帳號:guest(18.119.121.13)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:李昱嫻
作者(英文):Yu-Sian Lee
論文名稱:鎳摻雜鈦鎳鐵形狀記憶合金之熱電性質研究
論文名稱(英文):Electrical and thermal properties of Ni-doped TiNi-Fe shape memory alloys
指導教授:郭永綱
指導教授(英文):Yung-Kang Kuo
口試委員:蔡漢彰
吳慶成
口試委員(英文):Han-Chang Tsai
Ching-Cherng Wu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610914204
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:100
關鍵詞:形狀記憶合金麻田散體應變玻璃電阻率熱電勢熱導率比熱
關鍵詞(英文):Shape memory alloyMartensiteStrain GlassElectrical ResistivitySeebeck coefficientThermal conductivitySpecific heat
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
本論文利用電阻率(ρ)、熱電勢(S)、熱導率(κ)及比熱 (C_P)等熱電物理性質研究一系列Ti_(50-x) Ni_(48+x) Fe_2 (x = 0.0, 0.5, 1.0, 1.5和2.0)形狀記憶合金之相變行為。隨著鎳摻雜增加,點缺陷增多,改變自由能並穩定奧斯田體相,進而抑制麻田散體相變,使TiNi-Fe進入應變玻璃相(strain glass; STG)。透過Ni含量摻雜,可將相變行為分為兩類,第一類 為x = 0與x = 0.5時,相變為B2 ↔ R ↔ B19’ ;第二類為x = 1.0-2.0,相變為B2 ↔ STG。熱導率與熱電勢在熱電物理量測中最為靈敏,熱電勢量測結果顯示,Seebeck係數均為正值,顯示其主要傳輸載子為電洞,能態密度變化於R↔B19’相變較為劇烈,原因為B19’之電子結構改變較為明顯,在熱導率方面,隨著溫度下降,熱導率值於B2↔R相變時降低,而R↔B19’相變大幅升高。在比熱方面,隨鎳含量的增加,麻田散體相變溫度和熵值有下降的趨勢;而在第二類中則無麻田散體相變產生,原因推測是過多的鎳含量導致長程應力有序(Long-range Strain Order)結構遭受破壞所導致,進而阻礙麻田散體相的生成。在電阻率方面低溫區段有類似半導體性質,為長程應變有序遭受破壞而轉為短程應變無序之應變玻璃相行為而隨鎳含量增加,理想凍結溫度有下降的趨勢。而在熱電勢方面,表現出典型金屬行為。在熱導率量測方面,因沒有麻田散體相變產生,故κ無顯著的變化,呈現典型金屬行為與溫度相依性。而在比熱方面,無觀察到任何相變行為。
To investigate the influence of the characteristics of martensitic transformation by varying Ti/Ni ratio, physical properties including electrical resistivity, the Seebeck coefficient, thermal conductivity, and specific heat measurements were performed on Ti50-xNi48+xFe2 (x = 0, 0.5, 1.0, 1.5, and 2.0) shape memory alloys (SMAs). It is found that the induced point defects significantly alter the martensitic transformation characteristics, such as the transition temperature and width of thermal hysteresis during the transition. These observations can be explained by the stabilization of the austenite B2 phase upon increasing Ni content, which eventually leads to a reduction in transition temperature. With increasing Ni content, the evolution of phase transformation observed in the TiNi-Fe shape memory alloys is presumably caused by the changes in local lattice structure via the induced local strain fields. The signature of martensitic transformation disappears for the Ti50-xNi48+xFe2 system with x ≧ 1.0, while the characteristics of strain glass transition start to take place. The Seebeck coefficients of these TiNi-Fe alloys were found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. In addition, the thermal conductivity of the Ti50-xNi48+xFe2 (x ≤ 0.5) alloys shows a distinct jump at the B2↔R↔B19’ transition, presumably due to the variation in electronic thermal conductivity. Our results indicate that the characteristics of the phase transition are strongly influenced by Ti/Ni ratio in the Ti50-xNi48+xFe2 system.
致謝 VII
摘要 IX
Abstract XI
目錄 XIII
圖目錄 XVII
表目錄 XXII
第一章 前言 1
第二章 實驗動機 7
第三章 材料特性 9
3.1形狀記憶合金 9
3.2.麻田散體相變 10
3.2.1熱彈性與非彈性麻田散體相變 12
3.2.2 R相麻田散體 17
3.2.3 R相麻田散體與B19’麻田散體間之差異 19
3.3形狀記憶效應 25
3.4超彈性 27
3.5應變玻璃態(Strain Glass) 28
第四章 實驗原理 35
4.1電阻率 35
4.1.1電子的碰撞機制 37
4.2 Seebeck效應 40
4.2.1 Seebeck 係數 42
4.3 熱導率 (Seebeck coefficient) 45
4.3.1電子對熱導率的影響 47
4.3.2聲子對熱導率的影響 49
4.4比熱 52
4.4.1晶格比熱 52
4.4.2電子比熱 53
第五章 實驗方法 55
5.1量測系統與方法 55
5.1.1低溫冷卻系統 55
5.1.2電阻率量測方法 59
5.1.3熱導率量測方法 61
5.1.4 Seebeck 係數量測方法 63
5.1.5比熱量測方法 64
5.1.6運作頻率之選擇方法 70
5.2實驗控制程式 72
第六章 實驗結果與分析 79
6.1 X-Ray diffraction 分析 79
6.2電阻率 82
6.3 Seebeck Coefficient 85
6.4 熱導率 (Thermal Conductivity) 88
6.5 比熱 (Specific heat) 91
第七章 結論 95
參考文獻 97
[1] Shampa Sarkar, Xiaobing Ren, and Kazuhiro Otsuka, Phys. Rev. Lett. 95, 205702 (2005).
[2] Yu Wang, Xiaobing Ren, and Kazuhiro Otsuka, Phys. Rev. Lett. 97, 225703 (2006).
[3] Mi-Seon Choi , Takashi Fukuda, and Tomoyuki Kakeshita, Scripta Materialia 53, 869–873 (2005).
[4] Yumei Zhou, Dezhen Xue, Xiangdong Ding, Yu Wang, Jian Zhang, Zhen Zhang, Dong Wang, Kazuhiro Otsuka, Jun Sun, Xiaobing Ren, Acta Materialia 58, 5433–5442 (2010).
[5] Dong Wang, Zhen Zhang, Jian Zhang, Yumei Zhou, Yu Wang, Xiangdong Ding, Yunzhi Wang, Xiaobing Ren, Acta Materialia 58, 6206–6215 (2010).
[6] Jian Zhang, Yu Wang, Xiangdong Ding, Zhen Zhang, Yumei Zhou, Xiaobing Ren, Dong Wang, Yuanchao Ji, Minghui Song, Kazuhiro Otsuka, and Jun Sun, Physical Review B 84, 214201 (2011).
[7] R. Vasseur, D. Xue, Y. Zhou, W. Ettoumi, X. Ding, X. Ren, and T. Lookman, Physical Review B 86, 184103 (2012).
[8] S. Kustov, D. Salas, E. Cesari, R. Santamarta, D. Mari, J. Van Humbeeck, Acta Materialia 73, 275–286 (2014).
[9] H. Emami, F. Cuevas, Intermetallics 19, 876 (2011).
[10] Orlando Rios, Ronald Noebe, Tiffany Biles, Anita Garg, Anna
Palczer, Daniel Scheimanb, Hans Jürgen Seifert, Michael Kaufman,
Proc. SPIE 5761, 376 (2005).
[11] A. Terayamaa, H. Kyogokub, Mater. Sci. Eng. A 527, 5484 (2010).
[12] B. Ramachandran, R. C. Tang, P. C. Chang, Y. K. Kuo, C. Chien, and S. K. Wu, J. Appl. Phys. 113, 203702 (2013).
[13] Xu Wang, Jia-Xiang Shang, Fu-He Wang, Yue Chen, Journal of
Alloys and Compounds 678, 325-328 (2016).
[14] P.C. Su, S.K. Wu, Acta Mater. 52, 1117-1122 (2004).
[15] Yuanchao Ji, Xiangdong Ding, Turab Lookman, Kazuhiro Otsuka,
and Xiaobing Ren,Phys. Rev. B 87, 104110 (2013).
[16] Xiebin Wang, Kai Li, Dominique Schryvers, Bert Verlinden and Jan
Van Humbeeck, Scripta Materialia 72–73, 21–24 (2014).
[17]Xiebin Wang, Sergey Kustov, Kai Li, Dominique Schryvers, Bert
Verlinden and Jan Van Humbeeck, Acta Mater. 82, 224-233 (2015).
[18] Yuanchao Ji, Dong Wang, Xiangdong Ding, Kazuhiro Otsuka, and
Xiaobing Ren ,Phys. Rev. Lett. 114, 055701 (2015).
[19] 賴耿陽, 形狀記憶合金 (復漢出版,1999)。
[20] 陳漢哲,Ni_2 Mn_(1+x) Ga_(1-x)(x = -5 ~ +5 at.%)磁彈性形狀記憶合金之研究。
[21] 許博純,Ni_2 Mn_(1+x) Ga_(1-x) (x= -1~ +4 at.%)磁彈型形狀記憶合金之研究 (2001).
[22] H. Warlimont and L. Delaey, Prog. Mater. Sci. 18, 619 (1974).
[23] S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, Journal de Phys. Coll, 43, C4-225 (1982).
[24] K. Otsuka, X. Ren, Progress in Materials Science 50, 511–678
(2005).
[25] S. Miyazaki, K. Otsuka, Philos. Mag. A 50, 393-408 (1984).
[26] P. Sˇittner, M. Landa, P. Luka sˇ, V. Nova k, Mechanics of Materials
38 475–492 (2006).
[27] S. Miyazaki, Y. Igo, K. Otsuka, Acta Metall. 34, 2045-2051 (1986). [28] J.H. Ha, S.K. Kim, N. Cohenca, H.C. Kim, J. Endod. 39, 389-393
(2013).
[29]張珮琪,鈦鎳基形狀記憶合金相變行為之熱電性質研究(2017)
[30] Kazuhiro Otsuka, Xiaobing Ren, Intermetallics 7, 511–528 (1999). [31] T. W. Duerig, K. Bhattacharya, Shap. Mem. Superelasticity1, 153–
161 (2015).
[32] T. Saburi, S. Nenno and C. M. Wayman, ICOMAT-79, 619 (1979).
[33] Deepak Kapoor, Johnson Matthey Technol. Rev., 61, 66-76 (2017).
[34] G. Fan, Y. Zhou, W. Chen, S. Yang, X. Ren, K. Otsuka, Materials
Science and Engineering A 438-440, 536-539 (2006).
[35] Junwon Seo, Young Chan Kim, and Jong Wan Hu, Appl. Sci. 5, 187-
208 (2015).
[36] Y. Wang, X. Ren, K. Otsuka, A. Saxena, Acta Mater. 56, 2885–2896
(2008).
[37] Chen Chien, Cheng-Si Tsao, Shyi-Kaan Wu, Chun-Yu Chang, Pei-
Chi Chang, Yung-Kang Kuo, Acta Materialia 120, 159-167 (2016).
[38] Yumei Zhou, Dezhen Xue, Ya Tian, Xiangdong Ding, Shengwu Guo,
Kazuhiro Otsuka, Jun Sun, and Xiaobing Ren, Phys. Rev. Lett. 112,
025701 (2014).
[39] Yu Wang, Xiaobing Ren, Kazuhiro Otsuka, and Avadh Saxena, Phys.
Rev. B 76, 132201 ( 2007).
[40] B. Ramachandran, C.H. Chen, P.C. Chang, Y.K. Kuo, C. Chien, S.K.
Wu, Intermetallics 60, 79-85 (2015).
[41]中國材料學會固態物理網路教材 (1999).
[42] D. D. Pollock, Thermoelectricity, p111-132 (1985).
[43]盧清隆, A晶格位置無序對La_(0.5-x) Ln_x Ca_(0.5-y) AyMnO_3的磁性、電性及熱性性質影響 (2009).
[44] F. J. Blatt, P. A. Schroeder, C. L. Foiles and D. Greig, Thermoelectric Power of Metals (Plenum Press, New York, 1976).
[45]江仲鎰,超導材料Mo_3 Al_2 C摻雜鈮(Nb)、釕(Ru)之超導性質研 究 (2013).
[46] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2003).
[47] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, Philadelphia, 1976).
[48] 許芳雪, Lu_5 Ir_4 Si_10 及 Lu_5 Rh_4 Si_10 之電荷密度波相變的比熱研究(2001).
[49] M. Chung, E. Figueroa, Y. K. Kuo, Y. Wang and J. W. Brill, Phys.
Rev. B 48, 9256 (1993).
[50]陳俊宏,富鎳之鈦鎳形狀記憶合金Ti_(50-x) Ni_(50+x)熱電性質及傳輸性質研究(2013)
[51] Yu-Cheng Lai and Shyi. Kaan. Wu, Metallurgical and Materials Transactions A 52,4636-4648 (2021).
[52] J. Y. Lee, G. C. McIntosh, A. B. Kaiser, Y. W. Park, M. Kaack, J.
Pelzl, C. K. Kim and K. Nahm, J. Appl. Phy. 89, 6223 (2001).
[53]R.S. Markiewicz, J. Phys. Chem. Solids 58,1179(1997).
[54] M. E. Manley, M. Asta, J. C. Lashley, C. M. Retford, W. L. Hults, R.D. Taylor, D. J. Thoma, J. L. Smith, R. E. Hackenberg, and K.
Littrell, Phys. Rev. B 77, 024201 (2008).
(此全文20250117後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *