帳號:guest(18.217.130.212)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許祖恩
作者(英文):Tsu-En Hsu
論文名稱:自製物聯網雷射奈米水熱成長法
論文名稱(英文):Self-made IoT laser-induced with hot water method growth nano metal material
指導教授:吳勝允
指導教授(英文):Sheng-Yun Wu
口試委員:陳孟炬
黃玉林
口試委員(英文):Meng-Chu Chen
Yue-Lin Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610914202
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:68
關鍵詞:奈米氧化銅物聯網3D列印PID熱影像
關鍵詞(英文):Nano Copper OxideIoT3D printerPIDthermal camera
相關次數:
  • 推薦推薦:1
  • 點閱點閱:33
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
金屬奈米氧化物在現今科技扮演著十分重要的角色,不管是在磁性、光吸收、化學活性、熱阻、導電性或催化性性質都擁有特殊或是優異的特性,但是在生成的過程往往都是高污染或是高成本,並耗費較長的工時,對於環境更是會產生不好的回饋。
基於這些因素,我將運用低污染,低成本的熱水處理法設計出一套可以有效生成金屬奈米氧化物的系統。其中在相關論文中證明,在熱水處理法中金屬在水中加熱時有機率脫離金屬本身,藉由此過程可以產生一連串的氧化還原反應,並產生金屬氧化物,而金屬氧化物將會在熱水中移動最後重新堆積成不同形狀的奈米氧化物堆,因此我將藉由雷射加熱之方式加速金屬原子脫離金屬表面之機率,並藉由熱影像法觀測熱水對流是否對於金屬堆積之位置有所影響、並藉由IoT 數據監控和機械自動化來更有效的控制生成過程。
這套系統的整合可以有效的觀察到熱水處理法中熱水對流對實驗的變因,雷射可以更有效的加熱金屬目標物,並可以用溫度差對熱水處理法的釋放與漂移過程進行控制,並以 IoT 數據來監控熱水處理法所需要的長時間加熱來進行大數據的收集。這或許可以了解到熱水處理法所生成的奈米氧化物,並有效地降低成本。
成長過程藉由SEM與EDS證明氧化銅的成長與Plugging mechanism有關,並且以擴散理論得出擴散比在不同時長下 gamma = 0.27~0.28,可用於解釋水中的奈米晶體成長方式與Short-Circuit diffusion 相符,並回推理論公式與預測不同溫度下晶體的大小。
Metal nano-oxides play a very important role in today's technology. Whether it is magnetism, light absorption, chemical activity, heat resistance, conductivity or catalytic performance, it has special or excellent performance. During the growth process, high pollution, high cost and a lot of man-hours are often generated, and the feedback to the environment is often not good.
Based on these factors, I will use low-pollution, technical hot water treatment to design a system that can effectively generate metal nano-oxides. Among them, related papers prove that in the hot water treatment method, when the metal is heated in water, the organic rate is separated from the metal itself. This process can produce a series of redox reactions to produce metal oxides. The metal oxides will be heated and moved in the water, and finally they will be restacked into nano-oxide piles of different shapes. Therefore, I will use laser heating to accelerate the probability of metal atoms leaving the metal surface, and use thermal imaging to observe whether the convection of hot water affects the accumulation and positioning of metals, and use IoT data monitoring and machine automation to more effectively control the power generation process .
The integration of the whole system effectively observes the variable cause of the hot water convection in the hot water treatment method. The laser can heat the metal target more effectively, and the temperature can be used to control the release and migration of the hot water treatment method. The integration of the entire system effectively observes the variable causes of hot water convection in the hot water treatment method. Lasers can heat metal targets more effectively, temperature can be used to control the release and migration of hot water treatment methods, and IoT data can be used to monitor the long-term heating required by hot water treatment methods and collect large amounts of data.
The growth process was proved by SEM and EDS that the growth of copper oxide is related to the plugging mechanism, and the diffusion theory shows that the diffusion ratio is gamma = 0.27~0.28 at different time, which can be used to explain the growth method of nanocrystals in water and Short-Circuit Diffusion is consistent, and the theoretical formula is pushed back to predict the size of the crystal at different temperatures.
致謝 I
摘要 III
Abstract IV
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
第二章 研究方法 10
第三章 樣品與儀器介紹 11
第四章 研究設備 19
第五章 實驗結果與分析 54
第六章 結論&未來工作 65
Reference 67
[1]Dengwu Jiao, Karel Lesage, Mert Yucel Yardimci, Khadija El Cheikh, Caijun Shi, Geert De Schutter,Structural evolution of cement paste with nano-Fe3O4 under magnetic field - Effect of concentration and particle size of nano-Fe3O4,Cement and Concrete Composites, Volume 120, 2021,104036,ISSN 0958-9465.
[2] G.G Welegergs, R. Akoba, J. Sacky, Z.Y. Nuru, Structural and optical properties of copper oxide (CuO) nanocoatings as selective solar absorber, Materials Today: Proceedings, Volume 36, Part 2, 2021, Pages 509-513, ISSN 2214-7853.
[3] Aparajita Patnaik, Priyanka Aiyer, Sivaranjani Gali, Deveswaran R,
Flexural strength and anti-fungal activity of copper nano-particles on poly-methyl methacrylate denture base resins, Materials Today: Proceedings, 2021, ISSN 2214-7853.
[4] Rani Ananda Sutar, Latha Kumari, M.V. Murugendrappa, Temperature-dependent transport properties of micro and nano-sized zinc cobalt oxide (ZnCo2O4) and zinc manganese oxide (ZnMn2O4) particles synthesized by a hydrothermal route, Ceramics International, Volume 46, Issue 14,2020, Pages 22492-22503, ISSN 0272-8842.
[5] Zeliha Gökdai, Ali Sınağ, Tuğrul Yumak, Comparison of the catalytic efficiency of synthesized nano tin oxide particles and various catalysts for the pyrolysis of hazelnut shell, Biomass and Bioenergy, Volume 34, Issue 3, 2010, Pages 402-410, ISSN 0961-9534.
[6] Nishino, F., Jeem, M., Zhang, L. et al. Formation of CuO nano-flowered surfaces via submerged photo-synthesis of crystallites and their antimicrobial activity. Sci Rep 7, 1063 (2017)
[7] Schropp, R.E.I.; B. Stannowski, A.M. Brockhoff, P.A.T.T. van Veenendaal and J.K. Rath. Hot wire CVD of heterogeneous and polycrystalline silicon semiconducting thin films for application in thin film transistors and solar cells. Materials Physics and Mechanics: 73–82
[8] Jaeger, Richard C. (2002). "Film Deposition". Introduction to Microelectronic Fabrication (2nd ed.). Upper Saddle River: Prentice Hall. ISBN 0-201-44494-1
[9] Saadi, N.S., Hassan, L.B. & Karabacak, T. Metal oxide nanostructures by a simple hot water treatment. Sci Rep 7, 7158 (2017).
[10] Pulsed Laser Deposition of Thin Films, edited by Douglas B. Chrisey and Graham K. Hubler, John Wiley & Sons, 1994 ISBN 0-471-59218-8
[11] Mahan, John E (1 February 2000). Physical Vapor Deposition of Thin Films. Wiley-Interscience. ISBN 978-0471330011.
[12] Jessica Briffa, Emmanuel Sinagra, Renald Blundell, Heavy metal pollution in the environment and their toxicological effects on humans,
[13] Growth Mechanism Studies of ZnO Nanowires: Experimental Observations and Short-Circuit Diffusion Analysis Nanomaterials 7, 188 (2017) DOI:10.3390/nano7070188
[14] Fundamentals of corrosion. J. C. Scully. 194 S., 75 Abb. Preis sh 20/-. 1966, Oxford. Pergamon press. Materials and Corrosion/ Werkstofe und Korrosion 17, 1009–1009 (1966).
[15] Law, M. et al. ZnO−Al2O3 and ZnO−TiO2 Core−Shell Nanowire Dye-Sensitized Solar Cells. The Journal of Physical Chemistry B 110, 22652–22663 (2006).
[16] Zhang, Q., Dandeneau, C. S., Zhou, X. & Cao, G. ZnO Nanostructures for Dye-Sensitized Solar Cells. Advanced Materials 21, 4087–4108 (2009)
Heliyon, Volume 6, Issue 9, 2020, e04691, ISSN 2405-8440
[17] P. Kuppusami & V. S. Raghunathan (2006) Status of pulsed laser deposition: challenges and opportunities, Surface Engineering, 22:2, 81-83, DOI: 10.1179/174329406X98502
[18] Shanks, Katie & Mallick, Tapas. (2016). Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design. Renewable and Sustainable Energy Reviews. 60. 394-407. 10.1016/j.rser.2016.01.089.
[19] The Absorption of Laser Light by Rough Metal Surfaces, David Bergström, 2008:08, ISSN:1402-1544
[20] LEPTON® Engineering Datasheet - FLIR
[21] C. G. Granqvist and R. A. Buhrman, J. Appl. Phys. 47, 2200 (1976)
[22] C-L Cheng, Y-R Ma, M H Chou, C Y Huang, V Yeh, S Y Wu*: Direct observation of short-circuit diffusion during the formation of a single cupric oxide Nanowire. Nanotechnology 05/2007; 18(24):245604., DOI:10.1088/0957-4484/18/24/245604.
(此全文20260706後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *