帳號:guest(18.217.76.105)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:簡菡慧
作者(英文):Han-Hui Chien
論文名稱:利用Tween80和EPM擾動離子液體的內部作用力並探討壓力相關性
論文名稱(英文):Using Tween80 and EPM to perturb and explore pressure-dependent interactions of ionic liquids
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:賴建智
胡安仁
口試委員(英文):Chien-Chih Lai
An-Ren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610912101
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:68
關鍵詞:離子液體紅外光譜高壓高分子咪唑陽離子
關鍵詞(英文):Tween 80FT-IRion liquidEPMBmimBF4BmimPF6
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
本實驗透過使用較親水性的離子液體Bmim[BF4],及較疏水性的Bmim[PF6],分別與高分子Tween80以各種濃度均勻混合,在常壓下使用傅立葉紅外光譜儀(FT-IR)做掃描,並分析其光譜圖隨濃度改變,相較於純化合物時分別有何趨勢,且比較當離子液體的陰離子不同時,對高分子的結合力又有何影響,還使用了另一高分子EPM(聚乙烯丙烯)與離子液體Bmim[BF4]混合,做一個高分子不同時的對照組,分析各組合之間的作用力變化。

最後再使用鑽石砧,對純離子液體、純高分子,以及其混合物施加各種不同壓力,隨著壓力漸漸增加,觀察它們的紅外光譜訊號變化,分析圖譜峰值受到擾動是因何種作用力影響,並討論各混合物間相互作用力的強度,以及其未來在各行業的應用性。
In this experiment, the hydrophilic ionic liquid Bmim[BF4] and the hydrophobic Bmim[PF6] were used to uniformly mix with the polymer Tween80 at various concentrations, respectively. Fourier-transform infrared spectroscopy (FT-IR) was used to scan and analyze how the spectrum changes with concentration compared to pure compounds under normal pressure. Compare when the anions of the ionic liquid are different, what is the effect on the binding force of the polymer. Another polymer EPM was also used to mix with the ionic liquid Bmim [BF4], and a control group with different polymers was used to analyze the change of the force between the combinations. Finally, diamonds are used to apply various pressures to pure ionic liquids, pure polymers, and mixtures. As the pressure gradually increased, observe the changes in their infrared spectral signals. Analyze the force that causes the peaks of the spectrum to be disturbed, and discuss the strength of the interaction between the mixtures and its future applicability in various industries.
1. 論文大綱 3
2. 序論 11
3. 實驗 17
3.1 實驗藥品 17
3.1.1 離子液體 17
3.1.2 高分子聚合物 17
3.2 實驗儀器 18
3.3 實驗步驟 19
3.3.1 實驗方法 19
3.3.2 樣品配製 20
4. 結果討論 23
4.1 常壓實驗 23
4.1.1 純IL與高分子 23
4.1.2 離子液體Bmim[BF4]與高分子Tween 80 25
4.1.3 離子液體Bmim[PF6]與高分子Tween 80 25
4.2 常壓峰值分析 28
4.2.1 離子液體Bmim[BF4]與高分子Tween 80 28
4.2.2 離子液體Bmim[PF6]與高分子Tween 80 31
4.2.3 離子液體Bmim[BF4]與高分子EPM 34
4.3 高壓實驗 36
4.3.1 高分子EPM 36
4.3.2高分子Tween 80 38
4.3.3 離子液體Bmim[BF4] 40
4.3.4 離子液體Bmim[PF6] 42
4.3.5 離子液體Bmim[BF4]與高分子EPM 44
4.3.6 離子液體Bmim[BF4]與高分子Tween 80 46
4.3.7 離子液體Bmim[PF6]與高分子Tween 80 49
4.4 高壓峰值分析 52
4.4.1 離子液體Bmim的C4,5吸收峰 52
4.4.2 離子液體Bmim的C2吸收峰值 56
4.4.3 高分子的不對稱C-H吸收峰 59
4.4.4 高分子的對稱C-H吸收峰 62
5. 結論 65
6. 參考文獻 67


1. Zheng Y, Eli W, Li G, FTIR study of Tween80/1-butyl-3-methylimidazolium hexafluorophosphate/toluene microemulsions, Colloid Polym Sci. (2009) 287, 871–876.
2. Chang HC, Wang TH, Burba CM, Probing Structures of Interfacial 1-Butyl-3-Methylimidazolium Trifluoromethanesulfonate Ionic Liquid on Nano-Aluminum Oxide Surfaces Using High-Pressure Infrared Spectroscopy, Appl. Sci. (2017) 7, 855.
3. Planeta J, Roth M, Partition Coefficients of Low-Volatility Solutes in the Ionic Liquid 1-n-Butyl-3-methylimidazolium Hexafluorophosphate-Supercritical CO2 System from Chromatographic Retention Measurements, J. Phys. Chem. (2004) 108, 11244-11249.
4. Welton T, Room-Temperature Ionic Liquids. Solvents for Synthesis and Catalysis, Chem. Rev. (1999) 99, 2071−2083.
5. Dupont J, Souza RF, Suarez P, Ionic liquid (molten salt) phase organometallic catalysis, Chem. Rev. (2002) 102, 3667-3692.
6. Liu JF, Jiang GB, Chi YG, Cai YQ, Zhou QX, Hu JT, Use of ionic liquids for liquid-phase microextraction of polycyclic aromatic hydrocarbons, Anal Chem. (2003) 75, 5870-5876.
7. Gao HX, Li JC, Han BX, Chen WN, Zhang JL, Zhang R, Yan DD, Microemulsions with ionic liquid polar domains, Phys Chem Chem Phys. (2004) 6, 2914-2916.
8. Cheng SQ, Fu XG, Liu JH, Zhang JL, Zhang ZF, Wei YL, Han BX, Study of ethylene glycol/TX-100/ionic liquid microemulsions, Colloid Surf A. (2007) 302, 211-215.
9. Li JC, Zhang JL, Gao HX, Han BX, Gao L, Nonaqueous microemulsion-containing ionic liquid [bmim][PF6] as polar microenvironment, Colloid Polym Sci. (2005) 283, 1371-1375.
10. Gao YA, Wang SQ, Zheng LQ, Han SB, Microregion detection of ionic liquid microemulsions, J Colloid Interface Sci. (2006) 301,612-616.
11. Scheiner S, Grabowski SJ, Kar T, Influence of Hybridization and Substitution on the Properties of the CH···O Hydrogen Bond, J. Phys. Chem. A. (2001) 105,10607-10612.
12. Zhang SG, Zhang JH, Zhang Y, Deng YQ, Nanoconfined ionic liquids, Chem. Rev. (2017) 117, 6755–6833.
13. Singh DK, Rathke B, Kiefer J, Materny A, Molecular Structure and Interactions in the Ionic Liquid 1-Ethyl-3-methylimidazolium Trifluoromethanesulfonate, J. Phys. Chem. A (2016) 120, 6274–6286.
14. Fedorov MV, Kornyshev AA, Ionic liquids at electrified interfaces, Chem. Rev. (2014) 114, 2978–3036.
15. Wulf A, Fumino K, Michalik D, Ludwig R, IR and NMR properties of ionic liquids: Do they tell us the same thing? ChemPhysChem (2007) 8, 2265–2269.
16. Chang HC, Hung TC, Wang HS, Chen TY, Local structures of ionic liquids in the presence of gold under high pressures, AIP Adv. (2013) 3, 032147.
17. Triolo A, Russina O, Bleif HJ, Nanoscale segregation in room temperature ionic liquids, J. Phys. Chem. B (2007) 111, 4641–4644.
18. Chang HC, Chang SC, Hung TC, Jiang JC, Kuo JL, Lin SH, A high-pressure study of the effects of TiO2 nanoparticles on the structural organization of ionic liquids, J. Phys. Chem. C (2011) 115, 23778–23783.
19. Gu YL, Kar T, Scheiner S, Fundamental Properties of the CH···O Interaction:  Is It a True Hydrogen Bond? J. Am. Chem. Soc. (1999) 121, 9411–9422.
20. Masunov A, Dannenberg JJ, Contreras RW, C−H Bond-Shortening upon Hydrogen Bond Formation:  Influence of an Electric Field, J. Phys. Chem. A (2001) 105, 4737–4740.
(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *