帳號:guest(3.145.89.186)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:郭曉易
作者(英文):Hsiao-Yi Kuo
論文名稱:自對準奈米氧化鋅的磊晶製備法與性質研究
論文名稱(英文):Epitaxy-based fabrication of self-aligned nanoscale zinc oxide and its property
指導教授:黃玉林
指導教授(英文):Yue-Lin Huang
口試委員:陳企寧
蔡宗惠
口試委員(英文):Chi-Ning Chen
Tsung-Hui Tsai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610914205
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:93
關鍵詞:自對準奈米氧化鋅磊晶蒸氣傳輸沉積法光致發光
關鍵詞(英文):self-aligned nanoscale zinc oxidevapor transport depositionPhotoluminescence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:12
  • 收藏收藏:0
本研究以ZnO/Al2O3(0001)為高失配材料模型系統,使用蒸氣傳輸沉積法形成磊晶氧化鋅,利用SEM、XRD方法觀察,探討製備條件對沉積奈米結構的形貌與磊晶序度的影響。此外,在10K-300K不同溫度下測量氧化鋅的激子螢光行為與偏振效應、光學吸收,藉此評估不同形貌與結晶/磊晶品質對氧化鋅光學光學性質的影響。我們發現,控制溫度、傳輸蒸氣的鋅/氧濃度比、傳輸距離可調控氧化鋅的形貌與磊晶結構序度。1D奈米線與2D薄膜均未表現與氧化鋅形貌、磊晶方向相關的本徵(intrinsic)偏振效應。相較於高溫退火的濺鍍氧化鋅薄膜,磊晶氧化鋅表現可見光螢光相對強度較低、激子螢光譜峰能量較高且峰寬較小、吸收光譜的激子共振峰較顯著,可歸因於磊晶氧化鋅的較佳結晶品質、較低缺陷濃度。觀察光致螢光的激激發強度相依發現,磊晶氧化鋅奈米線在低溫(< 20 K)表現激子雷射特徵。

Effects of conditions of vapor transport deposition on morphology and epitaxial ordering of the deposited nanostructures, taking ZnO/Al2O3(0001) as a model system for highly mismatched materials, have been investigated using SEM and XRD. Excitonic luminescence, its polarization effects, and absorbance were measured at 10K-300K, revealing the impacts of morphology and crystallization/epitaxy quality on the optical properties of ZnO. We found that tuning the deposition temperature, Zn/O vapor ratio, and vapor transport distance may control the morphology and epitaxial ordering of obtained zinc oxide.

摘要 iii
Abstract iv
目錄 v
圖目錄 vi
表目錄 ix
第1章 緒論 1
1.1 簡介 1
1.2 研究問題 2
第2章 磊晶原理與自對齊非等向晶體成長 3
2.1傳統的磊晶成長模式(近熱力學平衡) 3
2.2 運動學條件 5
2.3 非等向晶體成長(non-isotropic crystal growth)與成長模式 8
第3章 樣品製備與量測方法 10
3.1 氣相沉積儀建構 10
3.2 樣品製備程序 12
3.3 x射線繞射法 12
3.4 光致螢光(photoluminescence PL)與吸收度(absorbance)觀察方法 18
第4章 晶體結構與形貌 22
4.1 表面形貌 23
4.2 晶體結構與磊晶關係 29
第5章 光學性質 43
5.1 室溫光致螢光 43
5.2 光學偏振效應 49
5.3 室溫吸收度 53
5.4 變溫光學量測 56
第6章 討論、結論與展望 65
附錄 69
參考文獻 73
[1] A. Ghicov, P. Schmuki, Self-ordering electrochemistry: a review on growth and functionality of TiO2 nanotubes and other self-aligned MOx structures, Chemical Communications, DOI 10.1039/b822726h(2009) 2791-2808.
[2] H.S. Jang, T.H. Kim, B.G. Kim, B. Hou, I.H. Lee, S.H. Jung, J.H. Lee, S. Cha, C.W. Yang, B.S. Kim, D. Whang, Self-Catalytic Growth of Elementary Semiconductor Nanowires with Controlled Morphology and Crystallographic Orientation, Nano Lett., 21 (2021) 9909-9915.
[3] H. Brune, M. Giovannini, K. Bromann, K. Kern, Self-organized growth of nanostructure arrays on strain-relief patterns, Nature, 394 (1998) 451-453.
[4] M. Zervos, N. Lathiotakis, N. Kelaidis, A. Othonos, E. Tanasa, E. Vasile, Epitaxial highly ordered Sb:SnO2 nanowires grown by the vapor liquid solid mechanism on m-, r-and a-Al2O3, Nanoscale Advances, 1 (2019) 1980-1990.
[5] A. Charalampous, M. Zervos, J. Kioseoglou, K. Tsagaraki, M. Androulidaki, G. Konstantinidis, E. Tanasa, E. Vasile, Epitaxially Oriented Sn:In2O3 Nanowires Grown by the Vapor-Liquid-Solid Mechanism on m-, r-, a-Al2O3 as Scaffolds for Nanostructured Solar Cells, Acs Applied Energy Materials, 2 (2019) 4274-4283.
[6] S.G. Wang, X.X. Ji, Y. Ao, J. Yu, Substrate-orientation dependent epitaxial growth of highly ordered diamond nanosheet arrays by chemical vapor deposition, Nanoscale, 10 (2018) 2812-2819.
[7] S.I. Kim, H. Yoon, H. Lee, S. Lee, Y. Jo, S. Lee, J. Choo, B. Kim, Epitaxy-driven vertical growth of single-crystalline cobalt nanowire arrays by chemical vapor deposition, Journal of Materials Chemistry C, 3 (2015) 100-106.
[8] X. Sun, J.L. MacManus-Driscoll, H.Y. Wang, Spontaneous Ordering of Oxide-Oxide Epitaxial Vertically Aligned Nanocomposite Thin Films, in: D.R. Clarke (Ed.) Annual Review of Materials Research, Vol 50, 2020, pp. 229-253.
[9] B. De Schutter, K. De Keyser, C. Lavoie, C. Detavernier, Texture in thin film silicides and germanides: A review, Appl. Phys. Rev., 3 (2016).
[10] F. Leroy, L. Borowik, F. Cheynis, Y. Almadori, S. Curiotto, M. Trautmann, J.C. Barbe, P. Muller, How to control solid state dewetting: A short review, Surf. Sci. Rep., 71 (2016) 391-409.
[11] E. Bauer, H. Poppa, RECENT ADVANCES IN EPITAXY, Thin Solid Films, 12 (1972) 167-+.
[12] Z.Y. Zhang, M.G. Lagally, Atomistic processes in the early stages of thin-film growth, Science, 276 (1997) 377-383.
[13] M. Einax, W. Dieterich, P. Maass, Colloquium: Cluster growth on surfaces: Densities, size distributions, and morphologies, Rev. Mod. Phys., 85 (2013) 921-939.
[14] C.A. Wang, Early history of MOVPE reactor development, J. Cryst. Growth, 506 (2019) 190-200.
[15] P. Geysermans, F. Finocchi, J. Goniakowski, R. Hacquart, J. Jupille, Combination of (100), (110) and (111) facets in MgO crystals shapes from dry to wet environment, Phys. Chem. Chem. Phys., 11 (2009) 2228-2233.
[16] Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications, J. Phys.-Condes. Matter, 16 (2004) R829-R858.
[17] Z.L. Wang, X.Y. Kong, J.M. Zuo, Induced growth of asymmetric nanocantilever arrays on polar surfaces, Physical Review Letters, 91 (2003) 4.
[18] Y.H. Zhang, X.B. Song, J. Zheng, H.H. Liu, X.G. Li, L.P. You, Symmetric and asymmetric growth of ZnO hierarchical nanostructures: nanocombs and their optical properties, Nanotechnology, 17 (2006) 1916-1921.
[19] Y. Turkulets, I. Shalish, Polar-charge-induced self-assembly: Electric effect that causes nonisotropic nanorod growth in wurtzite semiconductors, Physical Review Materials, 3 (2019).
[20] A.R. Azulay, Y. Turkulets, D. Del Gaudio, R.S. Goldman, I. Shalish, Why do nanowires grow with their c-axis vertically-aligned in the absence of epitaxy?, Sci Rep, 10 (2020).
[21] F. Glas, M.R. Ramdani, G. Patriarche, J.C. Harmand, Predictive modeling of self-catalyzed III-V nanowire growth, Phys. Rev. B, 88 (2013) 14.
[22] S. Rackauskas, A.G. Nasibulin, Nanowire Growth without Catalysts: Applications and Mechanisms at the Atomic Scale, Acs Applied Nano Materials, 3 (2020) 7314-7324.
[23] A. Klamchuen, M. Suzuki, K. Nagashima, H. Yoshida, M. Kanai, F. Zhuge, Y. He, G. Meng, S.C. Kai, S. Takeda, T. Kawai, T. Yanagida, Rational Concept for Designing Vapor-Liquid-Solid Growth of Single Crystalline Metal Oxide Nanowires, Nano Lett., 15 (2015) 6406-6412.
[24] D.J. Shu, X. Xiong, M. Liu, M. Wang, Phase diagram of interfacial growth modes by vapor deposition and its application for ZnO nanostructures, Phys. Rev. B, 96 (2017) 7.
[25] H.Z. Zhang, X.C. Sun, R.M. Wang, D.P. Yu, Growth and formation mechanism of c-oriented ZnO nanorod arrays deposited on glass, J. Cryst. Growth, 269 (2004) 464-471.
[26] Y. Kajikawa, S. Noda, H. Komiyama, Preferred orientation of chemical vapor deposited polycrystalline silicon carbide films, Chemical Vapor Deposition, 8 (2002) 99-104.
[27] A.C. Gandhi, C.H. Liao, W.L. Yeh, Y.L. Huang, Non-monotonous size-dependent photoluminescence and excitonic relaxations in nanostructured ZnO thin films, RSC Adv., 9 (2019) 2180-2188.
[28] S.C. Erwin, C.X. Gao, C. Roder, J. Lahnemann, O. Brandt, Epitaxial Interfaces between Crystallographically Mismatched Materials, Physical Review Letters, 107 (2011) 4.
[29] 張俊明、黃玉林, 私人通訊 DOI (2022).
[30] G.M. Hanket, B.E. McCandless, W.A. Buchanan, S. Fields, R.W. Birkmire, Design of a vapor transport deposition process for thin film materials, J. Vac. Sci. Technol. A, 24 (2006) 1695-1701.
[31] G.C. Fan, Z.Y. Huang, J.Y. Jiang, L. Sun, Standard molar enthalpy of formation of the ZnO nanosheets, Journal of Thermal Analysis and Calorimetry, 110 (2012) 1471-1474.
[32] D. van Dam, D.R. Abujetas, R. Paniagua-Dominguez, J.A. Sanchez-Gil, E. Bakkers, J.E.M. Haverkort, J.G. Rivas, Directional and Polarized Emission from Nanowire Arrays, Nano Lett., 15 (2015) 4557-4563.
[33] P. Corfdir, F. Feix, J.K. Zettler, S. Fernandez-Garrido, O. Brandt, Importance of the dielectric contrast for the polarization of excitonic transitions in single GaN nanowires, New Journal of Physics, 17 (2015).
[34] 吳民安, 微奈米尺度氧化鋅的光致螢光與激子放射/Photoluminescence of Micro- and Nanoscale Zinc Oxide, 國立東華大學碩士論文, DOI (2018).
[35] J. Petersen, C. Brimont, M. Gallart, O. Cregut, G. Schmerber, P. Gilliot, B. Honerlage, C. Ulhaq-Bouillet, J.L. Rehspringer, C. Leuvrey, S. Colis, H. Aubriet, C. Becker, D. Ruch, A. Slaoui, A. Dinia, Structural and photoluminescence properties of ZnO thin films prepared by sol-gel process, J. Appl. Phys., 104 (2008) 5.
[36] A. Singh, S.S. Jo, Y.F. Li, C.M. Wu, M. Li, R. Jaramillo, Refractive Uses of Layered and Two-Dimensional Materials for Integrated Photonics, Acs Photonics, 7 (2020) 5270-5285.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *