帳號:guest(3.147.67.16)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:倪育絨
作者(英文):Yu-Rong Ni
論文名稱:利用二硫(硒)磷酸配位基合成含氫化物之超原子鈀-銀奈米合金團簇之研究
論文名稱(英文):Palladium is Alloyed with Hydride-Encapsulated Silver-Rich Superatom-Type Dichalcogenolate-Protected Nanoclusters.
指導教授:劉鎮維
指導教授(英文):Chen-Wei Liu
口試委員:林哲仁
陳元璋
口試委員(英文):Che-Jen Lin
Yuan-Jang Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610912102
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:85
關鍵詞:含氫化物超原子鈀-銀奈米合金團簇
關鍵詞(英文):Hydride-EncapsulatedSuperatom-TypePalladium-Silver nanoclusters
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
以實驗室於最近發表的8電子超原子結構[Pt(H)Ag19{S2P(OR)2}12] (R = nPr, iPr) 1作為基礎。本篇使用同樣為過渡金屬第10族元素Pd,結合新的合成策略,通過共還原法(Co-reduction method)、一鍋合成法(one-plot synthesis)和配體置換法,合成含有氫化物之鈀-銀雙金屬合金奈米團簇[Pd(H)Ag19{E2P(OR)2}12] (E = S, Se;R = iPr, iBu),在合成的過程中,會得到副產物[PdAg20{S2P(OR)2}12] (R = iPr, iBu),其中[PdAg20{S2P(OiBu)2}12]的晶體結構不同於過去實驗室發表的[PdAg20{S2P(OnPr)2}12] 2,[PdAg20{S2P(OiBu)2}12]屬於C3對稱性的結構。在後續的實驗中表明[Pd(H)Ag19]和[PdAg20]之間是有關聯的,[Pd(H)Ag19{E2P(OR)2}12]在高溫下會轉變成[PdAg20{E2P(OR)2}12],並且發現[Pd(H)Ag19{S2P(OiPr)2}12]在酸性條件下,會部分解離並重組成新的含氫化物奈米團簇[Pd(H)Ag20{S2P(OiPr)2}12],最後合成氘代類似物以及利用ESI-MS和NMR以證實氫化物的存在,使用UV-Vis和X-ray等儀器來鑑定這些奈米團簇。本實驗所得的含氫化物奈米團簇皆屬於8電子的超原子結構,其中hydride都以H+的方式存在於團簇中。
摘要 i
目錄 iii
反應式 vi
表目錄 vi
一、緒論 1
1.1 奈米團簇 (Nanocluster) 1
1.2 超原子模型 (Superatom model) 2
1.3 金屬氫化物奈米團簇 3
二、實驗部分 7
儀器 7
實驗合成 9
2.1 [Pd(H)Ag19{S2P(OiPr)2}12]的合成 9
2.2 [Pd(H)Ag19{S2P(OiBu)2}12]的合成 10
2.3 [Pd(H)Ag19{Se2P(OiPr)2}12]的配體置換合成 11
2.4 [Pd(H)Ag20{S2P(OiPr)2}12](PF6)的合成 12
2.5 [Pd(D)Ag19{S2P(OiPr)2}12]的合成 13
2.6 [Pd(D)Ag19{Se2P(OiPr)2}12]的合成 13
2.7 [Pd(D)Ag20{S2P(OiPr)2}12](PF6)的合成 13
三、結果與討論 15
3.1. [Pd(H)Ag19{S2P(OR)2}12] (R = iPr, iBu)的合成 15
3.2. [Pd(H)Ag19{S2P(OiPr)2}12]的結構 16
3.2.1 [Pd(H)Ag19{S2P(OR)2}12] (R = iPr, iBu)光譜與質譜分析 19
3.3. [PdAg20{S2P(OiBu)2}12]的結構 29
3.3.1 [PdAg20{S2P(OiBu)2}12]的光譜與質譜分析 32
3.4 [Pd(H)Ag19{Se2P(OiPr)2}12]的配體置換合成與結構 37
3.4.1 [Pd(H)Ag19{Se2P(OiPr)2}12]的光譜與質譜分析 40
3.5 [Pd(H)Ag20{S2P(OiPr)2}12](PF6)的合成與結構 46
3.5.1 [Pd(H)Ag20{S2P(OiPr)2}12](PF6)的光譜與質譜分析 50
3.6 綜合比較 61
3.6.1 結構 61
3.6.2 NMR光譜 63
3.6.3 吸收光譜與螢光光譜 64
3.6.4 XPS 72
四、結論 79
五、參考文獻 81
圖錄
Figure 1 使用TLC (DCM:ether = 3:1)分離[Pd(H)Ag19]和[PdAg20] 15
Figure 2 [Pd(H)Ag19{S2P(OiPr)2}12]: (a)二十面體PdH@Ag12金屬核(b) hydride佔據四面體的空隙 16
Figure 3 [Pd(H)Ag19{S2P(OiPr)2}12]的PdH@Ag12@Ag7金屬骨架 17
Figure 4 [Pd(H)Ag19{S2P(OiPr)2}12]去除異丙氧基的整個分子結構 18
Figure 5 [Pd(H)Ag19{S2P(OiPr)2}12]的31P NMR (161.97 MHz, CDCl3) 室溫光譜圖 19
Figure 6 [Pd(H)Ag19{S2P(OiBu)2}12]的31P NMR (161.97 MHz, CDCl3) 室溫光譜圖 20
Figure 7 [Pd(H)Ag19{S2P(OiPr)2}12]的31P NMR (242.83 MHz, CD2Cl2) 變溫光譜圖 21
Figure 8 [Pd(H)Ag19{S2P(OiPr)2}12]的1H NMR (600 MHz, CD2Cl2) 室溫光譜圖 23
Figure 9 [Pd(D)Ag19{S2P(OiPr)2}12]的2H NMR (61.42 MHz, CHCl3) 光譜圖 23
Figure 10 [Pd(H)Ag19{S2P(OiBu)2}12]的1H NMR (400 MHz, CDCl3) 24
Figure 11 [Pd(H)Ag19{S2P(OiPr)2}12]的1H NMR (600 MHz, CD2Cl2) 25
Figure 12 [Pd(H)Ag19{S2P(OiPr)2}12]的正電荷ESI-TOF-MS (ES+) 質譜圖 26
Figure 13 [Pd(D)Ag19{S2P(OiPr)2}12]的正電荷ESI-TOF-MS (ES+) 質譜圖 27
Figure 14 [Pd(H)Ag19{S2P(OiBu)2}12]的正電荷ESI-MS質譜圖 28Figure 15 [PdAg20{S2P(OiBu)2}12]的二十面體PdH@Ag12金屬核 29
Figure 16 [PdAg20{S2P(OiBu)2}12]的Pd@Ag12@Ag8金屬骨架 30
Figure 17 [PdAg20{S2P(OiBu)2}12]去除異丁氧基的整個分子結構 31
Figure 18 [PdAg20{S2P(OiBu)2}12]的31P NMR (161.97 MHz, CDCl3) 光譜圖 32
Figure 19 [PdAg20{S2P(OiBu)2}12]的1H NMR (300 MHz, CDCl3) 光譜圖 33
Figure 20 [PdAg20{S2P(OiBu)2}12]的正電荷ESI-MS質譜圖 34
Figure 21[Pd(H)Ag19{S2P(OiPr)2}12]在333 K下 (CDCl3) 隨著時間hydride逐漸消失 35
Figure 22 [Pd(H)Ag19{S2P(OiPr)2}12] (101.37 ppm)在333 K (CDCl3) 隨著時間轉變成[PdAg20{S2P(OiPr)2}12] (100.43 ppm) 36
Figure 23[Pd(H)Ag19{Se2P(OiPr)2}12]: (a)二十面體PdH@Ag12金屬核(b) hydride佔據四面體的空隙 37
Figure 24 [Pd(H)Ag19{Se2P(OiPr)2}12]的PdH@Ag12@Ag7金屬骨架 38
Figure 25 [Pd(H)Ag19{Se2P(OiPr)2}12]的去除異丙氧基的分子結構 39
Figure 26 [Pd(H)Ag19{Se2P(OiPr)2}12]的31P NMR (161.97 MHz, CDCl3) 室溫光譜圖 40
Figure 27 [Pd(H)Ag19{Se2P(OiPr)2}12]的4組配位基化學環境 41
Figure 28. [Pd(H)Ag19{Se2P(OiPr)2}12]的31P NMR (242.83 MHz, CD2Cl2) 變溫光譜圖 42
Figure 29 [Pd(H)Ag19{Se2P(OiPr)2}12]的1H NMR (600 MHz, CD2Cl2) 43
Figure 30 [Pd(D)Ag19{Se2P(OiPr)2}12]的2H NMR (61.42 MHz, CHCl3) 光譜圖 43
Figure 31 [Pd(H)Ag19{Se2P(OiPr)2}12]的1H NMR (600 MHz, CD2Cl2) 44
Figure 32 [Pd(H)Ag19{Se2P(OiPr)2}12]的正電荷ESI-MS質譜圖 45
Figure 33 [Pd(H)Ag20{S2P(OiPr)2}12]+的二十面體PdH@Ag12金屬核 46
Figure 34 [Pd(H)Ag20{S2P(OiPr)2}12]+的PdH@Ag12@Ag8金屬核 47
Figure 35 [Pd(H)Ag20{S2P(OiPr)2}12]+的去除異丙氧基的分子結構 48
Figure 36 [Pd(H)Ag20{S2P(OiPr)2}12](PF6)的31P NMR (161.97 MHz, (CD3)2CO) 室溫光譜圖 50
Figure 37 [Pd(H)Ag20{S2P(OiPr)2}12]+的31P NMR (242.83 MHz, (CD3)2CO) 變溫光譜圖 52
Figure 38 [Pd(H)Ag20{S2P(OiPr)2}12]+的31P NMR (242.83 MHz, CD2Cl2) 變溫光譜圖 53
Figure 39 [Pd(H)Ag20{S2P(OiPr)2}12]+的1H NMR (400 MHz, (CD3)2CO)室溫光譜圖 54
Figure 40 [Pd(H)Ag20{S2P(OiPr)2}12]+的2H NMR (61.42 MHz, CH2Cl2) 光譜圖 55
Figure 41 [Pd(H)Ag20{S2P(OiPr)2}12]+的1H NMR(600 MHz, (CD3)2CO) 56
Figure 42 [Pd(H)Ag20{S2P(OiPr)2}12]+的1H NMR (600 MHz, CD2Cl2) 57
Figure 43[Pd(H)Ag20{S2P(OiPr)2}12]+的正電荷ESI-TOF-MS (ES+) 質譜圖 58
Figure 44 [Pd(H)Ag20{S2P(OiPr)2}12]+的31P NMR (161.97 MHz, CDCl3) 在333 K定溫變時光譜圖 60
Figure 45 含氫化物的二十面體核: (a)[Pd(H)Ag19{S2P(OiPr)2}12], (b) [Pd(H)Ag19{Se2P(OiPr)2}12], (c)[Pd(H)Ag20{S2P(OiPr)2}12]+ 61
Figure 46 二十一個金屬組成的金屬核: (a)[Pd(H)Ag20{S2P(OiPr)2}12]+, (b) [Ag21{S2P(OiPr)2}12]+, (c)[PdAg20{S2P(OiBu)2}12], (d)[PdAg20{S2P(OnPr)2}12] 62
Figure 47 二十面體金屬核Agico-Agico鍵長比較 63
Figure 48 [Pd(H)Ag19{S2P(OiPr)2}12]和[PdAg20{S2P(OiBu)2}12]的吸收光譜比較圖 64
Figure 49 [PdAg20{S2P(OiBu)2}12]的吸收和放光光譜 65
Figure 50 [PdAg20{S2P(OiBu)2}12]的時間分辨光致發光光譜圖 66
Figure 51 [Pd(H)Ag19{Se2P(OiPr)2}12]的吸收和放光光譜 67
Figure 52 [Pd(H)Ag19{Se2P(OiPr)2}12]的時間分辨光致發光光譜圖 68
Figure 53 [Pd(H)Ag19{E2P(OiPr)2}12] (E = S, Se)的吸收光譜比較圖 69
Figure 54 [Pd(H)Ag19{S2P(OiPr)2}12]和[Pd(H)Ag20{S2P(OiPr)2}12]+的吸收光譜比較圖 70
Figure 55 同樣為20個金屬組成的奈米糰簇的吸收光譜比較圖 71
Figure 56 Ag 3d的XPS光譜圖: (a) [Pd(H)Ag19{S2P(OiPr)2}12], (b) [Pd(H)Ag19{Se2P(OiPr)2}12] 72
Figure 57 Pd 3d的XPS光譜圖: (a) [Pd(H)Ag19{S2P(OiPr)2}12], (b) [Pd(H)Ag19{Se2P(OiPr)2}12] 73
反應式
Scheme 1 [Pd(H)Ag19{S2P(OR)2}12] (R = iPr, iBu)的合成反應路徑 15
Scheme 2 [Pd(H)Ag19{Se2P(OiPr)2}12]的合成路徑 37
Scheme 3 [Pd(H)Ag20{S2P(OiPr)2}12](PF6)的合成路徑 46
表目錄
Table 1 鈀銀奈米合金團簇的NMR光譜比較 63
Table 2 Pd-Ag NCs 吸收與放光訊號比較圖 71
Table 3 [Pd(H)Ag19{E2P(OiPr)2}12] (E = S, Se)的Ag 3d殼層XPS比較 73
Table 4 [Pd(H)Ag19{E2P(OiPr)2}12] (E = S, Se)的Pd 3d殼層XPS比較 73
Table 5 Crystal data and structure refinement for [Pd(H)Ag19{S2P(OiPr)2}12] (NDHU210080) 74
Table 6 Crystal data and structure refinement for [PdAg20{S2P(OiBu)2}12] (NDHU200103) 75
Table 7 Crystal data and structure refinement for [Pd(H)Ag19{Se2P(OiPr)2}12] (NDHU210004) 76
Table 8 Crystal data and structure refinement for [Pd(H)Ag20{S2P(OiPr)2}12]+ (NDHU220022) 77
Table 9 Bond lengths (Å) and angles (deg.) for [Pd(H)Ag19{S2P(OiPr)2}12] 88
Table 10 Bond lengths (Å) and angles (deg.) for [PdAg20{S2P(OiBu)2}12] 116
Table 11 Bond lengths (Å) and angles (deg.) for [Pd(H)Ag19{Se2P(OiPr)2}12] 126
Table 12 Bond lengths (Å) and angles (deg.) for [Pd(H)Ag20{S2P(OiPr)2}12]+ 151
1. Chiu, T-H.; Liao, J-H.; Gam, F.; Wu, Y-Y.; Wang, X-P.; Kahlal, S.; Saillard, J-Y.; Liu, C.W. Hydride-Containing Eight-Electron Pt/Ag Superatoms: Structure, Bonding, and Multi-NMR Studies. J. Am. Chem. Soc. 2022, 144, 10599-10607.
2. Barik, S. K.; Chiu, T.-H.; Liu, Y.-C.; Chiang, M.-H.; Gam, F.; Chantrenne, I.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Mono- and hexa-palladium doped silver nanoclusters stabilized by dithiolates. Nanoscale. 2019, 11, 14581-14586.
3. Henry, C. R. Surface studies of supported model catalysts. Surf. Sci. Rep. 1998, 31, 231.
4. Binns, C. Nanoclusters deposited on surfaces. Surf. Sci. Rep. 2001, 44, 1.
5. Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-Protected Gold Clusters Revisited:  Bridging the Gap between Gold(I)−Thiolate Complexes and Thiolate-Protected Gold Nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261.
6. Jin, R.; Zeng, C.; Zhou, M.; Chen, Y. Atomically Precise Colloidal Metal Nanoclusters and Nanoparticles: Fundamentals and Opportunities. Chem Rev. 2016, 116, 10346.
7. Jin, R.; Qian, H.; Wu, Z.; Zhu, Y.; Zhu, M.; Mohanty, A.; Garg, N. Size Focusing: A Methodology for Synthesizing Atomically Precise Gold Nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903-2910.
8. Bakr, O. M.; Amendola, V.; Aikens, C. M.; Wenseleers, W.; Li, R.;
Dal Negro L.; SCchatz, g c.; Stellacci, F. Silver Nanoparticles with Broad Multiband Linear Optical Absorption. Angew. Chem. Int. Ed. 2009, 121, 6035.
9. Guo, J.; Kumar, S.; Bolan, M.; Desireddy, A.; Bigioni, T. P.; Griffith, W. P. Mass Spectrometric Identification of Silver Nanoparticles: The Case of Ag32(SG)19. Anal. Chem. 2012, 84, 5304.
10. Bertorelle, F.; Hamouda, R.; Rayane, D.; Broyer, M.; Antoine, R.; Dugourd, P.; Gell, L.; Kulesza, A.; Mitric, R.; Bonacic-Koutecky, V. Synthesis, characterization and optical properties of low nuclearity liganded silver clusters: Ag31(SG)19 and Ag15(SG)11. Nanoscale, 2013, 5, 5637.
11. Khanna, S. N.; Jena, P. Assembling crystals from clusters. Phys Rev. Lett. 1992, 69, 1664-1667.
12. Khanna, S. N.; Jena, P. Atomic clusters: Building blocks for a class of solids. Phys. Rev. B. 1995, 51, 13705-13716.
13. Häkkinen, H.; Atomic and electronic structure of gold clusters: understanding flakes, cages and superatoms from simple concepts. Chem. Soc. Rev. 2008, 37, 1847-1859.
14. Walter, M.; Akola, J.; Lopez-Acevedo, O.; Häkkinen. H. A unified view of ligand-protected gold clusters as superatom complexes. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 9157-9162.
15. Dhayal, R. S.; Liao, J.-H.; Liu, Y.-C.; Chiang, M.-H.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. [Ag21{S2P(OiPr)2}12]+ : An Eight-Electron Superatom. Angew. Chem., Int. Ed. 2015, 54, 3702-3706.
16. Liao, P.-K.; Fang, C.-S.; Edwards, A. J.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Hydrido Copper Clusters Supported by Dithiocarbamates:
Oxidative Hydride Removal and Neutron Diffraction Analysis of [Cu7(H){S2C(aza-15-crown-5)}6]. Inorg. Chem. 2012, 51, 6577-6591.
17. Lee, B.-H.; Wu, C.-C.; Fang, X.; Liu, C.W.; Zhu, J.-L. [Cu8(μ4-H){S2P(OEt)2}6](PF6): A Novel Catalytic Hydride-Centered Copper Cluster for Azide-Alkyne Cycloaddtion. Cat. Lett., 2013, 143, 572−577.
18. Dhayal, R. S.; Liao, J.-H.; Lin, Y.-R.; Liao, P.-K.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. A Nanospheric Polyhydrido Copper Cluster of Elongated Triangular Orthobicupola Array: Liberation of H2 from Solar Energy. J. Am. Chem. Soc. 2013, 135, 4704-4707.
19. Edwards, A. J.; Dhayal, R. S.; Liao, P.-K.; Liao, J.-H.; Chiang, M.-H.; Piltz, R. O.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Chinese Puzzle Molecule: A 15 Hydride, 28 Copper Atom Nanoball. Angew. Chem. Int. Ed. 2014, 53, 7214-7218.
20. Barik, S. K.; Huo, S.-C.; Wu, C.-Y.; Chiu, T.-H.; Liao, J.-H.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Polyhydrio Copper Nanoclusters with a Hollo Icosahedral Core: [Cu30H18{E2P(OR)2}12] (E=S or Se; R=nPr, iPr or iBu). Chem. Eur. J. 2020, 26, 10471-10479.
21. Dhayal, R. S.; Liao, J.-H.; Kahlal, S.; Wang, X.; Liu, Y.-C.; Chiang, M.-H.; van Zyl, W. E.; Saillard, J.-Y.; Liu, C. W. [Cu32(H)20{S2P(OiPr)2}12]: The Largest Number of Hydrides Recorded in A Molecular Nanocluster by Neutron Diffraction. Chem. Eur. J. 2015, 21, 8369-8374.
22. Brocha Silalahi, R. P.; Huang, G.-R.; Liao, J.-H.; Chiu, T.-H.; Chakrahari, K. K.; Wang, X.; Cartron, J.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Copper Clusters Containing Hydrides in Trigonal
Pyramidal Geometry. Inorg. Chem. 2020, 59, 2536– 2547.
23. Chakrahari, K. K.; Liao, J.; Brocha Silalahi, R. P.; Chiu, T.-H.; Liao, J.-H.; Wang, X.; Kahlal, S.; Saillard, J.-Y.; Liu, C. W. Isolation and Structural Elucidation of 15‐Nuclear Copper Dihydride Clusters: An Intermediate in the Formation of a Two‐Electron Copper Superatom. Small. 2021, 17, 2002544.
24. Liu, C. W.; Lin, Y.-R.; Fang, C.-S.; Latouche, C.; Kahlal, S.; Saillard, J.-Y. [Ag7(H){E2P(OR)2}6] (E = Se, S): Precursors for the Fabrication of Silver Nanoparticles, Inorg. Chem. Inorg. Chem. 2013, 52, 2070−2077.
25. Liu, C. W.; Chang, H.-W.; Sarkar, B.; Saillard, J.-Y.; Kahlal, S.; Wu, Y.-Y. Stable Silver(I) Hydride Complexes Supported by Diselenophosphate Ligands. Inorg. Chem. 2010, 49(2), 468−475.
26. Bootharaju, M. S.; Dey, R.; Gevers, L. E.; Hedhili, M. N.; Basset, J.-M.; Bakr, O. M. A New Class of Atomically Precise, Hydride-Rich Silver Nanoclusters Co-Protected by Phosphines. J. Am. Chem. Soc. 2016, 138, 13770-13773.
27. Yuan, X.; Sun, C.; Li, X.; Malola, S.; Teo, B. K.; Häkkinen, H.; Zheng, L.-S.; Zheng, N. Combinatorial Identification of Hydrides in a Ligated Ag40 Nanocluster with Noncompact Metal Core. J. Am. Chem. Soc. 2019, 141, 11905– 11911.
28. Zhu, C.; Duan, T.; Li, H.; Wei, X.; Kang, X.; Pei, Y.; Zhu, M. Structural determination of a metastable Ag27 nanocluster and its transformations into Ag8 and Ag29 nanoclusters. Inorg. Chem. Front., 2021, 8, 4407-4414.
29. Takano, S.; Hirai, H.; Muramatsu, S.; Tsukuda, T. Hydride-Doped
Gold Superatom (Au9H)2+: Synthesis, Structure, and Transformation. J. Am. Chem. Soc. 2018, 140, 8380– 8383.
30. Yuan, S.-F.; Li, J.-J.; Guan, Z.-J.; Lei, Z.; Wang, Q.-M. Ultrastable Hydrido Gold Nanoclusters with the Protection of Phosphines. Chem. Commun. 2020, 56, 7037– 7040.
31. Dong, J.; Gao, Z.-H.; Wang, L.-S. The synthesis and characterization of a new diphosphine-protected gold hydride nanocluster. J. Chem. Phys. 2021, 155, 034307.
32. Dong, J.; Gao, Z.-H.; Zhang, Q.-F.; Wang, L.-S. T. The Synthesis, Bonding, and Transformation of a Ligand-Protected Gold Nanohydride Cluster. Angew. Chem., Int. Ed. 2021, 60, 2424– 2430.
33. Takano, S.; Hirai, H.; Muramatsu, S.; Tsukuda, T. Hydride-Mediated Controlled Growth of a Bimetallic (Pd@Au8)2+ Superatom to a Hydride-Doped (HPd@Au10)3+ Superatom. J. Am. Chem. Soc. 2018, 140, 12314– 12317.
34. Wei, X.; Kang, X.; Duan, T.; Li, H.; Wang, S.; Pei, Y.; Zhu, M. [Au16Ag43H12(SPhCl2)34]5–: An Au–Ag Alloy Nanocluster with 12 Hydrides and Its Enlightenment on Nanocluster Structural Evolution. Inorg. Chem. 2021, 60, 11640–11647.
35. Yi, H.; Han, S. M.; Song, S.; Kim, M.; Sim, E.; Lee, D. Superatom-in-Superatom [RhH@Ag24(SPhMe2)18]2− Nanocluster. Angew. Chem., Int. Ed. 2021, 60, 22293-22300.
(此全文20270725後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

1. 二硫磷酸配位基與銅的金屬團簇,催化碳-氮鍵[3+2]環化反應之研究
2. 以陰離子模板合成含二硫磷酸配位基之多核銀金屬團簇
3. 含碘與多硫磷酸配位基之多核金屬團簇(銅,銀)的合成、結構與光物理性質研究
4. 2,2’—聯嘧啶架橋之鑭系金屬(鈰、釤、銪)與過渡金屬(鐵、鋅)雙核化合物的合成與研究
5. 利用碘分子行氧化加成於硒(給予電子)配位基所形成的雙核金化合物中之反應研究
6. 含有二硫(硒)磷酸配位基之十一核銅金屬簇的合成、結構與光物理性質研究
7. 含有聯奈酚磷酸酯配位基與鋅、鎘、銅、銀金屬錯合物的結構和合成反應研究
8. 利用黃酸鹽與有機硒化磷配位基合成多核銅金屬團簇之反應與研究
9. 含有機硒化磷配位基之銻、鉍、鉻、銅金屬錯合物及含二硫磷酸配位基之中心體硫九核銀金屬團簇的反應研究
10. 利用雙硫配位基合成含氫離子之銅與銀金屬團簇的反應與研究
11. 含二硫(硒)磷酸配位基及鹵素之金屬鎘、汞配位聚合物之研究
12. 含二硒磷酸配位基之釕化合物合成以及二硒(硫)磷酸配位基與含氮配位基之鋅金屬發光化合物的研究
13. 使用銻和鉍的二硒磷酸錯合物以Solvothermal Method製備奈米尺度的金屬硒化物和金屬磷酸物
14. 利用二硒代氨基甲酸鹽類配位基合成多核銅金屬團簇之反應與研究
15. 含二硫磷酸配位基之雙核鑭系金屬錯合物之化學及物理性質研究
 
* *