.1111/j.1365-2672.2008.03871.x
Chadwick, N. E., & Loya, Y. (1990). Regeneration after experimental breakage in the solitary reef coral Fungia granulosa Klunzinger, 1879. J. Exp. Mar. Biol. Ecol, 142(3), 221-234. https://doi.org/10.1016/0022-0981(90)90093-R
Chadwick, N. E., & Morrow, K. M. (2011). Competition among sessile organisms on coral reefs. In Coral reefs: an ecosystem in transition (pp. 347-371). Springer.
Chen, J., Chen, L., Liu, D., & Zhang, G. (2013). Polybrominated diphenyl ethers contamination in marine organisms of Yantai coast, northern Yellow Sea of China. Bull. Environ. Contam. Toxicol, 90(6), 679-683. https://doi.org/10.1007/s00128-013-0980-0
Cheng, T. C., La Peyre, J. F., Buchanan, J. T., Tiersch, T. R., & Cooper, R. K. (2001). Cryopreservation of heart cells from the eastern oyster. In. Vitro. Cell. Dev. Biol. Anim, 37(4), 237-244. https://doi.org/10.1007/BF02577536
Cheung, M. W. M., Hock, K., Skirving, W., & Mumby, P. J. (2021). Cumulative bleaching undermines systemic resilience of the Great Barrier Reef. Curr. Biol, 31(23), 5385-5392 e5384. https://doi.org/10.1016/j.cub.2021.09.078
Cheung, R. C., Wong, J. H., Pan, W. L., Chan, Y. S., Yin, C. M., Dan, X. L., Wang, H. X., Fang, E. F., Lam, S. K., Ngai, P. H., Xia, L. X., Liu, F., Ye, X. Y., Zhang, G. Q., Liu, Q. H., Sha, O., Lin, P., Ki, C., Bekhit, A. A., & Ng, T. B. (2014). Antifungal and antiviral products of marine organisms. Appl. Microbiol. Biotechnol, 98(8), 3475-3494. https://doi.org/10.1007/s00253-014-5575-0
Chew, P., Abd‐Rashid, Z., Hassan, R., Asmuni, M., & Chuah, H. (2010). Semen cryo‐bank of the Malaysian Mahseer (Tor tambroides and T. douronensis). J. Appl. Ichthyol, 26(5), 726-731.
Chiarugi, P. (2008). From anchorage dependent proliferation to survival: lessons from redox signalling. IUBMB life, 60(5), 301-307. https://doi.org/10.1002/iub.45
Chiu, Y. L., Chang, C. F., & Shikina, S. (2021). Development of an in vitro tissue culture system for hammer coral (Fimbriaphyllia ancora) ovaries. Sci. Rep, 11(1), 24338. https://doi.org/10.1038/s41598-021-03810-x
Choi, Y.-H., Jo, P.-G., Kim, T.-I., Bai, S.-C. C., & Chang, Y.-J. (2007). The effects of cryopreservation on fine structures of pearl oyster (Pinctada fucata martensii) larvae. Development and Reproduction, 11(2), 79-84.
Chong, G., Tsai, S., Wang, L. H., Huang, C. Y., & Lin, C. (2016). Cryopreservation of the gorgonian endosymbiont Symbiodinium. Sci. Rep, 6(1), 18816. https://doi.org/10.1038/srep18816
Cirino, L., Tsai, S., Kuo, F. W., Wen, Z. H., Meng, P. J., & Lin, C. (2021c). Decline of Seriatopora (Scleractinia: Pocilloporidae) fecundity in Taiwan in 2018–2019. Mar. Biol. Res, 17(2), 167-171. https://doi.org/10.1080/17451000.2021.1906904
Cirino, L., Tsai, S., Kuo, F.-W., Wen, Z.-H., Meng, P.-J., & Lin, C. (2021c). Decline of Seriatopora (Scleractinia: Pocilloporidae) fecundity in Taiwan in 2018–2019. Mar. Biol. Res, 17(2), 167-171. https://doi.org/10.1080/17451000.2021.1906904
Cirino, L., Tsai, S., Wang, L. H., Chen, C. S., Hsieh, W. C., Huang, C. L., Wen, Z. H., & Lin, C. (2021a). Supplementation of exogenous lipids via liposomes improves coral larvae settlement post-cryopreservation and nano-laser warming. Cryobiology, 98, 80-86. https://doi.org/10.1016/j.cryobiol.2020.12.004
Cirino, L., Tsai, S., Wang, L.-H., Hsieh, W.-C., Huang, C.-L., Wen, Z.-H., & Lin, C. (2022). Effects of cryopreservation on the ultrastructure of coral larvae. Coral Reefs, 41(1), 131-147. https://doi.org/10.1007/s00338-021-02209-4
Cirino, L., Tsai, S., Wen, Z. H., Wang, L. H., Chen, H. K., Cheng, J. O., & Lin, C. (2021b). Lipid profiling in chilled coral larvae. Cryobiology, 102, 56-67. https://doi.org/10.1016/j.cryobiol.2021.07.012
Cirino, L., Wen, Z. H., Hsieh, K., Huang, C. L., Leong, Q. L., Wang, L. H., Chen, C. S., Daly, J., Tsai, S., & Lin, C. (2019). First instance of settlement by cryopreserved coral larvae in symbiotic association with dinoflagellates. Sci. Rep, 9(1), 18851. https://doi.org/10.1038/s41598-019-55374-6
Clarke, A. (2009). The Frozen Ark Project: the role of zoos and aquariums in preserving the genetic material of threatened animals. Int. Zoo. Yearb, 43(1), 222-230. https://doi.org/10.1111/j.1748-1090.2008.00074.x
Coles, S. L., & Brown, B. E. (2003). Coral bleaching--capacity for acclimatization and adaptation. Adv. Mar. Biol, 46, 183-223. https://doi.org/10.1016/s0065-2881(03)46004-5
Colombo-Pallotta, M., Rodríguez-Román, A., & Iglesias-Prieto, R. (2010). Calcification in bleached and unbleached Montastraea faveolata: evaluating the role of oxygen and glycerol. Coral Reefs, 29(4), 899-907. https://doi.org/10.1007/s00338-010-0638-x
Comeau, S., Cornwall, C. E., Shlesinger, T., Hoogenboom, M., Mana, R., McCulloch, M. T., & Rodolfo‐Metalpa, R. (2022). pH variability at volcanic CO2 seeps regulates coral calcifying fluid chemistry. Glob. Chang. Biol, 28(8), 2751-2763. https://doi.org/10.1111/gcb.16093
Comizzoli, P., & Wildt, D. E. (2017). Cryobanking biomaterials from wild animal species to conserve genes and biodiversity: relevance to human biobanking and biomedical research. In Biobanking of Human Biospecimens (pp. 217-235). Springer.
Cooper, E. L., Hirabayashi, K., Strychar, K. B., & Sammarco, P. W. (2014). Corals and their potential applications to integrative medicine. Evid. Based. Complement. Alternat. Med, 184959, 1-10. https://doi.org/10.1155/2014/184959
Craggs, J., Guest, J. R., Davis, M., Simmons, J., Dashti, E., & Sweet, M. (2017). Inducing broadcast coral spawning ex situ: Closed system mesocosm design and husbandry protocol. Ecol. Evol, 7(24), 11066-11078. https://doi.org/10.1002/ece3.3538
Cressey, D. (2016). Coral crisis: great barrier reef bleaching is “the worst we’ve ever seen”. Nature news. https://doi.org/10.1038/nature.2016.19747
Crook, J. M., Tomaskovic-Crook, E., & Ludwig, T. E. (2017). Cryobanking pluripotent stem cells. In Stem Cell Banking (pp. 151-164). Springer.
Cruz-Trinidad, A., Geronimo, R. C., Cabral, R. B., & Alino, P. M. (2011). How much are the Bolinao-Anda coral reefs worth? Ocean Coast. Manag, 54(9), 696-705. https://doi.org/10.1016/j.ocecoaman.2011.07.002
Cunning, R. (2013). The role of algal symbiont community dynamics in reef coral responses to global climate change (2013. 3609294) (Doctoral dissertation, University of Miami)..https://www.proquest.com/openview/26c4d57eb3aa6064777e7699e1f0f196/1?pq-origsite=gscholar&cbl=18750
Cunning, R., & Baker, A. C. (2013). Excess algal symbionts increase the susceptibility of reef corals to bleaching. Nat. Clim. Chang, 3(3), 259-262. https://doi.org/10.1038/nclimate1711
Cunning, R., & Baker, A. C. (2014). Not just who, but how many: the importance of partner abundance in reef coral symbioses. Front. Microbiol, 5, 400. https://doi.org/10.3389/fmicb.2014.00
D’Angelo, C., Denzel, A., Vogt, A., Matz, M. V., Oswald, F., Salih, A., Nienhaus, G. U., & Wiedenmann, J. (2008). Blue light regulation of host pigment in reef-building corals. Mar. Ecol. Prog. Ser, 364, 97-106. https://doi.org/10.3354/meps07588
Daly, J., Hobbs, R. J., Zuchowicz, N., O’Brien, J. K., Bouwmeester, J., Bay, L., Quigley, K., & Hagedorn, M. (2022). Cryopreservation can assist gene flow on the Great Barrier Reef. Coral Reefs, 41(2), 455-462. https://doi.org/10.1007/s00338-021-02202-x
DeFilippo, L., Burmester, E. M., Kaufman, L., & Rotjan, R. D. (2016). Patterns of surface lesion recovery in the Northern Star Coral, Astrangia poculata. J. Exp. Mar. Biol. Ecol, 481, 15-24. https://doi.org/10.1016/j.jembe.2016.03.016
Desai, K., Spikings, E., & Zhang, T. (2015). Use of methanol as cryoprotectant and its effect on sox genes and proteins in chilled zebrafish embryos. Cryobiology, 71(1), 1-11. https://doi.org/10.1016/j.cryobiol.2015.06.009
Di Genio, S., Wang, L. H., Meng, P. J., Tsai, S., & Lin, C. (2021). "Symbio-Cryobank": Toward the Development of a Cryogenic Archive for the Coral Reef Dinoflagellate Symbiont Symbiodiniaceae. Biopreserv. Biobank, 19(1), 91-93. https://doi.org/10.1089/bio.2020.0071
Dinnyes, A., Urbanyi, B., Baranyai, B., & Magyary, I. (1998). Chilling sensitivity of carp (Cyprinus carpio) embryos at different developmental stages in the presence or absence of cryoprotectants: work in progress. Theriogenology, 50(1), 1-13. https://doi.org/10.1016/S0093-691X(98)00108-3
Diwan, A. D., Harke, S. N., & Panche, A. N. (2020). Cryobanking of Fish and Shellfish Egg, Embryos and Larvae: An Overview. Front. Mar. Sci, 7, 251. https://doi.org/10.3389/fmars.2020.002
Diwan, A., & Kandasamy, D. (1997). Freezing of viable embryos and larvae of marine shrimp, Penaeus semisulcatus de Haan. Aqua. Res, 28, 947-950. http://eprints.cmfri.org.in/id/eprint/5827
Djemali, M & Bedhiaf, S. (2010). Setting Up A Cryobank In Developing Country: Lessons To Be Learned [RGA characterization and conservation project]. 1-7. https://www.researchgate.net/publication/320765835
Doering, T., Wall, M., Putchim, L., Rattanawongwan, T., Schroeder, R., Hentschel, U., & Roik, A. (2021). Towards enhancing coral heat tolerance: a “microbiome transplantation” treatment using inoculations of homogenized coral tissues. Microbiome, 9(1), 1-16. https://doi.org/10.1186/s40168-021-01053-6
Domart-Coulon, I. J., Elbert, D. C., Scully, E. P., Calimlim, P. S., & Ostrander, G. K. (2001). Aragonite crystallization in primary cell cultures of multicellular isolates from a hard coral, Pocillopora damicornis. Proc. Natl. Acad. Sci. U. S. A, 98(21), 11885-11890. https://doi.org/10.1073/pnas.211439698
Domart‐Coulon, I., & Ostrander, G. K. (2015). Coral cell and tissue culture methods. Diseases of Coral, 489-505. John Wiley & Sons. https://doi.org/10.1002/9781118828502
Domart-Coulon, I., Sinclair, C., Hill, R., Tambutté, S., Puverel, S., & Ostrander, G. (2004a). A basidiomycete isolated from the skeleton of Pocillopora damicornis (Scleractinia) selectively stimulates short-term survival of coral skeletogenic cells. Mar. Biol, 144(3), 583-592. https://doi.org/10.1007/s00227-003-1227-0
Domart-Coulon, I., Tambutté, S., Tambutté, E., & Allemand, D. (2004b). Short term viability of soft tissue detached from the skeleton of reef-building corals. J. Exp. Mar. Biol. Ecol, 309(2), 199-217. https://doi.org/10.1016/j.jembe.2004.03.021
Dove, S. G., & Hoegh-Guldberg, O. (2006). The cell physiology of coral bleaching. Coral reefs and climate change: science and management, 55-71. https://doi.org/10.1029/61CE05
Downs, C. A., Fauth, J. E., Downs, V. D., & Ostrander, G. K. (2010). In vitro cell-toxicity screening as an alternative animal model for coral toxicology: effects of heat stress, sulfide, rotenone, cyanide, and cuprous oxide on cell viability and mitochondrial function. Ecotoxicology, 19(1), 171-184. https://doi.org/10.1007/s10646-009-0403-5
Downs, C. A., McDougall, K. E., Woodley, C. M., Fauth, J. E., Richmond, R. H., Kushmaro, A., Gibb, S. W., Loya, Y., Ostrander, G. K., & Kramarsky-Winter, E. (2013). Heat-stress and light-stress induce different cellular pathologies in the symbiotic dinoflagellate during coral bleaching. PloS one, 8(12), 1-16, e77173. https://doi.org/10.1371/journal.pone.0077173
Droege, G., Barker, K., Seberg, O., Coddington, J., Benson, E., Berendsohn, W. G., Bunk, B., Butler, C., Cawsey, E. M., Deck, J., Doring, M., Flemons, P., Gemeinholzer, B., Guntsch, A., Hollowell, T., Kelbert, P., Kostadinov, I., Kottmann, R., Lawlor, R. T. & Zhou, X. (2016). The Global Genome Biodiversity Network (GGBN) Data Standard specification. Database (Oxford), 2016, 1-11. https://doi.org/10.1093/database/baw125
Duarte, I. M., Marques, S. C., Leandro, S. M., & Calado, R. (2022). An overview of jellyfish aquaculture: for food, feed, pharma and fun. Rev. Aquac, 14(1), 265-287. https://doi.org/10.1111/raq.12597
Dubinsky, Z., Stambler, N., Ben-Zion, M., McCloskey, L., Muscatine, L., & Falkowski, P. (1990). The effect of external nutrient resources on the optical properties and photosynthetic efficiency of Stylophora pistillata. Proc. R. Soc. Lond. B. Biol. Sci, 239(1295), 231-246. https://doi.org/10.1098/rspb.1990.0015
Dunn, S. R., & Weis, V. M. (2009). Apoptosis as a post‐phagocytic winnowing mechanism in a coral–dinoflagellate mutualism. Environ. Microbiol, 11(1), 268-276. https://doi.org/10.1111/j.1462-2920.2008.01774.x
Eddy, T. D., Lam, V. W., Reygondeau, G., Cisneros-Montemayor, A. M., Greer, K., Palomares, M. L. D., Bruno, J. F., Ota, Y., & Cheung, W. W. (2021). Global decline in capacity of coral reefs to provide ecosystem services. One Earth, 4(9), 1278-1285. https://doi.org/10.1016/j.oneear.2021.08.016
Edelstein-Keshet, L., Holmes, W. R., Zajac, M., & Dutot, M. (2013). From simple to detailed models for cell polarization. Philos. Trans. R. Soc. Lond. B. Biol. Sci, 368(1629), 1-10. https://doi.org/10.1098/rstb.2013.0003
Edmunds, P., & Gates, R. (2002). Normalizing physiological data for scleractinian corals. Coral Reefs, 21(2), 193-197. https://doi.org/10.1007/s00338-002-0214-0
Elkhateeb, A., El-Beih, A. A., Gamal-Eldeen, A. M., Alhammady, M. A., Ohta, S., Pare, P. W., & Hegazy, M. E. (2014). New terpenes from the Egyptian soft coral Sarcophyton ehrenbergi. Mar Drugs, 12(4), 1977-1986. https://doi.org/10.3390/md12041977
Enríquez, S., Méndez, E. R., & ‐Prieto, R. I. (2005). Multiple scattering on coral skeletons enhances light absorption by symbiotic algae. Limnol. Oceanogr, 50(4), 1025-1032. https://doi.org/10.4319/lo.2005.50.4.1025
Fabricius, K. E. (2005). Effects of terrestrial runoff on the ecology of corals and coral reefs: review and synthesis. Mar. Pollut. Bull, 50(2), 125-146. https://doi.org/10.1016/j.marpolbul.2004.11.028
Fatihah, S., Jasmani, S., Abol-Munafi, A., Noorbaiduri, S., Muhd-Farouk, H., & Ikhwanuddin, M. (2016). Development of a sperm cryopreservation protocol for the mud spiny lobster, Panulirus polyphagus. Aquaculture, 462, 56-63. https://doi.org/10.1016/j.aquaculture.2016.04.025
Feely, R. A., Sabine, C. L., Lee, K., Berelson, W., Kleypas, J., Fabry, V. J., & Millero, F. J. (2004). Impact of anthropogenic CO2 on the CaCO3 system in the oceans. Science, 305(5682), 362-366. https://doi.org/10.1126/science.1097329
Ferreira, M., Antunes, P., Costa, J., Amado, J., Gil, O., Pousao-Ferreira, P., Vale, C., & Reis-Henriques, M. A. (2008). Organochlorine bioaccumulation and biomarkers levels in culture and wild white seabream (Diplodus sargus). Chemosphere, 73(10), 1669-1674. https://doi.org/10.1016/j.chemosphere.2008.07.070
Feuillassier, L., Martinez, L., Romans, P., Engelmann-Sylvestre, I., Masanet, P., Barthelemy, D., & Engelmann, F. (2014). Survival of tissue balls from the coral Pocillopora damicornis L. exposed to cryoprotectant solutions. Cryobiology, 69(3), 376-385. https://doi.org/10.1016/j.cryobiol.2014.08.009
Feuillassier, L., Masanet, P., Romans, P., Barthelemy, D., & Engelmann, F. (2015). Towards a vitrification-based cryopreservation protocol for the coral Pocillopora damicornis L.: Tolerance of tissue balls to 4.5 M cryoprotectant solutions. Cryobiology, 71(2), 224-235. https://doi.org/10.1016/j.cryobiol.2015.07.004
Fine, M., Banin, E., Israely, T., Rosenberg, E., & Loya, Y. (2002). Ultraviolet radiation prevents bleaching in the Mediterranean coral Oculina patagonica. Mar. Ecol. Prog. Ser, 226, 249-254. https://doi.org/10.3354/meps226249
Finkel, Z. V., Beardall, J., Flynn, K. J., Quigg, A., Rees, T. A. V., & Raven, J. A. (2010). Phytoplankton in a changing world: cell size and elemental stoichiometry. J. Plankton. Res, 32(1), 119-137. https://doi.org/10.1093/plankt/fbp098
Fisher, E. M., Fauth, J. E., Hallock, P., & Woodley, C. M. (2007). Lesion regeneration rates in reef-building corals Montastraea spp. as indicators of colony condition. Mar. Ecol. Prog. Ser, 339, 61-71. https://doi.org/10.3354/meps339061
Fitt, W. K., & Warner, M. E. (1995). Bleaching Patterns of Four Species of Caribbean Reef Corals. Biol. Bull, 189(3), 298-307. https://doi.org/10.2307/1542147
Fogarty, N. D. (2012). Caribbean acroporid coral hybrids are viable across life history stages. Mar. Ecol. Prog. Ser, 446, 145-159. https://doi.org/10.3354/meps09469
Foster, A. B. (1979). Phenotypic plasticity in the reef corals Montastraea annularis (Ellis & Solander) and Siderastrea siderea (Ellis & Solander). J. Exp. Mar. Biol. Ecol, 39(1), 25-54. https://doi.org/10.1016/0022-0981(79)90003-0
Frank, U., Rabinowitz, C., & Rinkevich, B. (1994). In vitro establishment of continuous cell cultures and cell lines from ten colonial cnidarians. Mar. Biol, 120(3), 491-499. https://doi.org/10.1007/BF00680224
Franklin, D. J., Hoegh-Guldberg, O., Jones, R., & Berges, J. A. (2004). Cell death and degeneration in the symbiotic dinoflagellates of the coral Stylophora pistillata during bleaching. Mar. Ecol. Prog. Ser, 272, 117-130. https://doi.org/10.3354/meps272117
Fransolet, D., Roberty, S., & Plumier, J.-C. (2014). Impairment of symbiont photosynthesis increases host cell proliferation in the epidermis of the sea anemone Aiptasia pallida. Mar. Biol, 161(8), 1735-1743. https://doi.org/10.1007/s00227-014-2455-1
Fuller, Z. L., Mocellin, V. J. L., Morris, L. A., Cantin, N., Shepherd, J., Sarre, L., Peng, J., Liao, Y., Pickrell, J., Andolfatto, P., Matz, M., Bay, L. K., & Przeworski, M. (2020). Population genetics of the coral Acropora millepora: Toward genomic prediction of bleaching. Science, 369(6501), eaba4674. https://doi.org/10.1126/science.aba4674
Galliot, B., & Quiquand, M. (2011). A two-step process in the emergence of neurogenesis. Eur. J. Neurosci, 34(6), 847-862. https://doi.org/10.1111/j.1460-9568.2011.07829.x
Gao, C., Garren, M., Penn, K., Fernandez, V. I., Seymour, J. R., Thompson, J. R., Raina, J. B., & Stocker, R. (2021). Coral mucus rapidly induces chemokinesis and genome-wide transcriptional shifts toward early pathogenesis in a bacterial coral pathogen. ISME J, 15(12), 3668-3682. https://doi.org/10.1038/s41396-021-01024-7
Gartner, L. P., & Hiatt, J. L. (2006). Color textbook of histology e-book (pp. 1-537). Elsevier Health Sciences.
Gates, R. D., Baghdasarian, G., & Muscatine, L. (1992). Temperature Stress Causes Host Cell Detachment in Symbiotic Cnidarians: Implications for Coral Bleaching. Biol. Bull, 182(3), 324-332. https://doi.org/10.2307/1542252
Gavish, A. R., Shapiro, O. H., Kramarsky-Winter, E., & Vardi, A. (2021). Microscale tracking of coral-vibrio interactions. ISME Communications, 1(1), 1-8. https://doi.org/10.1038/s43705-021-00016-0
Gibbin, E. M., Krueger, T., Putnam, H. M., Barott, K. L., Bodin, J., Gates, R. D., & Meibom, A. (2018). Short-term thermal acclimation modifies the metabolic condition of the coral holobiont. Front. Mar. Sci, 5, 10. https://doi.org/10.3389/fmars.2018.000
Giese, W., Eigel, M., Westerheide, S., Engwer, C., & Klipp, E. (2015). Influence of cell shape, inhomogeneities and diffusion barriers in cell polarization models. Phys. Biol, 12(6), 1-19. https://doi.org/10.1088/1478-3975/12/6/066014
Glider, W. V., Phipps Jr, D. W., & Pardy, R. L. (1980). Localization of symbiotic dinoflagellate cells within tentacle tissue of Aiptasia pallida (Coelenterata, Anthozoa). Trans. Am. Microsc. Soc, 426-438. https://doi.org/10.2307/3225653
Goldberg, W. M. (2002). Feeding behavior, epidermal structure and mucus cytochemistry of the scleractinian Mycetophyllia reesi, a coral without tentacles. Tissue Cell, 34(4), 232-245. https://doi.org/10.1016/S0040-8166(02)00009-5
Gordon, B. R., & Leggat, W. (2010). Symbiodinium-invertebrate symbioses and the role of metabolomics. Mar. Drugs, 8(10), 2546-2568. https://doi.org/10.3390/md8102546
Goreau, T. F., & Goreau, N. I. (1959). The physiology of skeleton formation in corals. II. Calcium deposition by hermatypic corals under various conditions in the reef. Biol. Bull, 117(2), 239-250. https://doi.org/10.2307/1538903
Goreau, T. J. F., & Hayes, R. L. (2021). Global warming triggers coral reef bleaching tipping point : This article belongs to Ambio's 50th Anniversary Collection. Theme: Climate change impacts. Ambio, 50(6), 1137-1140. https://doi.org/10.1007/s13280-021-01512-2
Graham, N. A., Bellwood, D. R., Cinner, J. E., Hughes, T. P., Norström, A. V., & Nyström, M. (2013). Managing resilience to reverse phase shifts in coral reefs. Front. Ecol. Environ, 11(10), 541-548. https://doi.org/10.1890/120305
Grigorakis, K., Alexis, M. N., Taylor, K. A., & Hole, M. (2002). Comparison of wild and cultured gilthead sea bream (Sparus aurata); composition, appearance and seasonal variations. Int. J. Food Sci, 37(5), 477-484. https://doi.org/10.1046/j.1365-2621.2002.00604.x
Grosso-Becerra, M., Mendoza-Quiroz, S., Maldonado, E., & Banaszak, A. (2021). Cryopreservation of sperm from the brain coral Diploria labyrinthiformis as a strategy to face the loss of corals in the Caribbean. Coral Reefs, 40(3), 937-950. https://doi.org/10.1007/s00338-021-02098-7
Grottoli, A. G., Dalcin Martins, P., Wilkins, M. J., Johnston, M. D., Warner, M. E., Cai, W. J., Melman, T. F., Hoadley, K. D., Pettay, D. T., Levas, S., & Schoepf, V. (2018). Coral physiology and microbiome dynamics under combined warming and ocean acidification. PloS one, 13(1), e0191156. https://doi.org/10.1371/journal.pone.0191156
Grottoli, A. G., Rodrigues, L. J., & Palardy, J. E. (2006). Heterotrophic plasticity and resilience in bleached corals. Nature, 440(7088), 1186-1189. https://doi.org/10.1038/nature04565
Guillette, L. J., Jr., & Gunderson, M. P. (2001). Alterations in development of reproductive and endocrine systems of wildlife populations exposed to endocrine-disrupting contaminants. Reproduction, 122(6), 857-864. https://doi.org/10.1530/rep.0.1220857
Guo, Q., Whipps, C. M., Zhai, Y., Li, D., & Gu, Z. (2022). Quantitative insights into the contribution of nematocysts to the adaptive success of cnidarians based on proteomic analysis. Biology, 11(1), 91, 1-26. https://doi.org/10.3390/biology11010091
Gurtovenko, A. A., & Anwar, J. (2007). Modulating the structure and properties of cell membranes: the molecular mechanism of action of dimethyl sulfoxide. J. Phys. Chem. B, 111(35), 10453-10460. https://doi.org/10.1021/jp073113e
Guzmán, H. M., Burns, K. A., & Jackson, J. B. (1994). Injury, regeneration and growth of Caribbean reef corals after a major oil spill in Panama. Mar. Ecol. Prog. Ser, 231-241. https://www.jstor.org/stable/24844863
Gwo, J. C. (2000). Cryopreservation of aquatic invertebrate semen: a review. Aqua. Res, 31(3), 259-271. https://doi.org/10.1046/j.1365-2109.2000.00462.x
Hackerott, S., Martell, H. A., & Eirin-Lopez, J. M. (2021). Coral environmental memory: causes, mechanisms, and consequences for future reefs. Trends. Ecol. Evol, 36(11), 1011-1023. https://doi.org/10.1016/j.tree.2021.06.014
Hagedorn, M., Carter, V. L., Steyn, R. A., Krupp, D., Leong, J. C., Lang, R. P., & Tiersch, T. R. (2006). Preliminary studies of sperm cryopreservation in the mushroom coral, Fungia scutaria. Cryobiology, 52(3), 454-458. https://doi.org/10.1016/j.cryobiol.2006.03.001
Hagedorn, M., Carter, V., Martorana, K., Paresa, M. K., Acker, J., Baums, I. B., Borneman, E., Brittsan, M., Byers, M., & Henley, M. (2012). Preserving and using germplasm and dissociated embryonic cells for conserving Caribbean and Pacific coral. PloS one, 7(3), e33354, 1-13. https://doi.org/10.1371/journal.pone.0033354
Hagedorn, M., Farrell, A., & Carter, V. L. (2013). Cryobiology of coral fragments. Cryobiology, 66(1), 17-23. https://doi.org/10.1016/j.cryobiol.2012.10.003
Hagedorn, M., Page, C. A., O’Neil, K. L., Flores, D. M., Tichy, L., Conn, T., Chamberland, V. F., Lager, C., Zuchowicz, N., & Lohr, K. (2021). Assisted gene flow using cryopreserved sperm in critically endangered coral. Proc. Natl. Acad. Sci. U. S. A., 118(38), e2110559118. https://doi.org/10.1073/pnas.2110559118
Hanquet-Dufour, A. C., Kellner, K., Heude, C., Naimi, A., Mathieu, M., & Poncet, J. M. (2006). Cryopreservation of Crassostrea gigas vesicular cells: viability and metabolic activity. Cryobiology, 53(1), 28-36. https://doi.org/10.1016/j.cryobiol.2006.03.008
Hegazy, M. E., Gamal-Eldeen, A. M., Mohamed, T. A., Alhammady, M. A., Hassanien, A. A., Shreadah, M. A., Abdelgawad, II, Elkady, E. M., & Pare, P. W. (2016). New cytotoxic constituents from the Red Sea soft coral Nephthea sp. Nat. Prod. Res, 30(11), 1266-1272. https://doi.org/10.1080/14786419.2015.1055266
Helman, Y., Natale, F., Sherrell, R. M., Lavigne, M., Starovoytov, V., Gorbunov, M. Y., & Falkowski, P. G. (2008). Extracellular matrix production and calcium carbonate precipitation by coral cells in vitro. Proc. Natl. Acad. Sci. U. S. A, 105(1), 54-58. https://doi.org/10.1073/pnas.0710604105
Henry, L. A., & Hart, M. (2005). Regeneration from injury and resource allocation in sponges and corals–a review. Int. Rev. Hydrobiol, 90(2), 125-158. https://doi.org/10.1002/iroh.200410759
Hernandez-Agreda, A., Gates, R. D., & Ainsworth, T. D. (2017). Defining the Core Microbiome in Corals' Microbial Soup. Trends Microbiol, 25(2), 125-140. https://doi.org/10.1016/j.tim.2016.11.003
Heron, S. F., Maynard, J. A., van Hooidonk, R., & Eakin, C. M. (2016). Warming Trends and Bleaching Stress of the World's Coral Reefs 1985-2012. Sci. Rep, 6(1), 38402. https://doi.org/10.1038/srep38402
Higuchi, R., Bowman, B., Freiberger, M., Ryder, O. A., & Wilson, A. C. (1984). DNA sequences from the quagga, an extinct member of the horse family. Nature, 312(5991), 282-284. https://doi.org/10.1038/312282a0
Hill, R., & Ralph, P. J. (2005). Diel and seasonal changes in fluorescence rise kinetics of three scleractinian corals. Funct. Plant. Biol, 32(6), 549-559. https://doi.org/10.1071/FP05017
Hill, R., & Ralph, P. J. (2005). Diel and seasonal changes in fluorescence rise kinetics of three scleractinian corals. Funct. Plant Biol, 32(6), 549-559. https://doi.org/10.1071/FP05017
Hinde, R. T. (1998). The cnidaria and ctenophora. Invertebrate Zoology (ed. Anderson, DT), 28-57. Oxford University Press.
Hoegh-Guldberg, O. (1999). Climate change, coral bleaching and the future of the world's coral reefs. Mar. Freshw. Res, 50(8), 839-866. https://doi.org/10.1071/MF99078
Hoegh-Guldberg, O., & Jones, R. J. (1999). Photoinhibition and photoprotection in symbiotic dinoflagellates from reef-building corals. Mar. Ecol. Prog. Ser, 183, 73-86. https://doi.org/10.3354/meps183073
Hoegh-Guldberg, O., & Ormond, R. (2018). Consensus statement on coral bleaching climate change. ICRS, 14-17.
Hoegh-Guldberg, O., & Smith, G. J. (1989). The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol, 129(3), 279-303. https://doi.org/10.1016/0022-0981(89)90109-3
Hoegh-Guldberg, O., & Smith, G. J. (1989). The effect of sudden changes in temperature, light and salinity on the population density and export of zooxanthellae from the reef corals Stylophora pistillata Esper and Seriatopora hystrix Dana. J. Exp. Mar. Biol. Ecol, 129(3), 279-303. https://doi.org/10.1016/0022-0981(89)90109-3
Hoegh-Guldberg, O., Mumby, P. J., Hooten, A. J., Steneck, R. S., Greenfield, P., Gomez, E., Harvell, C. D., Sale, P. F., Edwards, A. J., Caldeira, K., Knowlton, N., Eakin, C. M., Iglesias-Prieto, R., Muthiga, N., Bradbury, R. H., Dubi, A., & Hatziolos, M. E. (2007). Coral reefs under rapid climate change and ocean acidification. Science, 318(5857), 1737-1742. https://doi.org/10.1126/science.1152509
Hoegh-Guldberg, O., Poloczanska, E. S., Skirving, W., & Dove, S. (2017). Coral reef ecosystems under climate change and ocean acidification. Front. Mar. Sci, 4, 158. https://doi.org/10.3389/fmars.2017.00158
Höger, A.-L., Griehl, C., & Noll, M. (2021). Infection with intracellular parasite Amoeboaphelidium protococcarum induces shifts in associated bacterial communities in microalgae cultures. J. Appl. Phycol, 33(5), 2863-2873.
Hoogenboom, M., Beraud, E., & Ferrier-Pagès, C. (2010). Relationship between symbiont density and photosynthetic carbon acquisition in the temperate coral Cladocora caespitosa. Coral Reefs, 29(1), 21-29. https://doi.org/10.1007/s10811-021-02542-9
Horton, H. F., & Ott, A. G. (1976). Cryopreservation of fish spermatozoa and ova. J. Fish. Res, 33(4), 995-1000. https://doi.org/10.1139/f76-126
Houlbrèque, F., Tambutté, E., Allemand, D., & Ferrier-Pagès, C. (2004). Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J. Exp. Biol., 207(9), 1461-1469. https://doi.org/10.1242/jeb.00911
Howells, E. J., Hagedorn, M., Van Oppen, M. J. H., & Burt, J. A. (2022). Challenges of sperm cryopreservation in transferring heat adaptation of corals across ocean basins. PeerJ, 10, e13395. https://doi.org/10.7717/peerj.13395
Hu, E., Yang, H., & Tiersch, T. R. (2011). High-throughput cryopreservation of spermatozoa of blue catfish (Ictalurus furcatus): Establishment of an approach for commercial-scale processing. Cryobiology, 62(1), 74-82. https://doi.org/10.1016/j.cryobiol.2010.12.006
Hu, M., Zheng, X., Fan, C. M., & Zheng, Y. (2020). Lineage dynamics of the endosymbiotic cell type in the soft coral Xenia. Nature, 582(7813), 534-538. https://doi.org/10.1038/s41586-020-2385-7
Hughes, D. J., Alderdice, R., Cooney, C., Kühl, M., Pernice, M., Voolstra, C. R., & Suggett, D. J. (2020). Coral reef survival under accelerating ocean deoxygenation. Nat. Clim. Chang, 10(4), 296-307. https://doi.org/10.1038/s41558-020-0737-9
Hughes, T. P., & Tanner, J. E. (2000). Recruitment failure, life histories, and long‐term decline of Caribbean corals. Ecology, 81(8), 2250-2263. https://doi.org/10.1890/0012-9658(2000)081[2250:RFLHAL]2.0.CO;2
Hughes, T. P., Anderson, K. D., Connolly, S. R., Heron, S. F., Kerry, J. T., Lough, J. M., Baird, A. H., Baum, J. K., Berumen, M. L., Bridge, T. C., Claar, D. C., Eakin, C. M., Gilmour, J. P., Graham, N. A. J., Harrison, H., Hobbs, J. A., Hoey, A. S., Hoogenboom, M., Lowe, R. J., & Wilson, S. K. (2018). Spatial and temporal patterns of mass bleaching of corals in the Anthropocene. Science, 359(6371), 80-83. https://doi.org/10.1126/science.aan8048
Hughes, T. P., Barnes, M. L., Bellwood, D. R., Cinner, J. E., Cumming, G. S., Jackson, J. B. C., Kleypas, J., van de Leemput, I. A., Lough, J. M., Morrison, T. H., Palumbi, S. R., van Nes, E. H., & Scheffer, M. (2017). Coral reefs in the Anthropocene. Nature, 546(7656), 82-90. https://doi.org/10.1038/nature22901
Hughes, T. P., Graham, N. A., Jackson, J. B., Mumby, P. J., & Steneck, R. S. (2010). Rising to the challenge of sustaining coral reef resilience. Trends. Ecol. Evol, 25(11), 633-642. https://doi.org/10.1016/j.tree.2010.07.011
Hyman, L. H. (1940). Observations and experiments on the physiology of medusae. Biol. Bull, 79(2), 282-296. https://doi.org/10.2307/1537823
Inoue, M., Gussone, N., Koga, Y., Iwase, A., Suzuki, A., Sakai, K., & Kawahata, H. (2015). Controlling factors of Ca isotope fractionation in scleractinian corals evaluated by temperature, pH and light controlled culture experiments. Geochim. Cosmochim. Acta, 167, 80-92. https://doi.org/10.1016/j.gca.2015.06.009
Inoue, M., Shinmen, K., Kawahata, H., Nakamura, T., Tanaka, Y., Kato, A., Shinzato, C., Iguchi, A., Kan, H., & Suzuki, A. (2012). Estimate of calcification responses to thermal and freshening stresses based on culture experiments with symbiotic and aposymbiotic primary polyps of a coral, Acropora digitifera. Global and Planetary Change, 92, 1-7. https://doi.org/10.1016/j.gloplacha.2012.05.001
Islam, A., Mondal, S., Bhowmik, S., Islam, S., & Begum, M. (2017). A comparative analysis of the proximate composition of wild and cultured prawn (Macrobrachium rosenbergii) and shrimp (Penaeus monodon). Int. J. Fish Aquat, 5(4), 59-62.
Jahangiri, L., Shinn, A. P., Pratoomyot, J., & Bastos Gomes, G. (2021). Unveiling associations between ciliate parasites and bacterial microbiomes under warm‐water fish farm conditions–a review. Rev. Aquac, 13(2), 1097-1118. https://doi.org/10.1111/raq.12514
Janik, M., Kleinhans, F., & Hagedorn, M. (2000). Overcoming a permeability barrier by microinjecting cryoprotectants into zebrafish embryos (Brachydanio rerio). Cryobiology, 41(1), 25-34. https://doi.org/10.1006/cryo.2000.2261
Jenal, U. (2000). Signal transduction mechanisms in Caulobacter crescentus development and cell cycle control. FEMS Microbiol. Rev, 24(2), 177-191. https://doi.org/10.1016/S0168-6445(99)00035-2
Jiang, P. L., Pasaribu, B., & Chen, C. S. (2014). Nitrogen-deprivation elevates lipid levels in Symbiodinium spp. by lipid droplet accumulation: morphological and compositional analyses. PloS one, 9(1), e87416, 1-10. https://doi.org/10.1371/journal.pone.0087416
Jokiel, P. L., & Coles, S. (1977). Effects of temperature on the mortality and growth of Hawaiian reef corals. Mar. Biol, 43(3), 201-208. https://doi.org/10.1007/BF00402312
Jones, C. H., Chen, C. K., Ravikrishnan, A., Rane, S., & Pfeifer, B. A. (2013). Overcoming nonviral gene delivery barriers: perspective and future. Mol. Pharm, 10(11), 4082-4098. https://doi.org/10.1021/mp400467x
Jones, R. J., Ward, S., Amri, A. Y., & Hoegh-Guldberg, O. (2000). Changes in quantum efficiency of Photosystem II of symbiotic dinoflagellates of corals after heat stress, and of bleached corals sampled after the 1998 Great Barrier Reef mass bleaching event. Mar. Freshw. Res, 51(1), 63-71. https://doi.org/10.1071/MF99100
Jouiaei, M., Yanagihara, A. A., Madio, B., Nevalainen, T. J., Alewood, P. F., & Fry, B. G. (2015). Ancient Venom Systems: A Review on Cnidaria Toxins. Toxins (Basel), 7(6), 2251-2271. https://doi.org/10.3390/toxins7062251
Kaczmarsky, L. T. (2006). Coral disease dynamics in the central Philippines. Dis. Aquat. Organ, 69(1), 9-21. https://doi.org/10.3354/dao069009
Kaniewska, P., Campbell, P. R., Fine, M., & Hoegh-Guldberg, O. (2009). Phototropic growth in a reef flat acroporid branching coral species. J. Exp. Biol, 212(Pt 5), 662-667. https://doi.org/10.1242/jeb.022624
Karl, D., & Holm-Hansen, O. (1976). Effects of luciferin concentration of the quantitative assay of ATP using crude luciferase preparations. Anal. biochem, 75(1), 100-112. https://doi.org/10.1016/0003-2697(76)90060-9
Kasonga, T. K., Coetzee, M. A., Kamika, I., Ngole-Jeme, V. M., & Momba, M. N. B. (2021). Endocrine-disruptive chemicals as contaminants of emerging concern in wastewater and surface water: A review. J. Environ. Manage, 277, 1-10, 111485. https://doi.org/10.1016/j.jenvman.2020.111485
Kawamura, K., Nishitsuji, K., Shoguchi, E., Fujiwara, S., & Satoh, N. (2021). Establishing Sustainable Cell Lines of a Coral, Acropora tenuis. Mar. Biotechnol (NY), 23(3), 373-388. https://doi.org/10.1007/s10126-021-10031-w
Ke, C. L., Gu, Y. G., Liu, Q., Li, L. D., Huang, H. H., Cai, N., & Sun, Z. W. (2017). Polycyclic aromatic hydrocarbons (PAHs) in wild marine organisms from South China Sea: Occurrence, sources, and human health implications. Mar. Pollut. Bull, 117(1-2), 507-511. https://doi.org/10.1016/j.marpolbul.2017.02.018
Kerr, J. F., Wyllie, A. H., & Currie, A. R. (1972). Apoptosis: a basic biological phenomenon with wider ranging implications in tissue kinetics. Br. J. Cancer., 26(4), 239-257. https://doi.org/10.1038/bjc.1972.33
Keshavmurthy, S., Kuo, C.-Y., Huang, Y.-Y., Carballo-Bolaños, R., Meng, P.-J., Wang, J.-T., & Chen, C. A. (2019). Coral reef resilience in Taiwan: Lessons from long-term ecological research on the coral reefs of Kenting National Park (Taiwan). J. Mar. Sci. Eng, 7(11), 388. https://doi.org/10.3390/jmse7110388
Khalesi, M. K., Vera-Jimenez, N. I., Aanen, D. K., Beeftink, H. H., & Wijffels, R. H. (2008). Cell cultures from the symbiotic soft coral Sinularia flexibilis. In. Vitro. Cell. Dev. Biol. Anim, 44(8-9), 330-338. https://doi.org/10.1007/s11626-008-9128-7
Kihika, J. K., Wood, S. A., Rhodes, L., Smith, K. F., Thompson, L., Challenger, S., & Ryan, K. G. (2022). Cryoprotectant treatment tests on three morphologically diverse marine dinoflagellates and the cryopreservation of Breviolum sp. (Symbiodiniaceae). Sci. Rep, 12(1), 646. https://doi.org/10.1038/s41598-021-04227-2
Kinzie, R., Jokiel, P., & York, R. (1984). Effects of light of altered spectral composition on coral zooxanthellae associations and on zooxanthellae in vitro. Mar. Biol, 78(3), 239-248. https://doi.org/10.1007/BF00393009
Klepac, C. N., Beal, J., Kenkel, C. D., Sproles, A., Polinski, J. M., Williams, M. A., Matz, M. V., & Voss, J. D. (2015). Seasonal stability of coral-Symbiodinium associations in the subtropical coral habitat of St. Lucie Reef, Florida. Mar. Ecol. Prog. Ser, 532, 137-151. https://doi.org/10.3354/meps11369
Koepfli, K. P., Paten, B., Genome, K. C. o. S., & O'Brien, S. J. (2015). The Genome 10K Project: a way forward. Annu. Rev. Anim. Biosci, 3(1), 57-111. https://doi.org/10.1146/annurev-animal-090414-014900
Kohrman, A. Q., & Matus, D. Q. (2017). Divide or Conquer: Cell Cycle Regulation of Invasive Behavior. Trends. Cell. Biol, 27(1), 12-25. https://doi.org/10.1016/j.tcb.2016.08.003
Kojis, B. L., & Quinn, N. J. (1984). Seasonal and depth variation in fecundity of Acropora palifera at two reefs in Papua New Guinea. Coral Reefs, 3(3), 165-172.
Kopecky, E. J., & Ostrander, G. K. (1999). Isolation and primary culture of viable multicellular endothelial isolates from hard corals. In Vitro Cell Dev Biol Anim, 35(10), 616-624. https://doi.org/10.1007/s11626-999-0101-x
Kopp, C., Pernice, M., Domart-Coulon, I., Djediat, C., Spangenberg, J. E., Alexander, D. T., Hignette, M., Meziane, T., & Meibom, A. (2013). Highly dynamic cellular-level response of symbiotic coral to a sudden increase in environmental nitrogen. mBio, 4(3), e00052-00013. https://doi.org/10.1128/mBio.00052-13
Kramarsky-Winter, E., & Loya, Y. (2000). Tissue regeneration in the coral Fungia granulosa: the effect of extrinsic and intrinsic factors. Mar. Biol, 137(5), 867-873.
Kruse, J. A. (2012). Methanol and ethylene glycol intoxication. Crit. Care Clin, 28(4), 661-711. https://doi.org/10.1016/j.ccc.2012.07.002
Kuwayama, M. (2007). Highly efficient vitrification for cryopreservation of human oocytes and embryos: the Cryotop method. Theriogenology, 67(1), 73-80. https://doi.org/10.1016/j.theriogenology.2006.09.014
Labbé, C., Robles, V., & Herraez, M. (2013). Cryopreservation of gametes for aquaculture and alternative cell sources for genome preservation. In Advances in aquaculture hatchery technology (pp. 76-116). Elsevier.
Lahnsteiner, F., & Patzner, R. (2008). Sperm morphology and ultrastructure in fish. In Fish Spermatology (eds.: SMH Alavi, J. Cosson, K. Coward, G. Rafiee. Alpha Science International Ltd. Oxford, UK (pp. 1-61). Alpha Science International Ltd.
Lane, M., Bavister, B. D., Lyons, E. A., & Forest, K. T. (1999). Containerless vitrification of mammalian oocytes and embryos. Nat. Biotechnol, 17(12), 1234-1236. https://doi.org/10.1038/70795
Lannan, J. E. (1971). Experimental Self-Fertilization of the Pacific Oyster, CRASSOSTREA GIGAS, Utilizing Cryopreserved Sperm. Genetics, 68(4), 599-601. https://doi.org/10.1093/genetics/68.4.599
Larson, M. A. (2020). Transgenic Mouse (pp. 195-209). Springer Protocols.
Le Marrec-Croq, F., Fritayre, P., Chesné, C., Guillouzo, A., & Dorange, G. (1998). Cryopreservation of Pecten maximus Heart Cells. Cryobiology, 37(3), 200-206. https://doi.org/10.1006/cryo.1998.2113
Le Pennec, G., & Le Pennec, M. (2001). Acinar primary cell culture from the digestive gland of Pecten maximus (L.): an original model for ecotoxicological purposes. J. Exp. Mar. Biol. Ecol, 259(2), 171-187. https://doi.org/10.1016/s0022-0981(01)00232-5
Le Roy, N., Ganot, P., Aranda, M., Allemand, D., & Tambutte, S. (2021). The skeletome of the red coral Corallium rubrum indicates an independent evolution of biomineralization process in octocorals. BMC Ecol. Evol, 21(1), 1. https://doi.org/10.1186/s12862-020-01734-0
Lebata-Ramos, M. J. H. L., Dionela, C. S., Novilla, S. R. M., Sibonga, R. C., Solis, E. F. D., & Mediavilla, J. P. (2021). Growth and survival of oyster Crassostrea iredalei (Faustino, 1932): A comparison of wild and hatchery-bred spat in grow-out culture. Aquaculture, 534, 1-9, 736310. https://doi.org/10.1016/j.aquaculture.2020.736310
Lecointe, A., Cohen, S., Gèze, M., Djediat, C., Meibom, A., & Domart-Coulon, I. (2013). Scleractinian coral cell proliferation is reduced in primary culture of suspended multicellular aggregates compared to polyps. Cytotechnology, 65(5), 705-724. https://doi.org/10.1007/s10616-013-9562-6
Lee, K. (2001). Can cloning save endangered species? Curr. Biol, 11(7), R245-R246. https://doi.org/10.1016/S0960-9822(01)00126-9
Leon-Quinto, T., Simon, M. A., Cadenas, R., Jones, J., Martinez-Hernandez, F. J., Moreno, J. M., Vargas, A., Martinez, F., & Soria, B. (2009). Developing biological resource banks as a supporting tool for wildlife reproduction and conservation: the Iberian lynx bank as a model for other endangered species. Anim. Reprod. Sci, 112(3-4), 347-361. https://doi.org/10.1016/j.anireprosci.2008.05.070
Lesser, M. P., & Farrell, J. H. (2004). Exposure to solar radiation increases damage to both host tissues and algal symbionts of corals during thermal stress. Coral Reefs, 23(3), 367-377. https://doi.org/10.1007/s00338-004-0392-z
Lesser, M. P., Slattery, M., Stat, M., Ojimi, M., Gates, R. D., & Grottoli, A. (2010). Photoacclimatization by the coral Montastraea cavernosa in the mesophotic zone: light, food, and genetics. Ecology, 91(4), 990-1003. https://doi.org/10.1890/09-0313.1
Levy, O., Achituv, Y., Yacobi, Y., Stambler, N., & Dubinsky, Z. (2006). The impact of spectral composition and light periodicity on the activity of two antioxidant enzymes (SOD and CAT) in the coral Favia favus. J. Exp. Mar. Biol. Ecol, 328(1), 35-46. https://doi.org/10.1016/j.jembe.2005.06.018
Levy, S., Elek, A., Grau-Bove, X., Menendez-Bravo, S., Iglesias, M., Tanay, A., Mass, T., & Sebe-Pedros, A. (2021). A stony coral cell atlas illuminates the molecular and cellular basis of coral symbiosis, calcification, and immunity. Cell, 184(11), 2973-2987, e2918. https://doi.org/10.1016/j.cell.2021.04.005
Lewis, B., Suggett, D., Prentis, P., & Nothdurft, L. (2021). Revealing the systematic nature of coral attachment to reef substrates. Sci. Rep, 1-28. https://doi.org/10.21203/rs.3.rs-957311/v1
Li, H. H., Lu, J. L., Lo, H. E., Tsai, S., & Lin, C. (2021). Effect of Cryopreservation on Proteins from the Ubiquitous Marine Dinoflagellate Breviolum sp. (Family Symbiodiniaceae). Plants (Basel), 10(8), 1731. https://doi.org/10.3390/plants10081731
Lin, C. C., Li, H. H., Tsai, S., & Lin, C. (2021). Tissue Cryopreservation and Cryobanking: Establishment of a Cryogenic Resource for Coral Reefs. Biopreserv. Biobank. 00(00), 1-7. https://doi.org/10.1089/bio.2021.0089
Lin, C., & Tsai, S. (2012). The effect of chilling and cryoprotectants on hard coral (Echinopora spp.) oocytes during short-term low temperature preservation. Theriogenology, 77(6), 1257-1261. https://doi.org/10.1016/j.theriogenology.2011.09.021
Lin, C., & Tsai, S. (2020). Fifteen years of coral cryopreservation. Platax, 2020, 53-75. https://doi.org/10.29926/platax.202012_17.0004
Lin, C., Spikings, E., Zhang, T., & Rawson, D. M. (2009). Effect of chilling and cryopreservation on expression of Pax genes in zebrafish (Danio rerio) embryos and blastomeres. Cryobiology, 59(1), 42-47. https://doi.org/10.1016/j.cryobiol.2009.04.007
Lin, C., Tsai, S., & Mayfield, A. B. (2019). Physiological differences between cultured and wild coral eggs. Biopreserv. Biobank, 17(4), 370-371. https://doi.org/10.1089/bio.2019.0045
Lin, C., Wang, L. H., Fan, T. Y., & Kuo, F. W. (2012). Lipid content and composition during the oocyte development of two gorgonian coral species in relation to low temperature preservation. PloS one, 7(7), e38689. https://doi.org/10.1371/journal.pone.0038689
Lin, C., Wang, L. H., Meng, P. J., Chen, C. S., & Tsai, S. (2013). Lipid content and composition of oocytes from five coral species: potential implications for future cryopreservation efforts. PloS one, 8(2), 1-6, e57823. https://doi.org/10.1371/journal.pone.0057823
Lin, C., Zhang, T., Kuo, F. W., & Tsai, S. (2011). Gorgonian coral (Junceella juncea and Junceella fragilis) oocyte chilling sensitivity in the context of adenosine triphosphate response (ATP). Cryo Letters, 32(2), 141-147. https://www.ncbi.nlm.nih.gov/pubmed/21766143
Lin, C., Zhuo, J. M., Chong, G., Wang, L. H., Meng, P. J., & Tsai, S. (2018). The effects of aquarium culture on coral oocyte ultrastructure. Sci. Rep, 8(1), 15159. https://doi.org/10.1038/s41598-018-33341-x
Lirman, D., & Schopmeyer, S. (2016). Ecological solutions to reef degradation: optimizing coral reef restoration in the Caribbean and Western Atlantic. PeerJ, 4, e2597, 1-19. https://doi.org/10.7717/peerj.2597
Lubzens, E., Zmora, O., & Barr, Y. (2001). Biotechnology and aquaculture of rotifers. Rotifera IX, 337-353. Springer.
Luna, G. M., Biavasco, F., & Danovaro, R. (2007). Bacteria associated with the rapid tissue necrosis of stony corals. Environ. Microbiol, 9(7), 1851-1857. https://doi.org/10.1111/j.1462-2920.2007.01287.x
Luo, Y.-J. (2007). Lipid bodies in the marine endosymbiosis. Master's thesis, National Dong Hwa University, Hualien, Taiwan. 1-188. Retrieved from http://etd.ndhu.edu.tw/cgi-bin/gs32/gsweb.cgi?o=dstdcdr&s=id=%22G00A939148A%22.&searchmode=basic.
Marcelino, L. A., Westneat, M. W., Stoyneva, V., Henss, J., Rogers, J. D., Radosevich, A., Turzhitsky, V., Siple, M., Fang, A., Swain, T. D., Fung, J., & Backman, V. (2013). Modulation of light-enhancement to symbiotic algae by light-scattering in corals and evolutionary trends in bleaching. PloS one, 8(4), e61492. https://doi.org/10.1371/journal.pone.0061492
Marsden, G., Richardson, N., Mather, P., & Knibb, W. (2013). Reproductive behavioural differences between wild-caught and pond-reared Penaeus monodon prawn broodstock. Aquaculture, 402, 141-145. https://doi.org/10.1016/j.aquaculture.2013.03.019
Martinez-Paramo, S., Horvath, A., Labbe, C., Zhang, T., Robles, V., Herraez, P., Suquet, M., Adams, S., Viveiros, A., Tiersch, T. R., & Cabrita, E. (2017). Cryobanking of aquatic species. Aquaculture, 472, 156-177. https://doi.org/10.1016/j.aquaculture.2016.05.042
Mass, T., Drake, J. L., Haramaty, L., Rosenthal, Y., Schofield, O. M., Sherrell, R. M., & Falkowski, P. G. (2012). Aragonite precipitation by "proto-polyps" in coral cell cultures. PloS one, 7(4), e35049. https://doi.org/10.1371/journal.pone.0035049
Mayfield, A. B., Tsai, S., & Lin, C. (2019). The Coral Hospital. Biopreserv. Biobank, 17(4), 355-369. https://doi.org/10.1089/bio.2018.0137
McCook, L. J., Ayling, T., Cappo, M., Choat, J. H., Evans, R. D., De Freitas, D. M., Heupel, M., Hughes, T. P., Jones, G. P., Mapstone, B., Marsh, H., Mills, M., Molloy, F. J., Pitcher, C. R., Pressey, R. L., Russ, G. R., Sutton, S., Sweatman, H., Tobin, R., & Williamson, D. H. (2010). Adaptive management of the Great Barrier Reef: a globally significant demonstration of the benefits of networks of marine reserves. Proc. Natl. Acad. Sci. U. S. A, 107(43), 18278-18285. https://doi.org/10.1073/pnas.0909335107
McCook, L., Almany, G., Berumen, M., Day, J., Green, A., Jones, G., Leis, J., Planes, S., Russ, G., & Sale, P. (2009). Management under uncertainty: guide-lines for incorporating connectivity into the protection of coral reefs. Coral Reefs, 28(2), 353-366. https://doi.org/10.1007/s00338-008-0463-7
McLachlan, J. A. (2001). Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr. Rev, 22(3), 319-341. https://doi.org/10.1210/edrv.22.3.0432
Mearns, A. J., Reish, D. J., Oshida, P. S., Ginn, T., Rempel-Hester, M. A., Arthur, C., Rutherford, N., & Pryor, R. (2015). Effects of Pollution on Marine Organisms. Water Environ. Res, 87(10), 1718-1816. https://doi.org/10.2175/106143015X14338845156380
Meesters, E. H., Pauchli, W., & Bak, R. P. (1997). Predicting regeneration of physical damage on a reef-building coral by regeneration capacity and lesion shape. Mar. Ecol. Prog. Ser, 146, 91-99. https://doi.org/10.3354/meps146091
Meng, P. J., Lee, H. J., Wang, J. T., Chen, C. C., Lin, H. J., Tew, K. S., & Hsieh, W. J. (2008). A long-term survey on anthropogenic impacts to the water quality of coral reefs, southern Taiwan. Environ. Pollut, 156(1), 67-75. https://doi.org/10.1016/j.envpol.2007.12.039
Meyer, J. L., Castellanos-Gell, J., Aeby, G. S., Hase, C. C., Ushijima, B., & Paul, V. J. (2019). Microbial Community Shifts Associated With the Ongoing Stony Coral Tissue Loss Disease Outbreak on the Florida Reef Tract. Front. Microbiol, 10, 1-12, 2244. https://doi.org/10.3389/fmicb.2019.02244
Miller, M. W., Latijnhouwers, K. R., Bickel, A., Mendoza‐Quiroz, S., Schick, M., Burton, K., & Banaszak, A. T. (2022). Settlement yields in large‐scale in situ culture of Caribbean coral larvae for restoration. Restor. Ecol, 30(3), 1-10, e13512. https://doi.org/10.1111/rec.13512
Miller, M. W., Lohr, K. E., Cameron, C. M., Williams, D. E., & Peters, E. C. (2014). Disease dynamics and potential mitigation among restored and wild staghorn coral, Acropora cervicornis. PeerJ, 2, 1-30, e541. https://doi.org/10.7717/peerj.541
Mohammed, R., Seliem, M. A. E., Mohammed, T., Abed-ElFatah, A., Abo-Youssef, A., & Thabet, M. (2011). Bioactive secondary metabolites from the Red Sea soft coral Heteroxenia fuscescens. Int. J. Appl. Res, 4(4), 15-27.
Morgan, K. M., Moynihan, M. A., Sanwlani, N., & Switzer, A. D. (2020). Light limitation and depth-variable sedimentation drives vertical reef compression on turbid coral reefs. Front. Mar. Sci, 931, 1-13. https://doi.org/10.3389/fmars.2020.571
Mortimer, D. (2004). Current and future concepts and practices in human sperm cryobanking. Reprod Biomed Online, 9(2), 134-151. https://doi.org/10.1016/s1472-6483(10)62123-2
Moynihan, M. A., Amini, S., Goodkin, N. F., Tanzil, J. T., Chua, J., Fabbro, G. N., Fan, T.-Y., Schmidt, D. N., & Miserez, A. (2021). Environmental impact on the mechanical properties of Porites spp. corals. Coral Reefs, 40(3), 701-717. https://doi.org/10.1007/s00338-021-02064-3
Moynihan, M. A., Amini, S., Goodkin, N. F., Tanzil, J. T., Chua, J., Fabbro, G. N., Fan, T.-Y., Schmidt, D. N., & Miserez, A. (2021). Environmental impact on the mechanical properties of Porites spp. corals. Coral Reefs, 40(3), 701-717. https://doi.org/10.1007/s00338-021-02064-3
Muko, S., Kawasaki, K., Sakai, K., Takasu, F., & Shigesada, N. (2000). Morphological plasticity in the coral Porites sillimaniani and its adaptive significance. Bull. Mar. Sci, 66(1), 225-239.
Muller-Parker, G., McCloskey, L. R., Hoegh-Guldberg, O., & McAuley, P. (1994). Effect of ammonium enrichment on animal and algal biomass of the coral Pocillopora damicornis. Pac. Sci, 48(3), 273-283. https://www.researchgate.net/publication/29737476
Mumby, P. J. (2006). Connectivity of reef fish between mangroves and coral reefs: algorithms for the design of marine reserves at seascape scales. Biol. Conserv, 128(2), 215-222. https://doi.org/10.1016/j.biocon.2005.09.042
Mumby, P. J., Chisholm, J. R., Clark, C. D., Hedley, J. D., & Jaubert, J. (2001). Spectrographic imaging. A bird's-eye view of the health of coral reefs. Nature, 413(6851), 36. https://doi.org/10.1038/35092617
Munday, P., Leis, J., Lough, J., Paris, C., Kingsford, M., Berumen, M., & Lambrechts, J. (2009). Climate change and coral reef connectivity. Coral Reefs, 28(2), 379-395.
Muscatine, L. (1990). The role of symbiotic algae in carbon and energy flux in reef corals. Ecosystems of the World, Vol 25 (pp. 75-87). Elsevier Science Publishing Company.
Muscatine, L., Tambutte, E., & Allemand, D. (1997). Morphology of coral desmocytes, cells that anchor the calicoblastic epithelium to the skeleton. Coral Reefs, 16(4), 205-213. https://doi.org/10.1007/s003380050075
Nagelkerken, I., Meesters, E., & Bak, R. (1999). Depth-related variation in regeneration of artificial lesions in the Caribbean corals Porites astreoides and Stephanocoenia michelinii. J. Exp. Mar. Biol. Ecol, 234(1), 29-39. https://doi.org/10.1016/S0022-0981(98)00147-6
Nakanishi, K., Deuchi, K., & Kuwano, K. (2012). Cryopreservation of four valuable strains of microalgae, including viability and characteristics during 15 years of cryostorage. J. Appl. Phycol, 24(6), 1381-1385. https://doi.org/10.1007/s10811-012-9790-8
Narida, A., Tsai, S., Huang, C. Y., Wen, Z. H., & Lin, C. (2022). The Effects of Cryopreservation on the Cell Ultrastructure in Aquatic Organisms. Biopreserv. Biobank. https://doi.org/10.1089/bio.2021.0132
Nesa, B., & Hidaka, M. (2009). High zooxanthella density shortens the survival time of coral cell aggregates under thermal stress. J. Exp. Mar. Biol. Ecol, 368(1), 81-87.
Nielsen, D. A., Petrou, K., & Gates, R. D. (2018). Coral bleaching from a single cell perspective. ISME J, 12(6), 1558-1567. https://doi.org/10.1038/s41396-018-0080-6
Niyogi, K. K. (1999). PHOTOPROTECTION REVISITED: Genetic and Molecular Approaches. Annu. Rev. Plant. Physiol. Plant. Mol. Biol, 50(1), 333-359. https://doi.org/10.1146/annurev.arplant.50.1.333
Nowotny, J. D., Connelly, M. T., & Traylor-Knowles, N. (2021). Novel methods to establish whole-body primary cell cultures for the cnidarians Nematostella vectensis and Pocillopora damicornis. Sci. Rep, 11(1), 1-9. https://doi.org/10.1038/s41598-021-83549-7
Odintsova, N., & Boroda, A. (2012). Cryopreservation of the cells and larvae of marine organisms. Russ. J. Mar. Biol, 38(2), 101-111. https://doi.org/10.1134/S1063074012020083
Ohki, S., Morita, M., Kitanobo, S., Kowalska, A. A., & Kowalski, R. K. (2014). Cryopreservation of Acropora digitifera sperm with use of sucrose and methanol based solution. Cryobiology, 69(1), 134-139. https://doi.org/10.1016/j.cryobiol.2014.06.005
Oku, H., Yamashiro, H., Onaga, K., Iwasaki, H., & Takara, K. (2002). Lipid distribution in branching coral Montipora digitata. Fish. sci, 68(3), 517-522. https://doi.org/10.1046/j.1444-2906.2002.00456.x
Okubo, N., Yamamoto, H. H., Nakaya, F., & Okaji, K. (2010). Reproduction in cultured versus wild coral colonies: fertilization, larval oxygen consumption, and survival. Biol. Bull, 218(3), 230-236. https://doi.org/10.1086/BBLv218n3p230
Olsen, Y., Otterstad, O., & Duarte, C. M. (2008). Status and future perspectives of marine aquaculture. Aquac. Environ. Interact, 293-319. https://doi.org/10.1007/978-1-4020-6810-2_10
Omata, T., Suzuki, A., Sato, T., Minoshima, K., Nomaru, E., Murakami, A., Murayama, S., Kawahata, H., & Maruyama, T. (2008). Effect of photosynthetic light dosage on carbon isotope composition in the coral skeleton: Long‐term culture of Porites spp. J. Geophys. Res. Biogeosci, 113(G2), 1-15. https://doi.org/10.1029/2007JG000431
Oren, U., Rinkevich, B., & Loya, Y. (1997). Oriented intra-colonial transport of 14C labeled materials during coral regeneration. Mar. Ecol. Prog. Ser, 161, 117-122. https://doi.org/10.3354/meps161117
Osinga, R., Janssen, M., & Janse, M. (2008). The role of light in coral physiology and its implications for coral husbandry. Adv. Coral Husb. Public Aquar, 2, 173-183.
Östman, C., Kultima, J. R., Roat, C., & Rundblom, K. (2010). Acontia and mesentery nematocysts of the sea anemone Metridium senile (Linnaeus, 1761)(Cnidaria: Anthozoa). Sci. Mar, 74(3), 483-497. https://doi.org/10.3989/scimar.2010.74n3483
Palmer, C. V. (2018). Immunity and the coral crisis. Commun. Biol, 1(1), 91. https://doi.org/10.1038/s42003-018-0097-4
Paredes, E. (2015). Exploring the evolution of marine invertebrate cryopreservation–Landmarks, state of the art and future lines of research. Cryobiology, 71(2), 198-209. https://doi.org/10.1016/j.cryobiol.2015.08.011
Paredes, E., Heres, P., Anjos, C., & Cabrita, E. (2021). Cryopreservation of marine invertebrates: From sperm to complex larval stages. In Cryopreservation and Freeze-Drying Protocols (pp. 413-425). Springer.
Park, N. C. (2018). Sperm Bank: From Laboratory to Patient. World J. Mens Health, 36(2), 89-91. https://doi.org/10.5534/wjmh.182002
Peters, E. C. (2016). Diseases of coral reef organisms. In coral reefs in the Anthropocene (pp. 147-178): Springer. doi: 10.1007/978-94-017-7249-5_8
Pousis, C., De Giorgi, C., Mylonas, C. C., Bridges, C. R., Zupa, R., Vassallo-Agius, R., de la Gandara, F., Dileo, C., De Metrio, G., & Corriero, A. (2011). Comparative study of liver vitellogenin gene expression and oocyte yolk accumulation in wild and captive Atlantic bluefin tuna (Thunnus thynnus L.). Anim Reprod Sci, 123(1-2), 98-105. https://doi.org/10.1016/j.anireprosci.2010.10.005
Quigley, K. M., Marzonie, M., Ramsby, B., Abrego, D., Milton, G., Van Oppen, M. J., & Bay, L. K. (2021). Variability in fitness trade-offs amongst coral juveniles with mixed genetic backgrounds held in the wild. Front. Mar. Sci, 8, 161, 1-12. https://doi.org/10.3389/fmars.2021.6361
Qureshi, A. A., & Patel, J. (1976). Adenosine Triphosphate(ATP) Levels in Microbial Cultures and a Review of the ATP Biomass Estimation Technique (pp. 1-33). Inland Waters Directorate, Canada Centre for Inland Waters. https://publications.gc.ca/pub?id=9.848291&sl=0
Radecker, N., Pogoreutz, C., Gegner, H. M., Cardenas, A., Perna, G., Geissler, L., Roth, F., Bougoure, J., Guagliardo, P., Struck, U., Wild, C., Pernice, M., Raina, J. B., Meibom, A., & Voolstra, C. R. (2022). Heat stress reduces the contribution of diazotrophs to coral holobiont nitrogen cycling. ISME J, 16(4), 1110-1118. https://doi.org/10.1038/s41396-021-01158-8
Reece, J. B., Urry, L. A., Cain, M. L., Wasserman, S. A., & Minorsky, P. V. (2020). Campbell biology (pp.1-1485). Pearson Education, Inc.
Reyes-Bermudez, A., & Miller, D. (2009). In vitro culture of cells derived from larvae of the staghorn coral Acropora millepora. Coral Reefs, 28(4), 859-864. https://doi.org/10.1007/s00338-009-0527-3
Ribas-Deulofeu, L., Denis, V., Chateau, P. A., & Chen, C. A. (2021). Impacts of heat stress and storm events on the benthic communities of Kenting National Park (Taiwan). PeerJ, 9, e11744, 1-31. https://doi.org/10.7717/peerj.11744
Ritchie, K. B. (2006). Regulation of microbial populations by coral surface mucus and mucus-associated bacteria. Mar. Ecol. Prog. Ser, 322, 1-14. https://doi.org/10.3354/meps322001
Robles, V., Cabrita, E., Anel, L., & Herráez, M. (2006). Microinjection of the antifreeze protein type III (AFPIII) in turbot (Scophthalmus maximus) embryos: toxicity and protein distribution. Aquaculture, 261(4), 1299-1306. https://doi.org/10.1016/j.aquaculture.2006.07.047
Rocha, A. C., Camacho, C., Eljarrat, E., Peris, A., Aminot, Y., Readman, J. W., Boti, V., Nannou, C., Marques, A., Nunes, M. L., & Almeida, C. M. (2018). Bioaccumulation of persistent and emerging pollutants in wild sea urchin Paracentrotus lividus. Environ Res, 161, 354-363. https://doi.org/10.1016/j.envres.2017.11.029
Roger, L. M., Reich, H. G., Lawrence, E., Li, S., Vizgaudis, W., Brenner, N., Kumar, L., Klein-Seetharaman, J., Yang, J., Putnam, H. M., & Lewinski, N. A. (2021). Applying model approaches in non-model systems: A review and case study on coral cell culture. PloS one, 16(4), e0248953. https://doi.org/10.1371/journal.pone.0248953
Rohwer, F., Breitbart, M., Jara, J., Azam, F., & Knowlton, N. (2001). Diversity of bacteria associated with the Caribbean coral Montastraea franksi. Coral Reefs, 20(1), 85-91. https://doi.org/10.1007/s003380100138
Rohwer, F., Seguritan, V., Azam, F., & Knowlton, N. (2002). Diversity and distribution of coral-associated bacteria. Mar. Ecol. Prog. Ser, 243, 1-10. https://doi.org/10.3354/meps243001
Rosental, B., Kozhekbaeva, Z., Fernhoff, N., Tsai, J. M., & Traylor-Knowles, N. (2017). Coral cell separation and isolation by fluorescence-activated cell sorting (FACS). BMC Cell Biol, 18(1), 30. https://doi.org/10.1186/s12860-017-0146-8
Roth, M. S. (2014). The engine of the reef: photobiology of the coral-algal symbiosis. Front. Microbiol, 5, 422, 1-22. https://doi.org/10.3389/fmicb.2014.00422
Routray, P., Suzuki, T., Strussmann, C. A., & Takai, R. (2002). Factors affecting the uptake of DMSO by the eggs and embryos of medaka, Oryzias latipes. Theriogenology, 58(8), 1483-1496. https://doi.org/10.1016/s0093-691x(02)01076-2
Roy, P., & Lall, S. (2006). Mineral nutrition of haddock Melanogrammus aeglefinus (L.): a comparison of wild and cultured stock. J. Fish. Biol, 68(5), 1460-1472. https://doi.org/10.1111/j.0022-1112.2006.001031.x
Ryder, O. A., & Onuma, M. (2018). Viable Cell Culture Banking for Biodiversity Characterization and Conservation. Annu. Rev. Anim. Biosci, 6, 83-98. https://doi.org/10.1146/annurev-animal-030117-014556
Sahul Hameed, A. (1996). A comparative study of quality of eggs produced from wild and captive spawners of Penaeus indicus and their bacterial populations. Indian J. Fish, 43(4), 393-397. http://eprints.cmfri.org.in/id/eprint/245
Samuel, T., Weber, H. O., & Funk, J. O. (2002). Linking DNA damage to cell cycle checkpoints. Cell cycle, 1(3), 162-168. https://www.ncbi.nlm.nih.gov/pubmed/12429926
Saragusty, J., & Arav, A. (2011). Current progress in oocyte and embryo cryopreservation by slow freezing and vitrification. Reproduction, 141(1), 1-19. https://doi.org/10.1530/REP-10-0236
Sato, Y., Willis, B. L., & Bourne, D. G. (2010). Successional changes in bacterial communities during the development of black band disease on the reef coral, Montipora hispida. ISME J, 4(2), 203-214. https://doi.org/10.1038/ismej.2009.103
Scheufen, T., Iglesias-Prieto, R., & Enríquez, S. (2017). Changes in the number of symbionts and Symbiodinium cell pigmentation modulate differentially coral light absorption and photosynthetic performance. Front. Mar. Sci, 4, 309. https://doi.org/10.3389/fmars.2017.003
Schmidt, C. A., Daly, N. L., & Wilson, D. T. (2019). Coral venom toxins. Front. Ecol. Evol, 320, 1-7. https://doi.org/10.3389/fevo.2019.0032
Shao, K.-T., Peng, C.-I., Yen, E., Lai, K.-C., Wang, M.-C., Lin, J., Lee, H., Alan, Y., & Chen, S.-Y. (2007). Integration of biodiversity databases in Taiwan and linkage to global databases. Data Sci. J, 6, S2-S10. https://doi.org/10.2481/dsj.6.S2
Sharon, G., & Rosenberg, E. (2008). Bacterial growth on coral mucus. Curr. Microbiol, 56(5), 481-488. https://doi.org/10.1007/s00284-008-9100-5
Sheridan, C., Kramarsky-Winter, E., Sweet, M., Kushmaro, A., & Leal, M. C. (2013). Diseases in coral aquaculture: causes, implications and preventions. Aquaculture, 396, 124-135. https://doi.org/10.1016/j.aquaculture.2013.02.037
Shick, J. M., Lesser, M. P., & Jokiel, P. L. (1996). Effects of ultraviolet radiation on corals and other coral reef organisms. Glob. Chang. Biol, 2(6), 527-545. https://doi.org/10.1111/j.1365-2486.1996.tb00065.x
Shinzato, C., Shoguchi, E., Kawashima, T., Hamada, M., Hisata, K., Tanaka, M., Fujie, M., Fujiwara, M., Koyanagi, R., & Ikuta, T. (2011). Using the Acropora digitifera genome to understand coral responses to environmental change. Nature, 476(7360), 320-323. https://doi.org/10.1038/nature10249
Shlesinger, T., & Loya, Y. (2019). Breakdown in spawning synchrony: A silent threat to coral persistence. Science, 365(6457), 1002-1007. https://doi.org/10.1126/science.aax0110
Shoguchi, E., Shinzato, C., Kawashima, T., Gyoja, F., Mungpakdee, S., Koyanagi, R., Takeuchi, T., Hisata, K., Tanaka, M., Fujiwara, M., Hamada, M., Seidi, A., Fujie, M., Usami, T., Goto, H., Yamasaki, S., Arakaki, N., Suzuki, Y., Sugano, S., & Satoh, N. (2013). Draft assembly of the Symbiodinium minutum nuclear genome reveals dinoflagellate gene structure. Curr. Biol, 23(15), 1399-1408. https://doi.org/10.1016/j.cub.2013.05.062
Shu, Z., Hughes, S. M., Fang, C., Huang, J., Fu, B., Zhao, G., Fialkow, M., Lentz, G., Hladik, F., & Gao, D. (2016). A study of the osmotic characteristics, water permeability, and cryoprotectant permeability of human vaginal immune cells. Cryobiology, 72(2), 93-99. https://doi.org/10.1016/j.cryobiol.2016.03.003
Shulman, M. J. (1985). Recruitment of coral reef fishes: effects of distribution of predators and shelter. Ecology, 66(3), 1056-1066. https://doi.org/10.2307/1940565
Simon, C., Dumont, P., Cuende, F.-X., & Diter, A. (1994). Determination of suitable freezing media for cryopreservation of Penaeus indicus embryos. Cryobiology, 31(3), 245-253. https://doi.org/10.1006/cryo.1994.1030
Simske, J. S., Kaech, S. M., Harp, S. A., & Kim, S. K. (1996). LET-23 receptor localization by the cell junction protein LIN-7 during C. elegans vulval induction. Cell, 85(2), 195-204. https://doi.org/10.1016/s0092-8674(00)81096-x
Slagel, S., Lohr, K., O'Neil, K., & Patterson, J. (2021). Growth, calcification, and photobiology of the threatened coral Acropora cervicornis in natural versus artificial light. Zoo Biol, 40(3), 201-207. https://doi.org/10.1002/zoo.21589
Sleigh, M. A., Blake, J. R., & Liron, N. (1988). The propulsion of mucus by cilia. Am. Rev. Respir. Dis, 137(3), 726-741. https://doi.org/10.1164/ajrccm/137.3.726
Slobodkin, L. B., & Bossert, P. E. (2010). Cnidaria. In Ecology and classification of North American freshwater invertebrates (pp. 125-142). Elsevier.
Smith, G., & Muscatine, L. (1999). Cell cycle of symbiotic dinoflagellates: variation in G1 phase-duration with anemone nutritional status and macronutrient supply in the Aiptasia pulchella–Symbiodinium pulchrorum symbiosis. Mar. Biol, 134(3), 405-418. https://doi.org/10.1007/s002270050557
Song, Z., Hou, Y., Yang, Q., Li, X., & Wu, S. (2021). Structures and Biological Activities of Diketopiperazines from Marine Organisms: A Review. Mar. Drugs, 19(8), 403. https://doi.org/10.3390/md19080403
Spalding, M. D., & Brown, B. E. (2015). Warm-water coral reefs and climate change. Science, 350(6262), 769-771. https://doi.org/10.1126/science.aad0349
Steneck, R., Paris, C., Arnold, S., Ablan-Lagman, M., Alcala, A., Butler, M., McCook, L., Russ, G., & Sale, P. (2009). Thinking and managing outside the box: coalescing connectivity networks to build region-wide resilience in coral reef ecosystems. Coral Reefs, 28(2), 367-378. https://doi.org/10.1007/s00338-009-0470-3
Stoeckl, N., Hicks, C. C., Mills, M., Fabricius, K., Esparon, M., Kroon, F., Kaur, K., & Costanza, R. (2011). The economic value of ecosystem services in the Great Barrier Reef: our state of knowledge. Ann. N. Y. Acad. Sci, 1219(1), 113-133. https://doi.org/10.1111/j.1749-6632.2010.05892.x
Streit, R. P., Hoey, A. S., & Bellwood, D. R. (2015). Feeding characteristics reveal functional distinctions among browsing herbivorous fishes on coral reefs. Coral Reefs, 34(4), 1037-1047. https://doi.org/10.1007/s00338-015-1322-y
Strychar, K. B., & Sammarco, P. W. (2009). Exaptation in corals to high seawater temperatures: Low concentrations of apoptotic and necrotic cells in host coral tissue under bleaching conditions. J. Exp. Mar. Biol. Ecol, 369(1), 31-42. https://doi.org/10.1016/j.jembe.2008.10.021
Sweet, M., Jones, R., & Bythell, J. (2012). Coral diseases in aquaria and in nature. Journal of the Marine Biological Association of the United Kingdom, 92(4), 791-801.
Sydykov, B., Oldenhof, H., de Oliveira Barros, L., Sieme, H., & Wolkers, W. F. (2018). Membrane permeabilization of phosphatidylcholine liposomes induced by cryopreservation and vitrification solutions. Biochim. Biophys. Acta. Biomembr, 1860(2), 467-474. https://doi.org/10.1016/j.bbamem.2017.10.031
Tachibana, M., Amato, P., Sparman, M., Gutierrez, N. M., Tippner-Hedges, R., Ma, H., Kang, E., Fulati, A., Lee, H. S., Sritanaudomchai, H., Masterson, K., Larson, J., Eaton, D., Sadler-Fredd, K., Battaglia, D., Lee, D., Wu, D., Jensen, J., Patton, P., & Mitalipov, S. (2013). Human embryonic stem cells derived by somatic cell nuclear transfer. Cell, 153(6), 1228-1238. https://doi.org/10.1016/j.cell.2013.05.006
Tardent, P. (1995). The cnidarian cnidocyte, a hightech cellular weaponry. BioEssays, 17(4), 351-362. https://doi.org/10.1002/bies.950170411
Tarrant, A., Atkinson, M., & Atkinson, S. (2004). Effects of steroidal estrogens on coral growth and reproduction. Mar. Ecol. Prog. Ser, 269, 121-129. https://doi.org/10.3354/meps269121
Tchernov, D., Gorbunov, M. Y., de Vargas, C., Narayan Yadav, S., Milligan, A. J., Haggblom, M., & Falkowski, P. G. (2004). Membrane lipids of symbiotic algae are diagnostic of sensitivity to thermal bleaching in corals. Proc. Natl. Acad. Sci. U. S. A, 101(37), 13531-13535. https://doi.org/10.1073/pnas.0402907101
Tew, K. S., Leu, M. Y., Wang, J. T., Chang, C. M., Chen, C. C., & Meng, P. J. (2014). A continuous, real-time water quality monitoring system for the coral reef ecosystems of Nanwan Bay, Southern Taiwan. Mar. Pollut. Bull, 85(2), 641-647. https://doi.org/10.1016/j.marpolbul.2013.11.022
Thongpoo, P., Tsai, S., & Lin, C. (2019). Assessing the impacts of cryopreservation on the mitochondria of a thermotolerant Symbiodinium lineage: Implications for reef coral conservation. Cryobiology, 89, 96-99. https://doi.org/10.1016/j.cryobiol.2019.05.011
Thornhill, D. J., Rotjan, R. D., Todd, B. D., Chilcoat, G. C., Iglesias-Prieto, R., Kemp, D. W., LaJeunesse, T. C., Reynolds, J. M., Schmidt, G. W., & Shannon, T. (2011). A connection between colony biomass and death in Caribbean reef-building corals. PloS one, 6(12), 1-13, e29535. https://doi.org/10.1371/journal.pone.0029535
Tkachenko, K. S., & Soong, K. (2017). Dongsha Atoll: A potential thermal refuge for reef-building corals in the South China Sea. Mar. Environ. Res, 127, 112-125. https://doi.org/10.1016/j.marenvres.2017.04.003
Traylor-Knowles, N., Rose, N. H., & Palumbi, S. R. (2017). The cell specificity of gene expression in the response to heat stress in corals. J. Exp. Biol, 220(Pt 10), 1837-1845. https://doi.org/10.1242/jeb.155275
Tsai, S., & Lin, C. (2009). Effects of cryoprotectant on the embryos of banded coral shrimp (Stenopus hispidus); preliminary studies to establish freezing protocols. Cryo Letters, 30(5), 373-381. https://www.ncbi.nlm.nih.gov/pubmed/19946659
Tsai, S., & Lin, C. (2012). Advantages and applications of cryopreservation in fisheries science. Braz. Arch. Biol. Technol, 55(3), 425-434. https://doi.org/10.1590/S1516-89132012000300014
Tsai, S., Chang, W. C., Chavanich, S., Viyakarn, V., & Lin, C. (2016). Ultrastructural observation of oocytes in six types of stony corals. Tissue Cell, 48(4), 349-355. https://doi.org/10.1016/j.tice.2016.05.005
Tsai, S., Chong, G., Meng, P. J., & Lin, C. (2018). Sugars as supplemental cryoprotectants for marine organisms. Rev. Aquac, 10(3), 703-715. https://doi.org/10.1111/raq.12195
Tsai, S., Jhuang, Y., Spikings, E., Sung, P. J., & Lin, C. (2014a). Ultrastructural observations of the early and late stages of gorgonian coral (Junceella juncea) oocytes. Tissue Cell, 46(4), 225-232. https://doi.org/10.1016/j.tice.2014.05.002
Tsai, S., Kuit, V., Lin, Z. G., & Lin, C. (2014b). Application of a functional marker for the effect of cryoprotectant agents on gorgonian coral (Junceella juncea and J. fragilis) sperm sacs. Cryo Letters, 35(1), 1-7. https://www.ncbi.nlm.nih.gov/pubmed/24872152
Tsai, S., Spikings, E., Huang, I. C., & Lin, C. (2011). Study on the mitochondrial activity and membrane potential after exposing later stage oocytes of two gorgonian corals (Junceella juncea and Junceella fragilis) to cryoprotectants. Cryo Letters, 32(1), 1-12. https://www.ncbi.nlm.nih.gov/pubmed/21468448
Tsai, S., Spikings, E., Kuo, F., Lin, N., & Lin, C. (2010). Use of an adenosine triphosphate assay, and simultaneous staining with fluorescein diacetate and propidium iodide, to evaluate the effects of cryoprotectants on hard coral (Echinopora spp.) oocytes. Theriogenology, 73(5), 605-611. https://doi.org/10.1016/j.theriogenology.2009.10.016
Tsai, S., Yen, W., Chavanich, S., Viyakarn, V., & Lin, C. (2015). Development of cryopreservation techniques for gorgonian (Junceella juncea) oocytes through vitrification. PloS one, 10(5), 1-14, e0123409. https://doi.org/10.1371/journal.pone.0123409
Vajta, G., Holm, P., Kuwayama, M., Booth, P. J., Jacobsen, H., Greve, T., & Callesen, H. (1998). Open Pulled Straw (OPS) vitrification: a new way to reduce cryoinjuries of bovine ova and embryos. Mol. Reprod. Dev, 51(1), 53-58. https://doi.org/10.1002/(SICI)1098-2795(199809)51:1<53::AID-MRD6>3.0.CO;2-V
van Oppen, M. J., Lukoschek, V., Berkelmans, R., Peplow, L. M., & Jones, A. M. (2015). A population genetic assessment of coral recovery on highly disturbed reefs of the Keppel Island archipelago in the southern Great Barrier Reef. PeerJ, 3, 1-17, e1092. https://doi.org/10.7717/peerj.1092
Van Tassel, N. M., Morris, T. J., Wilson, C. G., & Zanatta, D. T. (2021). Genetic diversity maintained in comparison of captive-propagated and wild populations of Lampsilis fasciola and Ptychobranchus fasciolaris (Bivalvia: Unionidae). Can. J. Fish Aquat. Sci, 78(9), 1312-1320. https://doi.org/10.1139/cjfas-2020-0373
Veron, J. E. N. (1995). Corals in space and time: the biogeography and evolution of the Scleractinia (pp. 1-309). Cornell University Press.
Veron, J. E. N. (2000). Corals of the World (pp. 1-422). (No. C/593.6 V4)
Vian, A. M., & Higgins, A. Z. (2014). Membrane permeability of the human granulocyte to water, dimethyl sulfoxide, glycerol, propylene glycol and ethylene glycol. Cryobiology, 68(1), 35-42. https://doi.org/10.1016/j.cryobiol.2013.11.004
Vilela, C. L. S., Villela, H. D. M., Duarte, G. A. S., Santoro, E. P., Rachid, C., & Peixoto, R. S. (2021). Estrogen induces shift in abundances of specific groups of the coral microbiome. Sci. Rep, 11(1), 2767, 1-10. https://doi.org/10.1038/s41598-021-82387-x
Viyakarn, V., Chavanich, S., Chong, G., Tsai, S., & Lin, C. (2018). Cryopreservation of sperm from the coral Acropora humilis. Cryobiology, 80, 130-138. https://doi.org/10.1016/j.cryobiol.2017.10.007
Vizel, M., Loya, Y., Downs, C. A., & Kramarsky-Winter, E. (2011). A novel method for coral explant culture and micropropagation. Mar. Biotechnol. (NY), 13(3), 423-432. https://doi.org/10.1007/s10126-010-9313-z
Vollmer, R., Villagaray, R., Egusquiza, V., Espirilla, J., García, M., Torres, A., Rojas, E., Panta, A., Barkley, N., & Ellis, D. (2016). The potato cryobank at the International Potato Center (CIP): a model for long term conservation of clonal plant genetic resources collections of the future. Cryo Letters, 37(5), 318-329. PMID: 27924999.
Voolstra, C. R., Schwarz, J. A., Schnetzer, J., Sunagawa, S., Desalvo, M. K., Szmant, A. M., Coffroth, M. A., & Medina, M. (2009). The host transcriptome remains unaltered during the establishment of coral-algal symbioses. Mol. Ecol, 18(9), 1823-1833. https://doi.org/10.1111/j.1365-294X.2009.04167.x
Walker, D., & Ormond, R. (1982). Coral death from sewage and phosphate pollution at Aqaba, Red Sea. Mar. Pollut. Bull, 13(1), 21-25. https://doi.org/10.1016/0025-326X(82)90492-1
Wang, Y., Shyy, J. Y.-J., & Chien, S. (2008). Fluorescence proteins, live-cell imaging, and mechanobiology: seeing is believing. Annu. Rev. Biomed. Eng., 10, 1-38. https://doi.org/10.1146/annurev.bioeng.010308.161731
Wangpraseurt, D., Polerecky, L., Larkum, A. W., Ralph, P. J., Nielsen, D. A., Pernice, M., & Kühl, M. (2014). The in situ light microenvironment of corals. Limnol. Oceanogr, 59(3), 917-926. https://doi.org/10.4319/lo.2014.59.3.0917
Ward, S., Harrison, P., & Hoegh-Guldberg, O. (2002). Coral bleaching reduces reproduction of scleractinian corals and increases susceptibility to future stress. Proceedings of the Ninth International Coral Reef Symposium, Bali, 23-27 October 2000.
Watanabe, T., Utsunomiya, Y., & Yuyama, I. (2007). Long-term laboratory culture of symbiotic coral juveniles and their use in eco-toxicological study. J. Exp. Mar. Biol. Ecol, 352(1), 177-186. https://doi.org/10.1016/j.jembe.2007.07.022
Watanabe, T., Yuyama, I., & Yasumura, S. (2006). Toxicological effects of biocides on symbiotic and aposymbiotic juveniles of the hermatypic coral Acropora tenuis. J. Exp. Mar. Biol. Ecol, 339(2), 177-188. https://doi.org/10.1016/j.jembe.2006.07.020
Weis, V. M. (2019). Cell biology of coral symbiosis: foundational study can inform solutions to the coral reef crisis. Integr. Comp. Biol, 59(4), 845-855. https://doi.org/10.1093/icb/icz067
Weng, L. C., Pasaribu, B., Lin, I. P., Tsai, C. H., Chen, C. S., & Jiang, P. L. (2014). Nitrogen deprivation induces lipid droplet accumulation and alters fatty acid metabolism in symbiotic dinoflagellates isolated from Aiptasia pulchella. Sci. Rep, 4(1), 5777. https://doi.org/10.1038/srep05777
Westfall, I. A. (1996). Ultrastructure of synapses in the first-evolved nervous systems. J. Neurocytol, 25(12), 735-746. https://doi.org/10.1007/BF02284838
Whaley, D., Damyar, K., Witek, R. P., Mendoza, A., Alexander, M., & Lakey, J. R. (2021). Cryopreservation: An Overview of Principles and Cell-Specific Considerations. Cell Transplant, 30, 963689721999617, 1-12. https://doi.org/10.1177/0963689721999617
Wild, C., Rasheed, M., Werner, U., Franke, U., Johnstone, R., & Huettel, M. (2004). Degradation and mineralization of coral mucus in reef environments. Mar. Ecol. Prog. Ser, 267, 159-171. https://doi.org/10.3354/meps267159
Wildt, D. E., Rall, W. F., Critser, J. K., Monfort, S. L., & Seal, U. S. (1997). Genome resource banks. BioScience, 47(10), 689-698. https://doi.org/10.2307/1313209
Wilkinson, C. R., & Souter, D. (2008). Status of Caribbean coral reefs after bleaching and hurricanes in 2005. 1-150. https://www.coris.noaa.gov/activities/caribbean_rpt/pdfs/SCRBH2005_rpt.pdf
Wilkinson, C., & Fay, P. (1979). Nitrogen fixation in coral reef sponges with symbiotic cyanobacteria. Nature, 279(5713), 527-529. https://doi.org/10.1038/279527a0
Williams, A., Chiles, E. N., Conetta, D., Pathmanathan, J. S., Cleves, P. A., Putnam, H. M., Su, X., & Bhattacharya, D. (2021). Metabolomic shifts associated with heat stress in coral holobionts. Sci Adv, 7(1), 1-10, eabd4210. https://doi.org/10.1126/sciadv.abd4210
Williams, B. L. (2010). Behavioral and chemical ecology of marine organisms with respect to tetrodotoxin. Mar Drugs, 8(3), 381-398. https://doi.org/10.3390/md8030381
Williams, I., & Polunin, N. (2001). Large-scale associations between macroalgal cover and grazer biomass on mid-depth reefs in the Caribbean. Coral Reefs, 19(4), 358-366. https://doi.org/10.1007/s003380000121
Wilmes, J. C., Hoey, A. S., Messmer, V., & Pratchett, M. S. (2019). Incidence and severity of injuries among juvenile crown-of-thorns starfish on Australia’s Great Barrier Reef. Coral Reefs, 38(6), 1187-1195. https://doi.org/10.1007/s00338-019-01845-1
Wilmut, I., Beaujean, N., de Sousa, P. A., Dinnyes, A., King, T. J., Paterson, L. A., Wells, D. N., & Young, L. E. (2002). Somatic cell nuclear transfer. Nature, 419(6907), 583-586. https://doi.org/10.1038/nature01079
Wilmut, I., Schnieke, A. E., McWhir, J., Kind, A. J., & Campbell, K. H. (1997). Viable offspring derived from fetal and adult mammalian cells. Nature, 385(6619), 810-813. https://doi.org/10.1038/385810a0
Wolkers, W. F., & Oldenhof, H. (2021). Principles underlying cryopreservation and freeze-drying of cells and tissues. In Cryopreservation and freeze-drying protocols (pp. 3-25). Springer.
Woodley, C. M., Downs, C. A., Bruckner, A. W., Porter, J. W., & Galloway, S. B. (2016). Diseases of coral (pp. 1-599). John Wiley & Sons.
Wooldridge, S. A. (2013). Breakdown of the coral-algae symbiosis: towards formalising a linkage between warm-water bleaching thresholds and the growth rate of the intracellular zooxanthellae. Biogeosciences, 10(3), 1647-1658. https://doi.org/10.5194/bg-10-1647-2013
Work, T. M., Russell, R., & Aeby, G. S. (2012). Tissue loss (white syndrome) in the coral Montipora capitata is a dynamic disease with multiple host responses and potential causes. Proc. R. Soc. Lond. B. Biol. Sci, 279(1746), 4334-4341. https://doi.org/10.1098/rspb.2012.1827
Wright, R. M., Strader, M. E., Genuise, H. M., & Matz, M. (2019). Effects of thermal stress on amount, composition, and antibacterial properties of coral mucus. PeerJ, 7, 1-16, e6849. https://doi.org/10.7717/peerj.6849
Wu, L., & Yang, J. (2012). Identifications of captive and wild tilapia species existing in Hawaii by mitochondrial DNA control region sequence. PloS one, 7(12), 1-9, e51731. https://doi.org/10.1371/journal.pone.0051731
Wu, Y., Campbell, D. A., Irwin, A. J., Suggett, D. J., & Finkel, Z. V. (2014). Ocean acidification enhances the growth rate of larger diatoms. Limnol. Oceanogr, 59(3), 1027-1034. https://doi.org/10.4319/lo.2014.59.3.1027
Yakovleva, I. M., Baird, A. H., Yamamoto, H. H., Bhagooli, R., Nonaka, M., & Hidaka, M. (2009). Algal symbionts increase oxidative damage and death in coral larvae at high temperatures. Mar. Ecol. Prog. Ser, 378, 105-112. https://doi.org/10.3354/meps07857
Yamashiro, H., & Oku, H. (2002). Tumors on the reef-building coral montipora informis: abundance, growth, reproduction and metabolic features (Biochemistry) (Proceedings of the Seventy-Third Annual Meeting of the Zoological Society of Japan). Zoo. Sci, 19(12), 1481. http://dl.ndl.go.jp/info:ndljp/pid/10865588
Yang, H., Huo, Y., Yee, J. C., & Yarish, C. (2021). Germplasm cryopreservation of macroalgae for aquaculture breeding and natural resource conservation: A review. Aquaculture, 544, 737037. https://doi.org/10.1016/j.aquaculture.2021.737037
Yildiz, M. (2008). Mineral composition in fillets of sea bass (Dicentrarchus labrax) and sea bream (Sparus aurata): a comparison of cultured and wild fish. J. Appl. Ichthyol, 24(5), 589-594. https://doi.org/10.1111/j.1439-0426.2008.01097.x
Young, C., Schopmeyer, S., & Lirman, D. (2012). A review of reef restoration and coral propagation using the threatened genus Acropora in the Caribbean and Western Atlantic. Bull. Mar. Sci, 88(4), 1075-1098. https://doi.org/10.5343/bms.2011.1143
Zhang, T., Isayeva, A., Adams, S. L., & Rawson, D. M. (2005). Studies on membrane permeability of zebrafish (Danio rerio) oocytes in the presence of different cryoprotectants. Cryobiology, 50(3), 285-293. https://doi.org/10.1016/j.cryobiol.2005.02.007
Zheng, Y.-J., & Ornstein, R. L. (1996). A molecular dynamics and quantum mechanics analysis of the effect of DMSO on enzyme structure and dynamics: subtilisin. J. Am. Chem. Soc, 118(17), 4175-4180. https://doi.org/10.1021/ja9539195
Ziegler, M., Roder, C. M., Büchel, C., & Voolstra, C. R. (2014). Limits to physiological plasticity of the coral Pocillopora verrucosa from the central Red Sea. Coral Reefs, 33(4), 1115-1129. https://doi.org/10.1007/s00338-014-1192-8
Ziegler, R., Ashida, M., Fallon, A. M., Wimer, L., Wyatt, S., & Wyatt, G. (1979). Regulation of glycogen phosphorylase in fat body of Cecropia silkmoth pupae. J. Comp. Physiol, 131(4), 321-332. https://doi.org/10.1007/BF00688807
Zuchowicz, N., Daly, J., Lager, C., Williamson, O., & Hagedorn, M. (2021). Freezing on the beach: A robust coral sperm cryopreservation design. Cryobiology, 101, 135-139. https://doi.org/10.1016/j.cryobiol.2021.04.005
Zucker, S. N., Zirnheld, J., Bagati, A., DiSanto, T. M., Des Soye, B., Wawrzyniak, J. A., Etemadi, K., Nikiforov, M., & Berezney, R. (2012). Preferential induction of apoptotic cell death in melanoma cells as compared with normal keratinocytes using a non-thermal plasma torch. Cancer Biol. Ther, 13(13), 1299-1306. https://doi.org/10.4161/cbt.21787
(此全文20250809後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *