帳號:guest(3.138.117.184)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:鐘尹君
作者(英文):Yin-Chun Chung
論文名稱:Mn摻雜對Cu2SnSe3之熱電性質研究
論文名稱(英文):Electrical and thermal transport properties of Mn-doped Cu2SnSe3
指導教授:郭永綱
指導教授(英文):Yung-Kang Kuo
口試委員:蔡漢彰
吳慶成
口試委員(英文):Han-Chang Tsai
Ching-Cherng Wu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610914201
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:59
關鍵詞:熱電性質研究
關鍵詞(英文):MnCu2SnSe3
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
本實驗針對熱電材料Cu_(2-x) Mn_x SnSe_3 (x = 0.00, 0.05, 0.10, 0.15, 0.20)系列,於10 K至350 K溫度區間進行電阻率(ρ)、熱電勢(S)以及熱導率(κ)等熱電傳輸性質量測,以探討樣品錳(Mn)取代銅(Cu)在不同之摻雜比例的熱電傳輸性質。XPS方面,樣品在摻雜量為0.10時,Mn的3/2軌域帶4+價,其餘摻雜量的3/2軌域帶2+價。摻雜量在0.05與0.2時,Cu的3/2軌域帶了較多的1+價,其餘摻雜量的3/2軌域帶較多2+價。在X-ray繞射方面,該系列樣品皆為立方晶系,在計算後發現晶格常數隨摻雜量有增加的趨勢。電阻率(ρ)結果顯示,摻雜量為x = 0.10與x = 0.15由於載子濃度增加而造成電阻率下降,其餘樣品在摻雜後電阻率增加。熱電勢(S)量測方面,樣品於量測溫度區間內皆呈正值,顯示其主要傳輸載子為電洞。於200 K至350 K 溫度區間以Mott’s formula擬合,其結果得知x = 0.10與x = 0.15的樣品其載子濃度較高,與電阻率結果吻合。熱導率(κ)方面,由Wiedemann-Franz law計算結果得知主要貢獻為晶格熱導率。經由計算ZT值發現摻雜Mn原子未能有效提升熱電優值,原因為摻雜Mn原子後,電阻率提升的幅度大於熱電勢,導致整體熱電優值的下降,但品質因子在摻雜量為x = 0.05, 0.10 和 0.20皆比原形樣品來的高。
The effects of Mn doping on the thermoelectric properties of the Cu2-xMnxSnSe3 system were investigated. The chemical bonding states of the dominant constituent elements (Cu, Sn, Se) were examined by X-ray photoelectron spectroscopy. It is revealed that the binding energies of Mn (2p3/2) correspond to the Mn4+ configuration for the x = 0.10 sample. On the other hand, for the x = 0.05 and 0.20 samples, the binding energies of Mn (2p3/2) correspond to the Cu1+ configuration. The powder X-ray diffraction patterns for all samples showed a cubic structure. The electrical resistivity of the Mn-substituted samples is found to increase compared to that of the pristine Cu2SnSe3 sample. The Seebeck coefficient of all studied samples is positive over the entire temperature range under investigation, suggesting that the dominant charge carriers are holes. The thermal conductivity is found to decrease with an increase in Mn concentration, presumably due to the point-defect scattering as a result of Mn substitution. The electronic thermal conductivity is estimated to be about 1% of the total thermal conductivity, indicating that thermal conduction is mainly associated with lattice thermal conductivity. Although the ZT is observed to decrease with Mn doping, enhancement in thermoelectric quality factor is obtained for the samples with x = 0.05, 0.10, and 0.20, attributed to the higher carrier mobility and lowered lattice thermal conductivity
致謝 I
摘要 III
Abstract V
目錄 VII
圖目錄 IX
表目錄 XI
第一章 緒論 1
1.1 Cu2SnSe3 簡介 1
1.2 小極化子模型 (Small Polaron Model) 2
1.3 變程跳躍模型 (Variable range hopping model) 3
1.4 文獻回顧 4
1.5 研究動機 11
第二章 實驗原理 13
2.1電阻率 13
2.1.1電子的碰撞機制 16
2.2 Seebeck效應 18
2.2.1 Seebeck 係數 20
2.3 熱導率 23
2.3.1電子對熱導率的影響 25
2.3.2聲子對熱導率的影響 27
第三章 實驗方法 31
3.1量測系統與方法 31
3.1.1低溫冷卻系統 31
3.1.2電阻率量測方法 35
3.1.3熱導率量測方法 37
3.1.4 Seebeck係數量測方法 39
第四章 實驗結果與分析 41
4.1 X射線光電子能譜 (XPS) 41
4.2 X-Ray diffraction 分析 43
4.3 電阻率 (Electircal Resistivity) 44
4.4 熱電勢 (Seebeck coefficient) 47
4.5 熱傳導率 (Thermal conductivity) 49
4.6 熱電優值 (Figure of merit) 51
結論 55
參考文獻 57

1.Muhammad Siyar, Jun-Young Cho, Yong Youn, Seungwu Han, Miyoung Kim, Sung-Hwan Bae and Chan Park. J. Mater. Chem. C, 2018, 6, 1780 (2018)
2.P.A . Fernandes, P.M.P. Salome, A.F.D. Cunha, J. Phys. 43 (2010) 215403.
3.C.H.L. Goodman, R.W. Douglas, Physica (Amsterdam) 20 (1954) 1107.
4.G.A. Slack, CRC Handbook of Thermoelectric, CRC Press, New York, 1955.
5.H. Liu, X. Shi, F. Xu, L. Zhang, L. Chen, Q. Li, C. Uher, T. Day, G.J. Snyder, Nat.Mater. 11 (2012) 422.
6.張佳祺,Sb摻雜對Cu2SnSe3之熱電性質研究, p.23-p.26 (2016)
7.Yaokun Ye, Zongxiang Hu, Jiahua Liu, Weicheng Lin, Taowen Chen, Jiaxin Zheng, Feng Pan.Acta Phys.-Chim. Sin. (2021)
8.Geneste, G.; Amadon, B.; Torrent, M.; Dezanneau, G. Phys. Rev. B PhysRevB.(2017)
9.Deskins,N.A.;Dupuis,M.Phys.Rev.B.2007,75,195212.doi:10.1103/PhysRevB.75.195212
10.Reticcioli, M.; Diebold, U.; Kresse, G.; Franchini, C. Small Polarons in Transition Metal Oxides. Springer: Cham, pp. 1035–1073. (2020)
11.黃詠隆, 氧化鋅薄膜之低溫電性傳輸行為研究, p.13-p.14 (2009)
12.J. Fan, H. Liu, X. Shi, S. Bai, X. Shi, L. Chen, Acta Mater. 61 (2013)
13.S. Prasad, A. Rao, B. Gahtori, S. Bathula, A. Dhar, J.S. Du, Y.K. Kuo, Mater. Res.Bull. 82 (2016) 160–166 .
14.XU LU and DONALD T.MORELLI. Journal of ELECTRONIC MATERIALS, Vol. 41, No. 6 (2012)
15.Xiaoya Shi,Lili Xi, Jing Fan,Wenqing Zhang, and Lidong Chen. Chem. Mater. (2010)
16.Jiong Yang, Lili Xi, Wujie Qiu, Lihua Wu, Xun Shi, Lidong Chen, Jihui Yang, Wenqing Zhang, Ctirad Uherand David J Singh. npj (2016).
17.中國材料學會固態物理網路教材p.78-80 (1999).
18.D. D. Pollock, Thermoelectricity, p.111-132 (1985).
19.張佩琦,鈦鎳基形狀記憶合金相變行為之熱電性質研究, p.28-32 (2017).
20.F. J. Blatt, P. A. Schroeder, C. L. Foiles and D. Greig, Thermoelectric
Power of Metals, Plenum Press, New York (1976).
21.江仲鎰,超導體材料Mo3Al2C摻雜鈮、釕之超導性質研究,p.23-26(2013).
22.C. Kittel, Introduction to Solid State Physics, Wiley, New York(2003).
23.N. W. Ashcroft and N. D. Mermin, Solid State Physics (1976).
24.J. Song, Y. Liu, H. Niu, C. Mao, L. Cheng, S. Zhang, Y. Shen, J. Alloys Compd. 581 (2013)
25.M. Siyar, J.Y. Cho, Y. Youn, S. Han, M. Kim, S.H. Bae, C. Park, J. Mater. Chem. C. 6 (2018)
26.K. Gurukrishna, A. Rao, Z. Jiang, Y. K. Kuo, Intermetallics. 122 (2020) 106803.
27.Shyam Prasad K, Ashok Rao, Bhasker Gahtori, Sivaiah Bathula, Ajay Dhar, Chia-Chi Chang, Yung-Kang Kuo. Physica B 520 (2017)
28.C. Rincón, G. Marcano, R. Casanova, G.E. Delgado, G. Marín, G. Sánchez-Pérez,Phys. Status Solidi Basic Res. 253 (2016).
29.B.J. Christopher, Ashok Rao, P.D. Babu, G.S. Okram, J. Magn. Magn. Mater. 397(2016).
30.B.S. Nagaraj, Ashok Rao, P.D. Babu, G.S. Okram, Physica B: Condens. Matter 429(2015).
31.Nidhi Puri, Ram P. Tandon, Ajit K. Mahapatro, Ceramics International 44 15478-15482 (2018).
32.D.T. Morelli, V. Jovovic, J.P. Heremans, Phys. Rev. Lett. 101 (2008).
33.C. Raju, M. Falmbigl, P. Rogl, P. Heinrich, E. Royanian, E. Bauer, Ramesh ChandraMallik, Mater. Chem. Phys. 147 (2014).
34.G. Rogl, A. Grytsiv, K. Yubuta, S. Puchegger, E. Bauer, C. Raju, R.C. Mallik, P. Rogl,Acta Mater. 95 (2015).
35.C. Fu, H. Xie, T.J. Zhu, J. Xie, X.B. Zhao, (2013).
36.K.K. Johari, R. Bhardwaj, N.S. Chauhan, B. Gahtori, S. Bathula, S. Auluck, S.R. Dhakate, American Chemical Society. (2019).
37.R. Thomas, A. Rao, R. Bhardwaj, L.-Y. Wang, Y.-K. Kuo, Mater. Res. Bull. 120 (2019).
38.G. Jeffrey Snyder, Alemayouh H. Snyder, Maxwell Wood, Ramya Gurunathan, Berhanu H. Snyder, Changning Niu Adv. Mater. (2020)
(此全文20250116後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *