帳號:guest(3.135.206.197)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:卓子鈞
作者(英文):ZI-JUN ZHUO
論文名稱:以超臨界流體製備鈀/石墨烯觸媒應用於降解土壤中4-溴聯苯醚環境汙染物
論文名稱(英文):Preparation of palladium/graphene nanocatalyst in supercritical carbon dioxide for the degradation of 4-PBDE brominated diphenyl ether in soil
指導教授:江政剛
指導教授(英文):Cheng-Kang Chiang
口試委員:何彥鵬
陳以文
口試委員(英文):Yen-Peng Ho
I-Wen Peter Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:610912113
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:79
關鍵詞:超臨界流體多溴聯苯醚降解鈀石墨烯觸媒
關鍵詞(英文):Supercritical fluidPolybrominated diphenyl ether degradationPalladium graphene catalyst
相關次數:
  • 推薦推薦:1
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本研究主要探討如何利用超臨界流體的輔助下,一步合成鈀/石墨稀觸媒材料,並針對屬於多溴聯苯醚環境有機汙染物之4-溴聯苯醚(4-Brominated Diphenyl Ether, 4-PBDE)進行降解。本實驗主要利用二維石墨烯片(Graphene flakes, GF)做為觸媒載體,利用超臨界氫氣(scH2)將鈀金屬奈米修飾於二維石墨烯片上,以製備鈀/石墨烯奈米金屬觸媒,並於超臨界二氧化碳(scCO2)輔助下,對於4-PBDE進行降解反應。本研究首先將GF與六氟乙丙醯酮鈀試劑於甲醇溶液混和後,當通入超臨界氫氣後反應5分鐘時,即可於二維石墨烯片上形成鈀金屬奈米粒子,並經由洩壓過程,得到鈀/石墨烯奈米金屬觸媒(PdGF)。該複合觸媒的相關物化特性,則利用XRD、STEM、SEM、ICP-MS及XPS進行分析。於最佳化的合成條件時,鈀金屬奈米粒子於PdGF複合觸媒的平均大小約為6.45±1.37 nm,並以零價與二價鈀氧化態均勻分布在GF載體上。當以PdGF觸媒對於4-PBDE進行降解時,於通入2900 psi二氧化碳與150 psi的氫氣混和氣體,並且反應溫度為75℃條件下時,實驗結果顯示可以於30分鐘下可將100 ppm之4-PBDE,全數降解為毒性較低的產物二苯醚與環己醇和環己烷。當進行觸媒重複性降解4-PBDE之測試時,實驗結果顯示當使用超臨界氬氣與超臨界氫氣各別活化PdGF時,該觸媒對於4-PBDE進行第五次降解仍保有78%的活性。並且添加4-PBDE於海砂以及土壤時,可於不接觸海砂或土壤等真實樣品情況下,除了可以有效萃取其中之4-PBDE外,並於1個小時內並完全降解。基於上述實驗結果,本研究發展了一種新穎的降解4-PBDE於真實環境固態樣品之策略,可應用於淨化受持久性有機物汙染之固態環境樣品之可能性。
This study mainly focuses on the one-step synthesis of palladium/graphene (PdGF) catalyst materials using supercritical fluid for the degradation of 4-brominated diphenyl ether (4-PBDE). PdGF catalyst was prepared by supercritical reduction of palladium(II) hexafluoroacetylacetonate onto graphene nanosheet by introducing supercritical hydrogen fluid for 5 minutes. Relevant physicochemical properties of the PdGF composite were analyzed by XRD, STEM, ICP-MS, SEM and XPS. Under optimized conditions, the average size of Pd nanoparticles on the PdGF composite catalyst is about 6.45±1.37 nm, and also evenly distributed with both zero- and di-valent palladium oxidation states. In the presence of PdGF catalyst, result demonstrated that 100 ppm of 4-PBDE can be completely degraded following the debromination/ hydrogenation pathways into less toxic products, including diphenyl ether, cyclohexanol, and cyclohexane in 30 minutes. While activating by supercritical argon and supercritical hydrogen fluids, PdGF catalyst also possesses a reasonable activity of 78% for 4-PBDE degradation. In the case of spiked with 4-PBDE sea sand and soil samples, we found that the 4-PBDE was degraded entirely within 1 hour of reaction time. Based on the above experimental results, this study provides a novel strategy for degrading 4-PBDE in real environmental solid samples, which has the potential to purify solid environmental samples contaminated by persistent organic compounds.
一、 緒論 1
1.1 研究動機 1
二、文獻討論 3
2.1持久性有機汙染物 3
2.1.1持久性有機汙染物的性質 3
2.1.2多溴聯苯醚(PBDEs) 5
2.1.2.1多溴聯苯醚毒性之研究 6
2.1.2.2多溴聯苯醚 PBDEs 在環境中之分布 7
2.1.2.3降解多溴聯苯醚的處理方式 8
2.2超臨界流體 9
2.2.1超臨界流體性質 9
2.2.2超臨界流體種類 10
2.2.3 超臨界流體合成金屬奈米粒子 11
2.2.4超臨界流體二氧化碳參與催化反應的優點 13
2.3石墨烯 (Graphene) 14
2.3.1石墨烯的特性 14
2.4鈀金屬/石墨烯材料之應用 16
2.5研究目的 18
三、研究方法 19
3.1儀器藥品 19
3.1.1藥品 19
3.2實驗設備及儀器 20
3.2.1超臨界流體裝置 20
3.2.2 場發射穿透式電子顯微鏡(液態樣品與軟物質) 21
3.2.3 熱場發射掃描式電子顯微鏡 21
3.2.4 D2 PHASER粉末X 光繞射儀 21
3.2.5 三重四極桿氣相層析質譜儀 21
3.2.6 電化學分析儀 21
3.3實驗方法 22
3.3.1超臨界合成 22
3.3.1.1超臨界合成鈀/石墨烯金屬觸媒 22
3.3.1.2水相合成鈀/石墨烯金屬觸媒 22
3.3.2超臨界脫溴加氫反應 22
3.3.2.1 4-PBDE 回收率測試 22
3.3.2.2 4-PBDE加入金屬觸媒不通入氫氣 23
3.3.2.3超臨界二氧化碳加氫氣與金屬觸媒降解4-PBDE 23
3.3.2.4超臨界二氧化碳清洗真實樣品土壤 23
3.3.2.5利用超臨界二氧化碳萃取土壤中 4-PBDE 回收率測試 24
3.3.2.6超臨界二氧化碳加氫氣與金屬觸媒降解真實樣品土壤中 4-PBDE 24
3.3.3氣相層析質譜儀參數 25
3.3.3.1氣相層析儀分析參數 25
四、結果與討論 27
4.1利用超臨界合成之鈀/石墨烯觸媒之特性 27
4.2利用鈀/石墨烯觸媒材料降解4-PBDE 36
4.2.1 4-PBDE降解機制 36
4.2.2 利用之超臨界流體裝置進行4-PBDE萃取 38
4.2.3 利用GC-MS定量分析4-PBDE與其降解產物 40
4.2.4 利用鈀/石墨烯材料於超臨界流體下降解4-PBDE 42
4.2.4.1不同含量之Pd降解4-PBDE 42
4.2.4.2不同合成溫度之PdGF/2.5對於降解4-PBDE的影響 44
4.2.4.3鈀/石墨烯觸媒利用scH2不同合成時間對降解4-PBDE的影響 46
4.2.4.4 利用PdGF對於4-PBDE降解溫度優化之探討 48
4.2.4.5 4-PBDE降解時間探討 50
4.2.4.6降解4-PBDE時所添加不同氫氣壓力之影響 52
4.3製備與分析不同鈀/石墨烯觸媒材料之性質以及降解4-PBDE之效果 54
4.4鈀/石墨烯觸媒降解4-PBDE重複性測試 56
4.4.1超臨界氬氣和超臨界氣氣重新活化金屬觸媒 56
4.4.1.1超臨界氬氣活化之重複性測試 56
4.4.1.2超臨界氫氣活化之重複性測試 58
4.4.1.3先通超臨界氬氣後通超臨界氫氣活化之重複性測試 59
4.4.1.4觸媒降解後及活化後之STEM分析 60
4.4.1.5觸媒降解後及活化後之SEM/EDX元素分析 62
4.4.1.6觸媒降解後及活化後之XPS分析 64
4.4.1.7 觸媒降解後及活化後之電化學阻抗光譜之分析 66
4.5降解真實樣品中4-PBDE之測試 68
4.5.1降解海沙中環境汙染物4-PBDE 68
4.5.2降解土壤中環境汙染物4-PBDE 70
4.5.3探討不同反應時間降解土壤中環境汙染物4-PBDE 71
4.5.4探討降解土壤中不同濃度之環境汙染物4-PBDE 72
五、結論 73
六、參考文獻 75
1.Frederiksen, M.; Vorkamp, K.; Thomsen, M.; Knudsen, L. E., Human internal and external exposure to PBDEs--a review of levels and sources. Int J Hyg Environ Health 2009, 212 (2), 109-34.
2.Wang, R.; Tang, T.; Wei, Y.; Dang, D.; Huang, K.; Chen, X.; Yin, H.; Tao, X.; Lin, Z.; Dang, Z.; Lu, G., Photocatalytic debromination of polybrominated diphenyl ethers (PBDEs) on metal doped TiO2 nanocomposites: Mechanisms and pathways. Environ. Int. 2019, 127, 5-12.
3.Moreira Bastos, P.; Eriksson, J.; Vidarson, J.; Bergman, Å., Oxidative transformation of polybrominated diphenyl ether congeners (PBDEs) and of hydroxylated PBDEs (OH-PBDEs). Environ. Sci. Pollut. Res. 2008, 15 (7), 606-613.
4.Wu, Z.; Xie, M.; Li, Y.; Gao, G.; Bartlam, M.; Wang, Y., Biodegradation of decabromodiphenyl ether (BDE 209) by a newly isolated bacterium from an e-waste recycling area. AMB Express 2018, 8 (1), 27.
5.Ko, C.-f.; Yang, Y.-C.; Wen Liu, J. I. W.; Shih, Y.-h., Thermal treatment of decabrominated diphenyl ether in its highly contaminated soil in Taiwan. Chemosphere 2022, 287, 131924.
6.Wang, R.; Tang, T.; Lu, G.; Huang, K.; Yin, H.; Lin, Z.; Wu, F.; Dang, Z., Rapid debromination of polybrominated diphenyl ethers (PBDEs) by zero valent metal and bimetals: Mechanisms and pathways assisted by density function theory calculation. Environ. Pollut. 2018, 240, 745-753.
7.Wang, Y.; Zhang, F.-S., Degradation of brominated flame retardant in computer housing plastic by supercritical fluids. J. Hazard. Mater. 2012, 205-206, 156-163.
8.McDonald, T. A., A perspective on the potential health risks of PBDEs. Chemosphere 2002, 46 (5), 745-755.
9.Magulova, K.; Priceputu, A., Global monitoring plan for persistent organic pollutants (POPs) under the Stockholm convention: triggering, streamlining and catalyzing global POPs monitoring. Environ. Pollut. 2016, 217, 82-84.
10.Rodan, B. D.; Pennington, D. W.; Eckley, N.; Boethling, R. S., Screening for persistent organic pollutants: techniques to provide a scientific basis for POPs criteria in international negotiations. ACS Publications: 1999.
11.Jones, K. C.; De Voogt, P., Persistent organic pollutants (POPs): state of the science. Environ. Pollut. 1999, 100 (1-3), 209-221.
12.Muir, D. C.; Howard, P. H., Are there other persistent organic pollutants? A challenge for environmental chemists. Environ. Sci. Technol. 2006, 40 (23), 7157-7166.
13.Eljarrat, E.; Barcelo, D., Priority lists for persistent organic pollutants and emerging contaminants based on their relative toxic potency in environmental samples. Trends Analyt Chem 2003, 22 (10), 655-665.
14.Mansouri, A.; Cregut, M.; Abbes, C.; Durand, M. J.; Landoulsi, A.; Thouand, G., The Environmental Issues of DDT Pollution and Bioremediation: a Multidisciplinary Review. Appl. Biochem. Biotechnol. 2017, 181 (1), 309-339.
15.Guo, J.; Lin, K.; Deng, J.; Fu, X.; Xu, Z., Polybrominated diphenyl ethers in indoor air during waste TV recycling process. J. Hazard. Mater. 2015, 283, 439-46.
16.Chen, H.-L.; Huang, H.-Y.; Huang, P.-C.; Lee, C.-C., Relationship of PCDD/F concentrations in duck-egg farmers and consumption of ranched duck eggs in central Taiwan. Environ. Toxicol. Chem. 2010, 29 (11), 2402-2408.
17.行政院環境保護署,電子及電器產品大量使用的防火物質溴化阻燃劑 環保署將公告為毒化物. https://enews.epa.gov.tw/page/3b3c62c78849f32f/d5fbe100-772a-4337-aa7c-e759f49c0041.
18.de Wit, C. A., An overview of brominated flame retardants in the environment. Chemosphere 2002, 46 (5), 583-624.
19.Shaw, S. D.; Berger, M. L.; Brenner, D.; Carpenter, D. O.; Tao, L.; Hong, C.-S.; Kannan, K., Polybrominated diphenyl ethers (PBDEs) in farmed and wild salmon marketed in the Northeastern United States. Chemosphere 2008, 71 (8), 1422-1431.
20.Herbstman, J. B.; Sjödin, A.; Kurzon, M.; Lederman, S. A.; Jones, R. S.; Rauh, V.; Needham, L. L.; Tang, D.; Niedzwiecki, M.; Wang, R. Y.; Perera, F., Prenatal exposure to PBDEs and neurodevelopment. Environ. Health Perspect. 2010, 118 (5), 712-719.
21.McDonald, T. A., A perspective on the potential health risks of PBDEs. Chemosphere 2002, 46 (5), 745-55.
22.Silva, E. Z. M.; Dorta, D. J.; de Oliveira, D. P.; Leme, D. M., A review of the success and challenges in characterizing human dermal exposure to flame retardants. Arch. Toxicol. 2021, 95 (11), 3459-3473.
23.Fowles, J. R.; Fairbrother, A.; Baecher-Steppan, L.; Kerkvliet, N. I., Immunologic and endocrine effects of the flame-retardant pentabromodiphenyl ether (DE-71) in C57BL/6J mice. Toxicology 1994, 86 (1-2), 49-61.
24.Hallgren, S.; Sinjari, T.; Håkansson, H.; Darnerud, P., Effects of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) on thyroid hormone and vitamin A levels in rats and mice. Arch. Toxicol. 2001, 75 (4), 200-208.
25.Eriksson, P.; Jakobsson, E.; Fredriksson, A., Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ. Health Perspect. 2001, 109 (9), 903-908.
26.Eriksson, P.; Jakobsson, E.; Fredriksson, A., Brominated flame retardants: a novel class of developmental neurotoxicants in our environment? Environ Health Perspect 2001, 109 (9), 903-8.
27.Wei, Z.; Xi, J.; Gao, S.; You, X.; Li, N.; Cao, Y.; Wang, L.; Luan, Y.; Dong, X., Metabolomics coupled with pathway analysis characterizes metabolic changes in response to BDE-3 induced reproductive toxicity in mice. Sci. Rep. 2018, 8 (1), 5423.
28.Ohoro, C. R.; Adeniji, A. O.; Okoh, A. I.; Okoh, O. O., Polybrominated diphenyl ethers in the environmental systems: a review. J. Environ. Health Sci. Eng. 2021, 19 (1), 1229-1247.
29.Chen, L.; Huang, Y.; Peng, X.; Xu, Z.; Zhang, S.; Ren, M.; Ye, Z.; Wang, X., PBDEs in sediments of the Beijiang River, China: Levels, distribution, and influence of total organic carbon. Chemosphere 2009, 76 (2), 226-231.
30.Chou, T.-H.; Ou, M.-H.; Wu, T.-Y.; Chen, D.-Y.; Shih, Y.-h., Temporal and spatial surveys of polybromodiphenyl ethers (PBDEs) contamination of soil near a factory using PBDEs in northern Taiwan. Chemosphere 2019, 236, 124117.
31.Wu, Z.; Gao, G.; Wang, Y., Effects of soil properties, heavy metals, and PBDEs on microbial community of e-waste contaminated soil. Ecotoxicol. Environ. Saf. 2019, 180, 705-714.
32.Andersson, Ö.; Blomkvist, G., Polybrominated aromatic pollutants found in fish in Sweden. Chemosphere 1981, 10 (9), 1051-1060.
33.Fraser, A. J.; Webster, T. F.; McClean, M. D., Diet Contributes Significantly to the Body Burden of PBDEs in the General U.S. Population. Environ. Health Perspect. 2009, 117 (10), 1520-1525.
34.Schecter, A.; Pavuk, M.; Päpke, O.; Ryan, J. J.; Birnbaum, L.; Rosen, R., Polybrominated diphenyl ethers (PBDEs) in U.S. mothers' milk. Environ. Health Perspect. 2003, 111 (14), 1723-1729.
35.Rapidly rising PBDE levels in North America. Environ. Sci. Technol 2002, 36 (3), 50A-52A.
36.Fang, L.; Huang, J.; Yu, G.; Wang, L., Photochemical degradation of six polybrominated diphenyl ether congeners under ultraviolet irradiation in hexane. Chemosphere 2008, 71 (2), 258-267.
37.Wang, R.; Tang, T.; Lu, G.; Zheng, Z.; Huang, K.; Li, H.; Tao, X.; Yin, H.; Shi, Z.; Lin, Z.; Wu, F.; Dang, Z., Mechanisms and pathways of debromination of polybrominated diphenyl ethers (PBDEs) in various nano-zerovalent iron-based bimetallic systems. Sci Total Environ 2019, 661, 18-26.
38.Lee, L. K.; Ding, C.; Yang, K.-L.; He, J., Complete Debromination of Tetra- and Penta-Brominated Diphenyl Ethers by a Coculture Consisting of Dehalococcoides and Desulfovibrio Species. Environ. Sci. Technol. 2011, 45 (19), 8475-8482.
39.Clifford, A. A.; Williams, J. R., Introduction to supercritical fluids and their applications. In Supercritical fluid methods and Protocols, Springer: 2000; pp 1-16.
40.Leitner, W., Supercritical Carbon Dioxide as a Green Reaction Medium for Catalysis. Acc. Chem. Res. 2002, 35 (9), 746-756.
41.Flowers, P., Theopold, K., Langley, R., Robinson, W. R., Chemistry 2e. OpenStax.: 2019.
42.Xu, Y.; Musumeci, V.; Aymonier, C., Chemistry in supercritical fluids for the synthesis of metal nanomaterials. React. Chem. Eng. 2019, 4 (12), 2030-2054.
43.Chen, Y.-L.; Tsai, C.-H.; Chen, M.-Y.; Lai, Y.-C., Green Fabrication of Supported Platinum Nanoparticles by Supercritical CO2 Deposition. Mater. 2018, 11 (12), 2587.
44.Niu, A.; Han, Y.; Wu, J.; Yu, N.; Xu, Q., Synthesis of One-Dimensional Carbon Nanomaterials Wrapped by Silver Nanoparticles and Their Antibacterial Behavior. J. Phys. Chem. C . 2010, 114 (29), 12728-12735.
45.Müller, S.; Türk, M., Production of supported gold and gold–silver nanoparticles by supercritical fluid reactive deposition: Effect of substrate properties. J Supercrit Fluids 2015, 96, 287-297.
46.Wolff, S.; Crone, M.; Muller, T.; Enders, M.; Bräse, S.; Türk, M., Preparation of supported Pt nanoparticles by supercritical fluid reactive deposition: Influence of precursor, substrate and pressure on product properties. J Supercrit Fluids 2014, 95, 588-596.
47.Crozier, T. E.; Yamamoto, S., Solubility of hydrogen in water, sea water, and sodium chloride solutions. J. Chem. Eng. Data 1974, 19 (3), 242-244.
48.Herrero, M.; Mendiola, J. A.; Cifuentes, A.; Ibáñez, E., Supercritical fluid extraction: Recent advances and applications. J. Chromatogr. A 2010, 1217 (16), 2495-2511.
49.Geim, A. K., Graphene: Status and Prospects. Science 2009, 324 (5934), 1530-1534.
50.Geim, A. K.; Novoselov, K. S., The rise of graphene. In Nanosci, World Scientific: 2010; pp 11-19.
51.Apell, S. P.; Hanson, G.; Hägglund, C., High optical absorption in graphene. arXiv preprint arXiv:1201.3071 2012.
52.Zhou, C.; Szpunar, J. A., Hydrogen Storage Performance in Pd/Graphene Nanocomposites. ACS Appl. Mater. Interfaces. 2016, 8 (39), 25933-25940.
53.Khan, M.; Shaik, M. R.; Adil, S. F.; Kuniyil, M.; Ashraf, M.; Frerichs, H.; Sarif, M. A.; Siddiqui, M. R. H.; Al–Warthan, A.; Labis, J. P.; Islam, M. S.; Tremel, W.; Tahir, M. N., Facile synthesis of Pd@graphene nanocomposites with enhanced catalytic activity towards Suzuki coupling reaction. Sci. Rep. 2020, 10 (1), 11728.
54.Wang, Z.; Xu, C.; Gao, G.; Li, X., Facile synthesis of well-dispersed Pd–graphene nanohybrids and their catalytic properties in 4-nitrophenol reduction. RSC Adv. 2014, 4 (26), 13644-13651.
55.Malard, L.; Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M., Raman spectroscopy in graphene. Phys. Rep. 2009, 473 (5-6), 51-87.
56.Rayne, S.; Ikonomou, M. G.; Whale, M. D., Anaerobic microbial and photochemical degradation of 4, 4′-dibromodiphenyl ether. Water Res. 2003, 37 (3), 551-560.
57.Peng, Y.-H.; Chen, M.-k.; Shih, Y.-h., Adsorption and sequential degradation of polybrominated diphenyl ethers with zerovalent iron. J. Hazard. Mater. 2013, 260, 844-850.
58.Bulut, S.; Siankevich, S.; van Muyden, A. P.; Alexander, D. T. L.; Savoglidis, G.; Zhang, J.; Hatzimanikatis, V.; Yan, N.; Dyson, P. J., Efficient cleavage of aryl ether C–O linkages by Rh–Ni and Ru–Ni nanoscale catalysts operating in water. Chem. Sci. 2018, 9 (25), 5530-5535.
59.Paone, E.; Beneduci, A.; Corrente, G. A.; Malara, A.; Mauriello, F., Hydrogenolysis of aromatic ethers under lignin-first conditions. J. Mol. Catal. B Enzym. 2020, 497, 111228.

(此全文20250927後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *