帳號:guest(18.118.93.185)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳靖岳
作者(英文):Jing-Yue Chen
論文名稱:鈦鎳鐵形狀記憶合金(Ti50-xNi48+xFe2) 相變行為之熱電性質研究
論文名稱(英文):Electrical and thermal properties of Ti50-xNi48+xFe2 shape memory alloys.
指導教授:郭永綱
指導教授(英文):Yung-Kang Kuo
口試委員:呂欽山
黃玉林
口試委員(英文):Chin-Shan Lue
Yue-Lin Huang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610914211
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:123
關鍵詞:形狀記憶合金麻田散體應變玻璃時效處理析出物
關鍵詞(英文):Shape memory alloyMartensiteStrain GlassAging treatmentPrecipitate
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
本論文針對形狀記憶合金Ti50-xNi48+xFe2 ( x = 0.0, 0.5, 1.0, 1.5, 2.0 )系列樣品,於10 K 至350 K 溫度區間進行電阻率( ρ )、熱電勢( S )、熱導率( κ )及比熱( Cp )之熱電性質量測,以探討固定第三元素( Fe )、鈦鎳比例互換,以及經450 C時效處理100 hr後對其麻田散體相變之影響。
電阻率結果顯示摻雜量x = 0.0, 0.5樣品,其相變行為B2 ↔ R ↔ B19’;其次摻雜量為x = 1.0, 1.5, 2.0樣品,其相變行為B2 ↔ R,且此一系列樣品升溫與降溫之相變皆顯示熱遲滯現象。熱電勢在物理量測中極為敏銳,可更清楚標示相變溫度,熱電勢量測結果顯示溫度區間內均為正值,其主要傳輸載子為電洞;且熱電勢及電阻率在量測溫度區間中皆表現出典型的金屬性行為。熱傳導率方面,隨著溫度的下降,一系列樣品熱傳導率於B2 ↔ R相變時皆降低;而摻雜量x = 0.0, 0.5樣品,在R ↔ B19’相變時,熱傳導率皆升高。比熱方面,摻雜量為x =0.0, 1.0, 1.5, 2.0樣品,隨著鎳含量的增加,熵值有下降的趨勢且相變峰值往低溫移動;而摻雜量x = 0.5樣品因有兩個相變峰值,使得熵值較大。
此外,本系列樣品經時效處理後,消弭樣品內的缺陷及生成析出物( Ti3Ni4 )之影響,發現摻雜量x = 0.0樣品與無時效處理的熱電性質相似。其次,x = 0.5樣品與無時效處理的熱電性質有些微差異;而x = 1.0, 1.5, 2.0樣品由無時效處理的低溫應變玻璃相( strain glass; STG )變為一階段低溫R相( rhombohedral phase )之麻田散體相變。
In this thesis, we report on the measurements of temperature-dependent electrical resistivity (ρ), Seebeck coefficient (S), thermal conductivity (κ), and specific heat (Cp) in the temperature range 10 to 350 K on the shape memory alloys (SMAs) Ti50-xNi48+xFe2 ( x = 0.0, 0.5, 1.0, 1.5, 2.0 ). To investigate the influence of the characteristics of martensitic transformation in TiNi-based SMAs, we fixed the content of the third element Fe by varying Ti/Ni ratio, and these alloys were annealed at 723 K for 100 hrs.
It was found that the resistivity of the Ti50-xNi48+xFe2 (x ≤ 0.5) SMAs shows a two-stage martensitic transformation (B2→R and R→B19), while the Ti50-xNi48+xFe2 (x≧1.0) SMAs display a one-stage martensitic transition (B2→R). All the studied samples show thermal hysteresis behavior during the phase transition temperatures. The Seebeck coefficient of these Ti50-xNi48+xFe2 alloys was found to be positive, suggesting the hole-type carriers dominate the thermoelectric transport. The Seebeck coefficient and resistivity show a typical metallic behavior in the studied SMAs. With the decrease in temperature, the thermal conductivity of the alloys decreases during the B2↔R transition, while κ increases during the R↔B19’ transition. The transition temperature is found to decrease gradually with increasing Ni content, and the driving force for the transition diminishes, as revealed by the specific heat measurements.
After the aging treatment, the influence of the formation of precipitates (Ti3Ni4) and defects are eliminated in these alloys, and the thermal and transport properties of the Ti50-xNi48+xFe2 (x ≤ 0.5) are similar to those of the samples without aging treatment. Remarkably, the Ti50-xNi48+xFe2 (x≧1.0) alloys change from the strain glass behavior to the one-stage martensitic transition (B2→R) with aging treatment.
致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 X
表目錄 XIV
第一章 前言 1
1-1 簡介 1
1-2 實驗動機及目的 3
第二章 材料特性 4
2-1 形狀記憶合金 4
2-2 麻田散體相變 6
2-2-1 熱彈性與非彈性麻田散體 9
2-2-2 R相麻田散體 14
2-2-3 R相麻田散體與B19’麻田散體之差異 16
2-3 形狀記憶效應 21
2-4 超彈性 23
2-5 應變玻璃態 25
2-6 時效處理 28
2-6-1 富鎳TiNi形狀記憶合金之時效處理及析出物 29
第三章 實驗原理 31
3-1 電阻率 31
3-2 熱電勢 35
3-3 熱傳導率 41
3-3-1 電子對熱傳導率的影響 44
3-3-2 聲子對熱傳導率的影響 46
3-4 比熱 50
3-4-1 晶格比熱 51
3-4-2 電子比熱 52
第四章 實驗方法 53
4-1 量測系統與方法 53
4-1-1 低溫冷卻與方法 53
4-1-2 電阻率量測方法 57
4-1-3 熱傳導率的量測方法 59
4-1-4 熱電勢量測方法 61
4-1-5 比熱量測方法 62
4-1-6 運作頻率之選擇方法 68
4-2 實驗控制程式 71
第五章 實驗結果與分析 79
5-1 電阻率對溫度的量測分析 79
5-2 熱電勢對溫度的量測分析 89
5-3 熱傳導率對溫度的量測分析 99
5-4 比熱對溫度的量測分析 106
第六章 結論 114
參考文獻 116

[1] L.C. Chang, T.A. Read, Trans. AIME., 189 (1951) 47-52.
[2] M.W. Burkart, T.A. Read, Trans. AIME., 197 (1953) 1516-1524.
[3] E. Hornbogen, G.Wassermann, Z. Metallkunde, 47 (1956) 427-433.
[4] W.J. Buehler, R.C. Wiley, J.V. Gilfrich, J. Appl. Phys., 34 (1963) 1475-1477.
[5] T. Tadaki, C.M. Wayman, Scr. Metall., 14 (1980) 911-914.
[6] K. Otsuka, K. Shimizu, Int. Met. Rev., 31 (1986) 93-114.
[7] R.F. Hehemann, G.D. Sandrock, Scr. Metall., 5 (1971) 801-805.
[8] C. M. Jackson, H. J. Wagner, R. J. Wasilewski, NASA Report No. SP-5110 (Washington, DC, 1972), pp. 23
[9] M. Nishida and T. Honma, Scr. Met. 18, 1293 (1984).
[10] S. Miyazaki, in Engineering Aspects of Shape Memory Alloys, edited b y T.W. Duerig, K. N. Melton, D. Stöckel, and C. M. Wayman (Butterworth Publishers, London, 1990), p. 394.
[11] H. Matsumoto, J. Alloys Compd. 364, 132 (2004).
[12] J. Uchil, K. Ganesh Kumara, and K. K. Mahesh, Mater. Sci. Eng. A 332, 25 (2002).
[13] S. Y. Cha, S. Y. Jeong, J. H. Park, S. E. Park, J. K. Park, and C. R. Cho, J. Korean Phys. Soc. 49, S580 (2006).
[14] J. Y. Lee, G. C. McIntosh, A. B. Kaiser, Y. W. Park, M. Kaack, J. Pelzl, C. K. Kim, and K. Nahm, J. Appl. Phy. 89, 6223 (2001).
[15] H. Matsumoto, Physica B 190, 115 (1993).
[16] J. S. Zhu and R. Gotthardt, Phys. Lett. A 132, 279 (1988).
[17] S. K. Wu, H. C. Lin, and T. S. Chou, Acta Metall. Mater. 38, 95 (1990).
[18] 賴耿陽, 形狀記憶合金 (復漢出版,1999).
[19] 陳漢哲, Ni2Mn1+xGa1-x(x = -5 ~ +5 at.%)磁彈型形狀記憶合金之研究 (1999).
[20] 許博純, Ni2+xMnGa1-x(x = -1 ~ +4 at.%)磁彈型形狀記憶合金之研究 (2001).
[21] H. Warlimont and L. Delaey, Prog. Mater. Sci. 18, 619 (1974).
[22] S. Miyazaki, Y. Ohmi, K. Otsuka, Y. Suzuki, Journal de Phys. Coll.43, C4-225 (1982).
[23] K. Otsuka, X. Ren, Progress in Materials Science 50, 511–678 (2005).
[24] S. Miyazaki, K. Otsuka, Philos. Mag. A 50, 393-408 (1984).
[25] P. Sˇittner, M. Landa, P. Luka´sˇ, V. Nova´k, Mechanics of Materials 38 475–492 (2006).
[26] S. Miyazaki, Y. Igo, K. Otsuka, Acta Metall. 34, 2045-2051 (1986).
[27] J.H. Ha, S.K. Kim, N. Cohenca, H.C. Kim, J. Endod. 39, 389-393 (2013).
[28] 張珮琪, 鈦鎳基形狀記憶合金相變行為之熱電性質研究(2017)
[29] Kazuhiro Otsuka, Xiaobing Ren, Intermetallics 7, 511–528 (1999).
[30] T. W. Duerig, K. Bhattacharya, Shap. Mem. Superelasticity1, 153–161 (2015).
[31] T. Saburi, S. Nenno and C. M. Wayman, ICOMAT-79, 619 (1979).
[32] Deepak Kapoor, Johnson Matthey Technol. Rev., 61, 66-76 (2017).
[33] G. Fan, Y. Zhou, W. Chen, S. Yang, X. Ren, K. Otsuka, Materials Science and Engineering A 438-440, 536-539 (2006).
[34] Yu Wang, Xiaobing Ren, and Kazuhiro Otsuka, Phys. Rev. Lett. 97, 225703 (2006).
[35] Y. Wang, X. Ren, K. Otsuka, A. Saxena, Acta Mater. 56, 2885–2896 (2008).
[36] Yuanchao Ji, Xiangdong Ding, Turab Lookman, Kazuhiro Otsuka, and Xiaobing Ren,Phys. Rev. B 87, 104110 (2013).
[37] Yumei Zhou, Dezhen Xue, Ya Tian, Xiangdong Ding, Shengwu Guo, Kazuhiro Otsuka, Jun Sun, and Xiaobing Ren, Phys. Rev. Lett. 112, 025701 (2014).
[38] D. Koskimaki, M.J. Marcinkowski, A. Sastri, Trans. AIME., 245 (1969) 1883-1890.
[39] M. Nishida, C.M. Wayman, T. Honma, Metall. Trans. A, 17 (1986) 1505-1515.
[40] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Trans., JIM, 27 (1986) 731-740.
[41] W. Tirry, D. Schryvers, K. Jorissen, D. Lamoen, Mater. Sci. Eng. A, 438 (2006) 517-520.
[42] M. Nishida, C.M. Wayman, A. Chiba, Metallography, 21 (1988) 275-291.
[43] M. Nishida, C.M. Wayman, Metall. Mater. Trans. A, 18 (1987) 785-799.
[44] S.K. Wu, H.C. Lin, Scr. Metall. Mater., 25 (1991) 1529-1532.
[45] T. Tadaki, Y. Nakata, K. Shimizu, K. Otsuka, Trans., JIM, 27 (1986) 731-740.
[46] Daniel D. Pollock, Thermoelectricity, (Wiley, New York, p.111-132, 1985)
[47] D. M. Rowe, CRC Handbook of Thermoelectrics, (CRC Press, Florida, p.1-131, 1995)
[48] G.S. Nolas, J. Sharp and H.J Goldsmid, Thermoelectrics Basic Principles and new materials developments. 42-43 (Springer, New York, (2001)
[49] 陳裕元, 三元介金屬化合物Y5Ir4Si10之電荷密度波相變研究 (2004)
[50] David Jiles, Introduction to the Electronic Properties of Materials, (Chapman and Hall, London, p46-48, 1994)
[51] Y. Tokure, JSAP international No.2 (Jul. 2000)
[52] 中國材料學會固態物理網路教材(1999)
[53] C. Kittel, Introduction to Solid State Physics (Wiley, New York, 2003).
[54] N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, Philadelphia, 1976).
[55] 林政文, 釔摻雜對SrAl2Si2傳輸性質影響之研究 (2010)
[56] 許芳雪, Lu5Ir4Si10及Lu5Rh4Si10之電荷密度波相變的比熱研究 (2001).
[57] 李昱嫻, 鎳摻雜鈦鎳鐵形狀記憶合金之熱電性質研究 (2021)
[58] 張翊竫, 熱循環及時效對鈦鎳基形狀記憶合金麻田散體變態影響之研究 (2018)
[59] 凃竣翔, 熱處理對Ti48.5Ni49.5Fe2形狀記憶合金變態行為與HfNbTiZr高熵合金機械性質影響之研究
[60] C.H. Tu, S.K. Wu, C. Lin, B.Y. Huang, Intermetallics 132(5):107123
[61] Y.C. Lai, S.K. Wu, Metallurgical and Materials Transactions A volume 52, pages4636–4648 (2021)
[62] 陳俊宏, 富鎳之鈦鎳形狀記憶合金Ti50-xNi50+x熱電及傳輸性質研究(2014)
[63] 魏瑋君, 鈦鎳基形狀記憶合金之傳輸及熱電性質研究 (2011)
[64] G.L. Fan, W. Chen, S. Yang, J.H. Zhu, X.B. Ren, K. Otsuka, Acta Mater., 52 (2004) 4351-4362
(此全文20270814後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *