帳號:guest(13.58.32.166)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李晉齊
作者(英文):Jin-Qi Li
論文名稱:Theoretical study of C(3P) + GeH4 (1A1)
論文名稱(英文):Theoretical study of C(3P) + GeH4 (1A1)
指導教授:張秀華
指導教授(英文):A. Hsiu-Hua Chang
口試委員:梁剛荐
楊雪慧
口試委員(英文):Max K. Leong
Hsueh-Hui Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610912107
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:80
關鍵詞:鍺烷反應路徑理論計算最佳化結構反應速率濃度對時間分支比
關鍵詞(英文):GeH4germanereaction pathoptimizationrate constantconcentration with timebranching ratiocarbon
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
In this dissertation, the reaction of C(3P) + GeH4 (1A1) is explored by combining the electronic structure and statistical calculations. The reaction was found to form an initial van der Waals complex in the original channel, with this path of triplet to singlet potential surfaces existing from the intersystem crossing (ISC). On both triplet and singlet surfaces, we use b3lyp to predict the correct path for a compound, and then use the method called CCSD/cc-pVTZ to optimize the reactant, intermediates, transition states and dissociation compounds. Going one step further, the energies generated are calculated by CCSD/CBS with CCSD/cc-pvtz zero-point energy correction. The statistical RRKM theory is employed in calculating the rate constant and the evolution of the concentration over time.
Theoretical study of C(3P) + GeH4 (1A1) reaction
1. Introduction………………………………………………………………………1
2. Theoretical methods……………………………………………………………...3
2.1 Hybrid functional b3lyp………………………………………...….……...3
2.2 Coupled cluster CCSD(T)…………………………………………………3
2.3 RRKM(Rice-Ramsperger-Kassel-Marcus theory)…………………....…4
2.3.1 RRKM theory………………………………………………………...4
3. Result and discussion…………………………………………………………….5
3.1 Reaction paths on triplet potential surface………………………………6
3.1.1 Reaction paths………………………………………………………..6
3.1.2 Products……………………………………………………………...11
H atom dissociation products…………………………………………..…11
H2-elimination products…………………………………………………...11
3.1.3 Evolution of concentration with time……………………………...12
0 kJ/mol collision energy…………………………………………...……..12
15 kJ/mol collision energy………………………………………...………13
35.5 kJ/mol collision energy…………………………………...…….……14
3.2 Reaction paths on singlet potential surface…………………………..…15
3.2.1 Reaction paths………………………………………………………15
3.2.2 Products………………………………………………………...……20
H atom dissociation products…………………………………………..…21
H2-elimination products…………………………………….……………..21
3.2.3 Evolution of concentration with time…………………………..….21
0 kJ/mol collision energy………………………………………….....……21
15 kJ/mol collision energy………………………………………...…...….23
35.5 kJ/mol collision energy………………………………………..……..24
3.3 Branching ratio…………………………………………………………...25
3.4 Comparison with an experiment..…………………………………….....28
4. Conclusion……………………………………………………………………...29
Reference…………………………………………………………………......……...31

Table 1. C(3P) + GeH4 (1A1) energies with cc-pvtz basis set………………………33
Table 2. The RRKM rate constant(s-1) of singlet.……………………………........37
Table 3. The RRKM rate constant(s-1) of triplet………………………………….39
Table 4. Calculation of branching ratio of CGeH4 products of singlet………….40
Table 5. Calculation of branching ratio of CGeH4 products of triplet…………..40
Table 6. Branching ratio of CGeH4 products of singlet via different channel…..40
Table 7. Branching ratio of CGeH4 products of triplet via different channel…..41
Figure 1. The whole probable pathways of C(3P) + GeH4 (1A1)………………….42
Figure 2. Singlet pathways of C(3P) + GeH4 (1A1)…………………………………43
Figure 3. Triplet pathways of C(3P) + GeH4 (1A1)…………………………………44
Figure 4. The CCSD/cc-pvtz optimized geometries of reactant……………….....45
Figure 5. The CCSD/cc-pvtz optimized geometries of intermediates…………....46
Figure 6. The CCSD/cc-pvtz optimized geometries of products…………………47
Figure 7. The CCSD/cc-pvtz optimized geometries of transition state…….…….49
Figure 8. The reaction mechanism of singlet…………………………………..….53
Figure 9. The reaction mechanism of triplet……………………………………....55
Figure 10 a. The singlet state concentration evolution with time – 0 kJ..………56
Figure 10 b. The singlet state concentration evolution with time – 15 kJ…....…58
Figure 10 c. The singlet state concentration evolution with time -35.5 kJ………60
Figure 11 a. The triplet state concentration evolution with time – 0 kJ..…...…..62
Figure 11 b. The triplet state concentration evolution with time – 15 kJ…..…...64
Figure 11 c. The triplet state concentration evolution with time -35.5 kJ…..…..66
Figure 12. The IRC paths of each channel….…………………………………..…68
1. I. Langmuir, J. Am. Chem. Soc. 41, 868, 1919.
2. I. Langmuir, J. Am. Chem. Soc. 41, 1543, 1919.
3. I. Fernández, M. Duvall, J. I-C Wu, P. v. R. Schleyer, G. Frenking, Chem. Eur. J. 17, 2215, 2011.
4. J. P. Kenny, W. D. Allen, H. F. Schaefer III, J. Chem. Phys. 118, 7353, 2003.
5. P. S. Thomas, N. P. Bowling, N. J. Burrmann, R. J. McMahon, J. Org. Chem.19, 6372, 2010.
6. W. S. Chou, J. P. Ren, Sci. Rep. 9, 5208, 2019.
7. L. Lu, H. Hu, H. Hou, B. Wang, Comput Theor Chem. 1015, 64, 2013.
8. Y. Wang, Y. Xie, P. Wei, R. B. King, H. F. Schleyer III, P. V. R. Schleyer, G. H. Robinson, Science. 321, 5892, 2008.
9. G. S. Kim, T. L. Nguyen, A. M. Mebel, S. H. Lin, M. T. Nguyen, J. Phys. Chem. 107, 1788, 2003
10. I. C. Lu, W. K. Chen, W. J. Huang, S. H. Lee, J. Chem. Phys. 129, 164304, 2008.
11. C. He, A. M. Thomas, B. B. Dangi, T. Yang, R. I. Kaiser, H. C. Lee, B. J. Sun, A. H. H. Chang, J. Chem. Phys. A. 126, 3347, 2022.
12. Z. Yang, B. J. Sun, C. He, J. Q. Li, A. H. H. Chang, R. I. Kaiser, Chemical Physics Letters. 14, 430, 2023.
13. (a) A. D. Becke, J. Chem. Phys. 96, 2155, 1992 (b) A. D. Becke, J. Chem. Phys. 97, 9173, 1992 (c) A. D. Becke, J. Chem. Phys. 98, 5648 , 1993 (d) C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37, 785, 1988.
14. G. D. Purvis III and R. J. Bartlett, J. Chem. Phys. 76, 1910, 1982.
15. R. J. Bartlett, J. Chem. Phys. 93, 1697, 1989.
16. J. Čížek, J. Chem. Phys. 45, 4256, 1966.
17. D. M. Wardlaw, R. A. Marcus, Chemical Physics Letters. 110, 230, 1984.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *