帳號:guest(3.135.204.0)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Giap Thi Hien
作者(英文):Giap Thi Hien
論文名稱:變層三氯化鉻之變溫光致螢光
論文名稱(英文):Variable-Temperature Photoluminescence of Variable-Layer CrCl3
指導教授:馬遠榮
指導教授(英文):Yuan-Ron Ma
口試委員:賴建智
沈志霖
口試委員(英文):Chien-Chi Lai
Ji-Lin Shen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:物理學系
學號:610914214
出版年(民國):111
畢業學年度:110
語文別:英文
論文頁數:59
關鍵詞(英文):CrCl3Few layerPhotoluminescence
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
In this work, we synthesize layered two-dimensional (2D) single crystals of CrCl3 by chemical vapor transport method using a three-zone tube furnace and mechanically exfoliated to bilayers under atmospheric conditions. The anomalous photoluminescence (PL) spectra of bulk CrCl3 at 1.75 μm and 2.4μm were observed at varying temperatures for the first time. The temperature-dependent PL spectroscopy from flakes to bilayer CrCl3 represents that the PL linewidth increases proportionally with increasing temperature in the range of 80-300K. Through microscale and nanoscale investigations, we confirm that the broadening of PL spectra of CrCl3 with varying temperatures emphasizes the effect of the exciton-phonon interactions. The narrowing of PL spectra at low temperatures is attributed to a reduced contribution of exciton-phonon coupling. Furthermore, there is a strong dependence of the linewidths broadening on various numbers of layers of 2D CrCl3. The temperature-induced broadening is extensive for the bilayers compared to the 72 layers upon the cooling and heating of 2D CrCl3 layers. In addition, the exciton-phonon coupling strength drastically decreased from the bilayer to the 72 layers, suggesting that the exciton-phonon coupling-induced homogeneous broadening is significant in the bilayer compared to the multilayer. Finally, we explored the effect of exciton-phonon interaction for the first time based on the various layers in the 2D CrCl3 semiconductor.
Abstract i
Acknowledgments ii
List of Tables iii
List of Figure iv
Table of Contents viii
Chapter 1 Introduction 1
1.1 Two Dimensional (2D) Layered Materials 1
1.1.1 Graphene 2
1.1.2 h-BN 3
1.1.3 Transition metal trihalides 3
1.2 Chromium trichloride (CrCl3) 4
1.3 Photoluminescence (PL) 5
1.4 Exciton 7
1.4.1 Free excitons 8
1.4.2 Tightly bound excitons 9
1.4.3 Bound excitons 9
1.5 Motivation 9
Chapter 2 Synthesis and Characterization 11
2.1 Synthesis method - Chemical vapor transport (CVT) 11
2.1.1 Mechanical exfoliation of bulk CrCl3 crystals 13
2.2 Characterization 13
2.2.1 Optical Microscopy 14
2.2.2 Field Emission Scanning Electron Microscopy (FESEM) 15
2.2.3 Energy Dispersive X-ray Spectroscopy (EDS) 16
2.2.4 X-ray photoelectron spectroscopy (XPS) 17
2.2.5 X-Ray Diffraction (XRD) 19
2.2.6 Transmission electron microscopy (TEM). 20
2.2.7 Atomic Force Microscopy (AFM) 22
2.2.8 Photoluminescence (PL) 23
2.2.9 Raman spectroscopy 24
Chapter 3 Results and Discussion 26
3.1 Morphological Surface Studies 26
3.1.1 Optical Microscopy Analysis 26
3.1.2 Field Emission Scanning Electron Microscopy (FESEM) 27
3.2 Chemical Composition Studies 27
3.2.1 Energy Dispersive X-ray Spectroscopy Analysis 27
3.2.2 X-ray Photoelectron Spectroscopy Analysis 28
3.3. Crystallinity Studies 29
3.3.1 X-ray Diffraction analysis 29
3.3.2 Transmission electron microscopy (TEM) analysis 30
3.4 Raman Spectroscopy Analysis 31
3.5 Few layers CrCl3 Optical Microscopy Analysis 32
3.6 Atomic Force Microscopy (AFM) analysis 32
3.7 Photoluminescence Spectroscopy Analysis 35
3.7.1 Photoluminescence of single-crystal CrCl3 at room temperature 35
3.7.2 Temperature-dependent photoluminescence of single-crystal CrCl3 38
Chapter 4 Conclusion 51
Reference 52
[1] A. Gupta, T. Sakthivel and S. Seal. Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44-126 (2015).
[2] S. Senapati and P. P. Maiti. Emerging bio-applications of two-dimensional nano heterostructure materials. In: 2D Nanoscale Heterostructured Materials ed. S. Jit and S. Das, Elsevier, p.243-255 (2020).
[3] M. Gibertini, M. Koperski, A. F. Morpurg and K. S. Novoselov. Magnetic 2D materials and heterostructures. Nat. Nanotechnol. 14, 408-419 (2019)
[4] M. H. Kang, D. Lee, J. Sung, J. Kim, B. H. Kim and J. Park. Structure and chemistry of 2D materials. Comp. Nanosci. Natotechnol. 2, 55-59 (2019).
[5] R. Mas-Ballesté, C. Gómez-Navarro, J. Gómez-Herrero, and F. Zamora. 2D materials: To graphene and beyond. Nanoscale 3, 20-30 (2011).
[6] K. S. Burch, D. Mandrus, and J. G. Park. Magnetism in two-dimensional van der Waals materials. Nature 563, 47–52 (2018).
[7] J. U. Lee, S. Lee, J. H. Ryoo, S. Kang, T. Y. Kim, P. Kim, C. H. Park, J. G. Park, and H. Cheong. Ising-type magnetic ordering in atomically thin FePS3. Nano Lett. 16, 7433–7438 (2016).
[8] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F.Miao, and C. N. Lau. Superior thermal conductivity of single-layer graphene. Nano Lett. 8, 902-907 (2008).
[9] J. K. Wassei and R. B. Kaner. Graphen a promising transparent conductor. Materialstoday 13, 52-29 (2010).
[10] L. Britnell, R. V. Gorbachev, R. Jalil, B. D. Belle, F. Schedin, A. Mishchenko, T. Georgiou, M. I. Katsnelson, L. Eaves, S. V. Morozov, N. M. R. Peres, J. Leist, A. K. Geim, K. S. Novoselov and L. A. Ponomarenko. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335, 947-950 (2012).
[11] H. Li, S. Ruan and Y. J. Zeng. Intrinsic van der Waals magnetic materials from bulk to the 2D limit: New frontiers of spintronics. Adv. Mater. 31, 1900065 (2019).
[12] C. Gong and X. Zhang. Two-dimensional magnetic crystals and emergent heterostructure devices. Science 363, 706 (2019).
[13] M. A. McGuire. Crystal and magnetic structures in layered, transition metal dihalides and trihalides. Crystals 7, 121 (2017).
[14] X. Cai, T. Song, N. P. Wilson, G. Clark, M. He, X. Zhang, T. Taniguchi, K. Watanabe, W. Yao, D. Xiao, M. A. McGuire, D. H. Cobden and X. Xu. Atomically thin CrCl3. An in-plane layered antiferromagnetic insulator. Nano Lett. 19, 3993-3998 (2019).
[15] R. Zhu, W. Zhang, W. Shen, P. K. J. Wong, Q. Wang, Q. Liang, Z. Tian, Y. Zhai, C. W. Qiu and A. T. S. Wee. Exchange bias in van der Waals CrCl3/Fe3GeTe2 heterostructure. Nano Lett. 20, 5030-5035 (2020).
[16] Z. Qiu, M. Holwill, T. Olsen, P. Lyu, J. Li, H. Fang, H. Yang, M. Kashchenko, K. S. Novoselov and J. Lu. Visualizing atomic structure and magnetism of 2D magnetic insulators via tunneling through graphene. Nat. Commun. 12, 70 (2021).
[17] D. Zhong, K. L. Seyler, X. Linpeng, R. Cheng, N. Sivadas, B. Huang, E. Schmidgall, T. Taniguchi, K. Watanabe, M. A. McGuire, W. Yao, D. Xiao, K.-M. C. Fu and X. Xu. Van der Waals engineering of ferromagnetic semiconductor heterostructures for spin and valleytronics. Sci. Adv. 3, e1603113 (2017).
[18] K. L. Seyler, D. Zhong, D. R. Klein, S. Gao, X. Zhang, B. Huang, E. Navarro-Moratalla, L. Yang, D. H. Cobden, M. A. McGuire, W. Yao, D. Xiao, P. Jarillo-Herrero and X. Xu. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277-281 (2017).
[19] B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero and X. Xu. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270-273 (2017).
[20] Z. Zhang, J. Shang, C. Jiang, A. Rasmita, W. Gao, and T. Yu. Direct photoluminescence probing of ferromagnetism in monolayer two-dimensional CrBr3. Nano Lett. 19, 3138-3142 (2019).
[21] P. M. Grant and G. B.Street. Optical properties of the chromium trihalides in the region 1-11 eV. Bull. Am. Phys. Soc. II 13 (1968).
[22] I. Spinolo and G. Pollin. Intrinsic optical properties of CrCl3. Phys. Stat. Sol. 41 (1970).
[23] M. A. McGuire, G. Clark, K. C. Santosh, W. M. Chance, G. E. Jellison Jr, V. R. Cooper, X. Xu and B. C. Sales. Magnetic behavior and spin-lattice coupling in cleavable van der waals layered CrCl3 crystals. Phys. Rev. Mater. 1, 014001 (2017).
[24] D. R. Klein, D. MacNeill, Q. Song, D. T. Larson, S. Fang, M. Xu, R. A. Ribeiro, P. C. Canfield, E. Kaxiras, R. Comin and P. Jarillo-Herrero. Enhancement of interlayer exchange in an ultrathin two-dimensional magnet. Nat. Phys. 15, 1255-1260 (2019).
[25] L. Zhu and L. Yang. Quasiparticle energies and excitonic effects of chromium trichloride: From two dimensions to bulk. Phys. Rev. B 101, 245401 (2020).
[26] D. Shcherbakov, P. Stepanov, D. Weber, Y. Wang, J. Hu, Y. Zhu, K. Watanabe, T. Taniguchi, Z. Mao, W. Windl, J. Goldberger, M. Bockrath and C. N. Lau. Raman spectroscopy, photocatalytic degradation and stabilization of atomically thin. Nano Lett. 18, 4214-4219 (2018).
[27] M. Tebyetekerwa, J. Zhang, Z. Xu, T. N. Truong, Z. Yin, Y. Lu, S. Ramakrishna, D. Macdonald and H. T. Nguyen. Mechanisms and applications of steady-state photoluminescence spectroscopy in two-dimensional transition-metal dichalcogenides. ACS Nano. 14, 14579-14604 (2020).
[28] G Tardieu, G Teyssedre and C Laurent. Role of additives as recombination centers in polyethylene materials as probed by luminescence techniques. J. Phys. D: Appl. Phys. 35, 40–47 (2002).
[29] R. S. Muller and T. I. Kamins. Device electronics for integrated circuits, 3rd edition. John Wiley & Sons Inc, p.7-8 (1999).
[30] P.K. Basu. Theory of optical processes in semiconductors. Oxford University Press, p.206-207 (2003).
[31] T. Schmidt, K. Lischka and W. Zulehner. Excitation-power dependence of the near-band-edge photoluminescence of semiconductors. Phys. Rev. B 45, 8989–8994 (1992).
[32] Y. P. Varshni. Temperature dependence of the energy gap in semiconductors. Physica 34, 149-154 (1967).
[33] F. Muckel, S. Lorenz, J. Yang, T. A. Nugraha, E. Scalise, T. Hyeon, S. Wippermann, and G. Bacher. Exciton-driven change of phonon modes causes strong temperature dependent bandgap shift in nanoclusters. Nat. Commun. 11, 4127 (2020).
[34] C. Kittel. Introduction to solid-state physics, 8th edition. John Wiley & Sons Inc, p.435-441 (2021).
[35] C. Spindler, T. Galvani, L. Wirtz, G. Rey, and S. Siebentritt. Excitation-intensity dependence of shallow and deep-level photoluminescence transitions in semiconductors. J. Appl. Phys. 126, 175703 (2019).
[36] S. W. Ryu, J. Park, J. K. Oh, D. H. Long, K. W. Kwon, Y. H. Kim, J. K. Lee and J. H. Kim. Analysis of improved efficiency of InGaN light- emitting diode with bottom photonic crystal fabricated by anodized aluminumoxide. Adv. Funct. Mater. 19, 1650-1655 (2009).
[37] K. Szendrei, M. Speirs, W. Gomulya, D. Jarzab, M. Manca, O. V. Mikhnenko, M. Yarema, B. J. Kooi, W. Heiss and M. A. Loi. Exploring the origin of the temperature-dependent behavior of PbS nanocrystal thin films and solar cells. Adv. Funct. Mater. 22, 1598-1605 (2012).
[38] Y. Yamada, H. Yasuda, T. Tayagaki and Y. Kanemitsu. Temperature dependence of photoluminescence spectra of non-doped and electron-doped SrTiO3: Crossover from Auger recombination to single-carrier trapping. Phys. Rev. Lett. 102, 24741 (2009).
[39] T. Makino, K. Tamura, C. H. Chia and Y. Segawa. Temperature quenching of exciton luminescence intensity in ZnO/(Mg, Zn)O multiple quantum wells. J. Appl. Phys. 93, 5929 (2003).
[40] M. Fox. Optical properties of solids. Oxford University Press, New York, p.77-79 (2010).
[41] C. F. E. Sierra. Fundamentals of transmission electron microscopy, the technique with the best resolution in the world. Screen 9, 10 (2019).
[42] Y. Li, J. Shi, H. Chen, R. Wang, Y. Mi, C. Zhang, W. Du, S. Zhang, Z. Liu, Q. Zhang, X. Qiu, H. Xu, W. Liu, Y. Liu and X. Liu. Auger process in Multilayer WSe2 crystals. Nanoscale 10, 17585-17592 (2018).
[43] A. Francisco-López, B. Charles, M. Isabel Alonso, M. Garriga, M. T. Weller, and A. R. Goñ. Photoluminescence of bound-exciton complexes and assignment to shallow defects in methylammonium/formamidinium lead iodide mixed crystals. Adv. Opt. Mater. 9, 2001969 (2021).
[44] G. Guizzetti, L. Nosenzo, I. Pollini, E. Reguzzoni, G. Samoggia, and G. Spinolo. Reflectance and thermoreflectance studies of CrCl3, CrBr3, NiC12, and NiBr2 crystals. Phys. Rev. B 14, 10. (1976).
[45] M. Gramlich, C. Lampe, J. Drewniok, and A. S. Urban. How exciton-phonon coupling impacts photoluminescence in halide perovskite nanoplatelets. J. Phys. Chem. Lett. 12, 11371-11377 (2021).
[46] C. Tan, X. Cao, X. J. Wu, Q. He, J.Yang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro, and H. Zhang. Recent advances in ultrathin two-dimensional nanomaterials. Chem Rev. 117, 6225-6331 (2017).
[47] Retrieved from https://imb.uq.edu.au/facilities/microscopy/hardware-software/routine- widefield-microscopes (accessed July 2022).
[48] C. W. Sanders. Basic principles of nanotechnology. CRC Press, p.132 (2019).
[49] N. Gao, I. Y. Ponomarov, Q. F. Xiao, W. M. Gibson and D. A. Carpenter. Monolithic focusing optics and their application in microbeam X-ray fluorescence. Appl. Phys. Lett. 69, 1529-1531 (1996).
[50] O. C. Wells. Scanning Electron Microscopy. New York, McGraw-Hill, p.273-274 (1974).
[51] M. Ezzahmouly, A. Elmoutaouakkil, M. E. Dhaharaouy, H. Khallok, A. Elouahli, A. Mazurier, A. ElAlbani and Z.Hatim. Micro-computed tomographic and SEM study of porous bioceramics using an adaptive method based on the mathematical morphological operations. Heliyon 5, e02557 (2019).
[52] B. V. Crist. Handbooks of monochromatic XPS spectra. XPS International LLC, Mountain View, CA, USA,1-5 (2004).
[53] S. Neutzner, F. Thouin, D. Cortecchia, A. Pertrozza, C. Silva and A. R. S. Kandada. Exciton-polaron spectral structures in two-dimensional hybrid lead-halide perovskites. Phys. Rew. Mater. 2, 064605 (2018).
[54] V. Gupta, H. Ganegoda, M. H. Engelhard, J. Terry and M. R. Linford. Assigning oxidation states to organic compounds via predictions from X-ray photoelectron spectroscopy: A discussion of approaches and recommended improvements. J. Chem. Educ. 91, 232-238 (2014).
[55] J. F. Watts and J. Wolstenholme. An introduction to surface analysis by XPS and AES Wiley & Sons Chichester, UK, p.6 (2019).
[56] H. Simon. The Oxford solid state basics. Oxford University Press, USA, p.142 (2013).
[57] S. Misture and R. Snyder. X-ray diffraction. Encyclopedia of Materials: Science and Technology, 9799-9808 (2001).
[58] M. R. Sardela. Practical materials characterization. Springer New York Heidelberg Dordrecht London, p.8 (2014).
[59] B. J. Inkson. 2-Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) for materials characterization. Materials characterization using Nondestructive Evaluation (NDE) Methods. Woodhead Publishing, 17-23 (2016).
[60] Z. L. Wang. New developments in transmission electron microscopy for nanotechnology. Adv. Mater. 15, 1497-1514 (2003).
[61] Y. Song, S. Hu, M.-L. Lin, X. Gan, P.-H. Tan, and J. Zhao. Extraordinary second-harmonic generation in ReS2 atomic crystals. ACS Photonics, 5, 3485-3491 (2018).
[62] C. Tan, X. Cao, X. J. Wu, Q. He, J. Yang, X. Zhang, J. Chen, W. Zhao, S. Han, G. H. Nam, M. Sindoro, and H. Zhang. Recent advances in ultrathin two-dimensional nanomaterials. Chem. Rev. 117, 6225-6331(2017).
[63] J. Huang, T. Hoang and M. Mikkelsen. Probing the origin of exciton states in monolayer WSe2. Sci. Rep. 6, 22414 (2016).
[64] B. Schrader. Raman spectrometers, encyclopedia of spectroscopy and spectrometry, 3rd edition. Academic Press, Oxford, p.1986 (2017).
[65] M. Grönke, B. Buschbeck, M. Valldor, S. Oswald, Q. Hao, A. Lubk, D. Wolf, B. Büchner and S. Hampe. Chromium Trihalides CrX3 (X = Cl, Br, I): Direct deposition of micro-and nanosheets on substrates by chemical vapor transport. Adv. Mater. Interfaces 6, 1901410 (2019).
[66] A. S. Ahmad, Y. Liang, M. Dong, X. Zhou, L. Fang, Y. Xia, J. Dai, X. Yan, X. Yu, G. J. Zhang, W. Zhang, Y. Zhao and S. Wang. Pressure-driven switching of magnetism in layered CrCl3. Nanoscale 12, 22935-22944 (2020).
[67] Y. Li, X. -B. Wang, J.-C. Zhao, and X. -J. Li. Paths for the non-radiative recombination occurring in CdS: CdO/Si multi-interface nanoheterostructure array. Chin. Phys. Lett. 31, 077802-077805 (2014).
[68] M. A. McGuire, H. Dixit, V. R. Cooper and B. C. Sales. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612 (2015).
[69] W. Jin, H. H. Kim, Z. Ye, G. Ye, L. Rojias, X. Luo, B. Yang, F. Yin, J. S. A. Horng, S. Tian, Y. Fu, G. Xu, H. Deng, H. Lei, A. W. Tsen, K. Sun, R. He and L. Zhao. Observation of the polaronic character of excitons in a two-dimensional semiconducting magnet CrI3. Nat. Commun 11, 4780 (2020).
[70] J. Lee, E. S. Koteles and M. Vassell. Luminescence linewidths of excitons in GaAs quantum wells below 150K. Phys. Rev. B: Condens. Matter Mater. Phys. 33, 5512 (1986).


(此全文未開放授權)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *