帳號:guest(18.223.171.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:施建呈
作者(英文):Jian-Cheng Shi
論文名稱:傾斜微透鏡陣列的製作與應用
論文名稱(英文):Fabrication and application of tilted microlens arrays
指導教授:魏茂國
指導教授(英文):Mao-Kuo Wei
口試委員:李君浩
陳素華
口試委員(英文):Jiun-Haw Lee
Su-Hua Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922105
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:107
關鍵詞:微透鏡擴散板微影傾斜式微影機發光二極體效率光學性質
關鍵詞(英文):microlensdiffuser lithographytilt lithographyorganic light-emitting diode (OLED)efficiencyoptical property
相關次數:
  • 推薦推薦:0
  • 點閱點閱:15
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏收藏:0
本研究結合傾斜式微影和擴散板微影(以後稱為傾斜式擴散板微影)、聚二甲基矽氧烷模造、紫外線成形技術,製作對稱和非對稱(傾斜)微透鏡陣列。
在本論文中,我們將探討光罩圖案孔洞陣列的形狀和直徑和間距、曝光劑量、載台傾斜角度對於微透鏡陣列表面形貌和光學性質的影響,並以二維光學模擬軟體計算傾斜微透鏡陣列的焦距和焦點偏移角度。此外,我們也將研究微透鏡陣列特徵尺寸對於白光OLED效率和光學性質的影響。
實驗結果顯示,微透鏡陣列可以有效地促進白光OLED的效率,傾斜微透鏡陣列可以改變OLED產生最大輝度強度的視角,此結果與使用平行光模擬傾斜微透鏡陣列的焦點偏移角度相符合。
In this study, we combined tilt lithography, diffuser lithography, polydimethylsiloxane (PDMS) molding, and UV-forming processes to fabricate symmetric and non-symmetric (tilted) microlens arrays.
In the text, the influences of the shape, diameter and gap distance of hole arrays on the mask on the morphology and optical properties of microlens arrays will be investigated. The influences of exposure dose and tilt angle of wafer holder on the morphology and optical properties of microlens arrays will also be studied. A two-dimensional optical simulation tool will be used to determine focal length and offset angle of tilted microlens arrays. Additionally, the influences of parameters of microlens array on efficiency and optical properties of a white organic light-emitting diode (OLED) will be analyzed.
Experimental results showed that microlens array can effectively enhance efficiency of the white OLED. Tilted microlens array can also modify the viewing angle of the maximum luminous intensity emitted by the white OLED. This result is similar to the offset angle of microlens array simulated by using parallel light rays.
第1章 序論 1
1.1 前言 1
1.2 研究動機 2
1.3 文獻回顧 3
1.3.1 波導現象 3
1.3.1.1 光線路徑 3
1.3.2 微透鏡的製作與應用 4
1.3.2.1 電漿蝕刻 4
1.3.2.2 仿生結構 6
1.3.2.3 雷射掃描 8
1.3.2.4 擴散板微影 10
1.3.2.5 熱整形 11
1.3.2.6 傾斜微影 13
1.3.2.7 內部光柵結構加外部微透鏡陣列對白光OLED的影響 17
1.3.3 微透鏡陣列焦點量測 18
1.3.4 生理量測裝置 19
1.3.4.1 穿戴式LED裝置 19
1.3.4.2 穿戴式OLED裝置 20
1.3.4.3 穿戴式OLED與LED裝置 21
第2章 第二章 理論 23
2.1 司乃爾定律 23
2.2 波導現象 23
2.3 折射率量測 24
2.4 焦距和偏移角度 25
2.5 OLED效率增益 27
2.6 OLED色座標 28
第3章 實驗步驟 31
3.1 擴散板微影 31
3.1.1 傾斜式擴散板微影 32
3.1.2 高分子模造 33
3.1.3 微透鏡陣列表面輪廓分析 35
3.1.4 光線偏折的量測 35
3.1.5 折射率量測與計算 36
3.1.6 OLED效率增益 37
3.2 實驗設備 39
3.2.1 恆溫循環水槽 39
3.2.2 數位式加熱板 39
3.2.3 旋轉塗佈機 40
3.2.4 紫外光曝光頭 41
3.2.5 浸潤式載台 41
3.2.6 真空烤箱 42
3.2.7 烘箱 43
3.2.8 紫外光臭氧機 43
3.2.9 電磁加熱攪拌器 44
3.2.10 紫外光硬化機 45
3.2.11 掃描式電子顯微鏡 45
3.2.12 光學顯微鏡 46
3.2.13 模擬軟體 47
3.2.14 輝度計 47
3.2.15 白光OLED 47
3.3 實驗藥品與耗材 48
第4章 實驗結果與討論 50
4.1 以圓形開孔光罩做出的結果 50
4.1.1 曝光劑量的影響 50
4.1.2 間距的影響 59
4.1.3 載台傾斜角度的影響 66
4.1.4 光罩開孔尺寸的影響 73
4.2 以六邊形開孔光罩做出的結果 79
4.2.1 曝光劑量的影響 79
4.2.2 間距影響 85
4.2.3 載台傾斜角度的影響 89
4.3 微透鏡陣列對白光OLED效率的影響 93
4.3.1 間距的影響 93
4.3.2 載台傾斜角度的影響 96
4.3.3 載台傾斜角度對最大輝度視角位置的影響 97
結論 100
未來工作 102
參考資料 104
[1]Q. Yue, W. Li, F. Kong, and K. Li, “Enhancing the out-coupling efficiency of organic light-emitting diodes using two-dimensional periodic nanostructures,” Advance in Materials Science and Engineering, Vol. 2012 (2012), Article No. 985762
[2]D. Kuang, X. Zhang, M. Gui, and Z. Fang, “Hexagonal microlens array fabricated by direct laser writing and inductively coupled plasma etching on organic light emitting devices to enhance the outcoupling efficiency,” Applied Optics, Vol. 48 (2009), pp. 974-978
[3]J.-J. Kim, J. Lee, S.-P. Yang, H.-G. Kim, H. Kweon, S. Yoo, and K.-H. Jeong, “Biologically inspired organic light-emitting diodes,” Optical Science and Technology, Vol. 16 (2016), pp.2994-3000
[4]D. Yin, J. Feng, R. Ma, Y. F. Liu, Y. L. Zhang, X. L. Zhang, Y. Ga. Bi, Q. D. Chen, and H. B. Sun, “Efficient and mechanically robust stretchable organic light-emitting devices by a laser-programmable buckling process,” Nature Communications, Vol. 7 (2016), Article No. 11573
[5]S. Il and J.-B Yoon, “Shape-controlled, high fill-factor microlens arrays fabricated by a 3D diffuser lithography and plastic replication method,” Optics Express, Vol. 12 (2004), pp. 6366-6371
[6]M.-K. Wei, I.-L. Su, Y.-J. Chen, M. Chang, H.-Y. Lin and T.-C. Wu, “The influence of a microlens array on planar organic light-emitting devices,” Journal of Micromechanics and Microengineering, Vol. 16 (2006) , pp. 368-374
[7]M.-K. Wei, J.-H. Lee , H.-Y. Lin, Y.-H. Ho, K.-Y. Chen, C.-C. Lin, C.-F. Wu, H.-Y. Lin, J.-H. Tsai and T.-C. Wu, “Efficiency improvement and spectral shift of an organic light-emitting device by attaching a hexagon-based microlens array,” Journal of Optics A-Pure and Applied Optics, Vol. 5 (2008), Article No. 055302
[8]J. Zhang, B. Shokouhi, and B. Cui, “Tilted nanostructure fabrication by electron beam lithography,” Journal of Vacuum Science and Technology, Vol. 30 (2012), Article No. 06F302
[9]C. Acikgoz, M.-A. Hempenius, J. Huskens, G.-J. Vancso, “Polymers in conventional and alternative lithography for the fabrication of nanostructures,” European Polymer Journal, Vol. 47 (2011), pp. 2033-2052
[10]D. Eschimese, F. Vaurette1, D. Troadec, G. Leveque , T. Melin1 and S. Arscott, “Size and shape control of a variety of metallic nanostructures using tilted, rotating evaporation and lithographic lift-of techniques,” Scientific Reports, Vol. 9 (2019), Article No. 7682
[11]Z.-Zhou, Q. Hang, Z. Zhu, and W. Li, “An efficient simulation system for inclined UV lithography processes of thick SU-8 photoresists,” IEEE Transactions on Semiconductor Manufacturing, Vol. 24 (2011), pp. 294-303
[12]F. Liu and A. Adibi, “45 degree polymer micromirror integration for board-level three-dimensional optical interconnects,” Optics Express, Vol. 17 (2009), pp. 10514-10521
[13]T. Bocksrocker, J. B. Preinfalk, J. A. Tauscher, A. Pargner, C. Eschenbaum, F. M. Flaig, and U. Lemmer, “White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission,” Optics Express, Vol. 20 (2012), pp. A932-A940
[14]W.-S. Wang, H.-C. Kan, and F.-C. Chen, “Enhanced light out-coupling efficiency of OLEDs with self-organized microlens arrays,” Digest of Technical Papers - SID International Symposium, Vol. 37 (2006), pp. 961-963
[15]D. Biswas, N.-S. Capela, C.-V. Hoof, and N.-V. Helleputte, “Heart rate estimation from wrist-worn photoplethysmography: a review,” IEEE Sensors Journal, Vol. 19 (2019), pp. 6560-6570
[16]I.-S. Sidorov, R.-V. Romashko, V.-T. Koval, R. Giniatullin, and A.-A. Kamshilin, “Origin of infrared light modulation in reflectance-mode photoplethysmography,” PLoS One, Vol. 11 (2016), Article No. e0165413
[17]Y. Jeon1, H.-R. Choi, J.-H. Kwon1, S. Choi, K.-M. Nam, K.-C. Park, and K.-C Choi, “Sandwich-structure transferable free-form OLEDs for wearable and disposable skin wound photomedicine,” Light-Science & Applications, Vol. 8 (2019), Article No. 114
[18]S. D. Yambem, T. L. B. Richards, D. P. Forrestal, M. Kielar, P. Sah, A. K. Pandey, and M. Woodruf, “Spectral changes associated with transmission of OLED emission through human skin,” Scientific Reports, Vol. 9 (2019), Article No. 9875
[19]L. Wang, “Simulating plasmon effect in nanostructured OLED cathode using COMSOL multiphysics,” COMSOL Conference, Aug. 10, 2015, Boston
[20]https://www.a-levelphysicstutor.com/optics-convx-lnss. php
[21]P. Data and A. P. Monkman, “Methods of analysis of organic light emitting diodes,” Display and Imaging, Vol. 2 (2016), pp. 323–337
[22]https://blog.xuite.net/mingdar_yang/twblog/156372646
[23]李正中、楊宗勳、廖詩芳, “光學薄膜於色彩顯示之應用(上),” 科儀新知, 177期 (2010), pp. 48-60(2010)
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *