帳號:guest(13.58.219.21)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:潘健晟
作者(英文):JIAN-CHENG PAN
論文名稱:光還原法自組裝微奈米金之形貌分析
論文名稱(英文):Analysis of Self-Assembly of Gold Micro- Nanowires by Photo Reduction Method
指導教授:張文固
黃士龍
指導教授(英文):Wen-Ku Chang
Shyh-Lung Hwang
口試委員:張文固
黃士龍
胡紹華
口試委員(英文):Wen-Ku Chang
Shyh-Lung Hwang
Shao-Hua Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922106
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:78
關鍵詞:TiO2金導線選區生長光還原
關鍵詞(英文):anatasethin filmgold-nanowireself-assemblagephotocatalytic reduction
相關次數:
  • 推薦推薦:0
  • 點閱點閱:23
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本研究利用光還原法搭配金離子溶液於銳鈦礦薄膜上預置之微奈米尺度凹槽中生長金微奈米線,並透過改變實驗參數,來探討金微奈米線的成核及生長機制。實驗流程首先使用真空濺鍍法於矽基板上成長 ~100 nm厚之非晶質TiOx薄膜,再經450°C空氣熱處理轉變為銳鈦礦相,有些試片於銳鈦礦薄膜上再旋轉塗佈上~50 nm 厚之聚甲基丙烯酸甲酯阻隔層,最後經由聚焦離子束(focus ion beam) 於銳鈦礦薄膜上劃出 ~40 – 500 nm 寬之凹槽。試片放入四氯金酸溶液中,照射紫外光,藉由銳鈦礦優異之光催化效應還原金離子,並自組裝於銳鈦礦膜凹槽中。
實驗結果顯示,當反應溶液濃度越低,所還原之金晶粒尺寸越小且成核數較高;因此低濃度金離子溶液有助於生成優質之微奈米級金導線。結果顯示,於100 ppm溶液中照射UVB 1分鐘,即可生長出連結性佳的金微奈米線。二階段成長實驗顯示,先於10ppm溶液中照射UVB 1分鐘來增進金的成核數,再於100ppm溶液中照射UVB 1分鐘進行二次成長,即可得到連結性極佳、線寬約為160nm之金微奈米導線。四點量測250°C退火處理2小時之金導線,其電阻值為76歐姆,電阻率為6.68*10^(-7) Ωm。
The self-assembled gold nano-wires were successfully fabricated in the pre-cut grooves on anatase film by photocatalyic reduction reactions in dilute gold ion solutions subjected to ultraviolet irradiation. The experimental steps include the first deposition of amorphous TiO2 film of ~100nm in thickness on silicon wafer surface, followed by annealing at 450°C in air to obtain anatase phase with excellent photocatalytic properties. Additional polymethyl methacrylate buffer layer of ~50nm in thickness was then spin-coated on the anatase surface of some samples, followed by the cutting of thin grooves of ~40 – 500 nm in width on anatase surface of both types of samples, i.e. with or without buffer layer, by focus ion beam technique. The samples were then immersed in the diluted H[AuCl₄] solution subjected to ultraviolet irradiation for gold ion reduction and the consequent deposition of gold nano-wires along the pre-cut grooves.
The experiment results showed that the nucleation rates of gold particles in the grooves greatly increase with the decrease in solution concentrations, and the usage of dilute solutions is beneficial for the gold nano-wires fabrication. In fact, self-assembled gold nano-wires with good connectivity were readily fabricated in 1 minute for the samples immersed in the 100ppm solution subjected to UVB irradiation. Two-steps nucleation-growth experiments further showed that, by first precipitating large numbers of gold particles in 10ppm solution for 1 minute followed by the rapid growth of gold particles in 100ppm solution for another minute, the self-assembled gold nano-wires of ~160 nm in width with excellent connectivity were obtained. By using four-point probe measure, the resistance and the resistivity of the gold nano-wires were determined to be 76Ω , 6.68*10^(-7) Ωm , respectively.
第一章 緒論 1
1-1前言 1
1-2研究動機 2
1-3研究目的 3
第二章 基礎理論與文獻回顧 5
2-1金(Au)的介紹 5
2-2 自組裝技術 6
2-3 奈米材料製備方法 7
2-4 選區生長製程 8
2-4-1親和性差異選區生長奈米銀 9
2-4-2 氦離子束誘導沉積搭配原子層沉積選區生長鉑奈米結構 10
2-4-3 聚焦離子束誘導金奈米結構於矽基板上選區生長 12
2-5 二氧化鈦(TiO2)光催化性質 13
2-6 聚焦離子束系統(FIB) 13
2-7 尖端放電效應 15
第三章 實驗方法與步驟 17
3-1 實驗藥品 17
3-2 實驗步驟 17
3-3 分析儀器 20
第四章 結果與討論 23
4-1 TiO2薄膜分析 23
4-2 PMMA薄膜分析 25
4-3 照光分析 26
4-3-1未鍍PMMA下進行金微奈米線生長 (照光時間30s ~ 120s) 27
4-3-2未鍍PMMA於不同濃度下生長變化(照光時間30s ~ 90s) 29
4-3-3鍍有PMMA於不同濃度下生長變化(溝槽寬500nm、200nm ) 32
4-3-4鍍有PMMA於不同溫度下生長變化(溝槽寬500nm、200nm ) 33
4-3-5鍍有PMMA於不同濃度下生長(溝槽寬200nm、100nm、40nm ) 36
4-3-6鍍有PMMA於不同光源下生長(溝槽寬200nm、100nm、40nm ) 37
4-3-7鍍有PMMA於各種照射光源中以不同溫度生長之變化 41
4-3-8鍍有PMMA於長時間下生長(溝槽寬200nm、100nm、40nm ) 50
4-3-9鍍有PMMA之試片進行二次成長 52
4-3-10 試片於不同退火溫度之形貌分析 55
4-4以TEM進行微結構分析 57
4-4-1 以TEM分析退火前之試片 58
4-4-2 以TEM分析二次成長且退火250°C之試片 64
4-5電性分析 70
4-5-1 二次成長後未退火之試片電性分析 72
4-5-2 二次成長後退火250°C之試片電性分析 73
第五章 結論 75
參考文獻 76
[1] Steinhögl, W., et al., Comprehensive study of the resistivity of copper wires with lateral dimensions of 100 nm and smaller. 2005. 97(2): p. 023706.
[2] 鍾朝安, 銀導體連線技術. 2013. 20(1): p. 26-33.
[3] Lide, D.R., CRC handbook of chemistry and physics. Vol. 85. 2004: CRC press.
[4] Skrabalak, S.E., et al., Gold Nanocages: Synthesis, Properties, and Applications. Accounts of Chemical Research, 2008. 41(12): p. 1587-1595.
[5] Lieb, E.H. and D.C. Mattis, Mathematical physics in one dimension: exactly soluble models of interacting particles. 2013: Academic Press.
[6] 李訓任, 利用光還原法在銳鈦礦相之TiO2光觸媒薄膜上成長銀的奈米結構, in 材料科學與工程學系. 2008, 國立東華大學: 花蓮縣. p. 77.
[7] 林宗邑, 以熱及光還原法組裝微米銀線及其電性研究, in 材料科學與工程學系. 2014, 國立東華大學: 花蓮縣. p. 76.
[8] Hammami, I., et al., Gold nanoparticles: Synthesis properties and applications. Journal of King Saud University - Science, 2021. 33(7): p. 101560.
[9] Murphy, C.J. and N.R. Jana, Controlling the Aspect Ratio of Inorganic Nanorods and Nanowires. Advanced Materials, 2002. 14(1): p. 80-82.
[10] Ozin, G.A. and A. Arsenault, Nanochemistry: a chemical approach to nanomaterials. 2015: Royal Society of Chemistry.
[11] Long, N.V., et al., Directed and random self-assembly of Pt–Au nanoparticles. Materials Chemistry and Physics, 2010. 124(2): p. 1193-1197.
[12] 林冠宇, 金奈米結構之穿透式電子顯微鏡研究, in 材料科學與工程學系. 2013, 國立東華大學: 花蓮縣. p. 87.
[13] Garlisi, C. and G. Palmisano, Radiation-free superhydrophilic and antifogging properties of e-beam evaporated TiO2 films on glass. Applied Surface Science, 2017. 420: p. 83-93.
[14] Cacucci, A., et al., Structural analysis of W3O/WO3 and TiO/TiO2 periodic multilayer thin films sputter deposited by the reactive gas pulsing process. Thin Solid Films, 2012. 520(14): p. 4778-4781.
[15] Bian, H., et al., Influence of ZnO buffer layer on microstructure and Raman scattering of ZnO: Ag film on Si substrate. 2013. 58: p. 171-177.
[16] Liu, Y.-l., et al., Gold nanotubes: synthesis, properties and biomedical applications. Microchimica Acta, 2020. 187(11): p. 612.
[17] Lee, W., H.-I. Yoo, and J.-K. Lee, Template Route Toward a Novel Nanostructured Superionic Conductor Film; AgI Nanorod/γ-Al2O3. Chemical Communications - CHEM COMMUN, 2001: p. 2530-2531.
[18] Gole, A. and C.J. Murphy, Seed-Mediated Synthesis of Gold Nanorods:  Role of the Size and Nature of the Seed. Chemistry of Materials, 2004. 16(19): p. 3633-3640.
[19] Li, H., et al., Synthesis of One Dimensional Gold Nanostructures. Journal of Nanomaterials, 2010. 2010: p. 962718.
[20] Yun, H., et al., Site-selective synthesis of silver nanoparticles in pre-patterned trenches and their localized surface plasmon resonances. Nanotechnology, 2011. 23(1): p. 015306.
[21] Yang, P.-S., et al., Selective growth of platinum nanolines by helium ion beam induced deposition and atomic layer deposition. Ultramicroscopy, 2020. 211: p. 112952.
[22] Matsuoka, T., et al., Selective growth of gold nanoparticles on FIB-induced amorphous phase of Si substrate. Journal of the Ceramic Society of Japan, 2010. 118(1379): p. 575-578.
[23] Nakata, K., A.J.J.o.p. Fujishima, and p.C.P. Reviews, TiO2 photocatalysis: Design and applications. 2012. 13(3): p. 169-189.
[24] Chen, X. and A. Selloni, Introduction: Titanium Dioxide (TiO2) Nanomaterials. Chemical Reviews, 2014. 114(19): p. 9281-9282.
[25] Castano, C.E., M.J. O’Keefe, and W.G.J.S.M. Fahrenholtz, Photo-assisted reduction in nanostructured cerium-based coatings. 2013. 69(6): p. 489-492.
[26] Zhang, F., et al., Room temperature photocatalytic deposition of Au nanoparticles on SnS2 nanoplates for enhanced photocatalysis. Powder Technology, 2021. 383: p. 371-380.
[27] Sclafani, A., M.-N. Mozzanega, and J.-M. Herrmann, Influence of Silver Deposits on the Photocatalytic Activity of Titania. Journal of Catalysis, 1997. 168(1): p. 117-120.
[28] 楊舜傑, 聚焦離子束於石英玻璃奈米結構加工之探討, in 機械與機電工程學系研究所. 2008, 國立中山大學: 高雄市. p. 96.
[29] De Luca, E., et al., Focused ion beam milling of gallium phosphide nanostructures for photonic applications. Optical Materials Express, 2016. 6(2): p. 587-596.
[30] Melngailis, J.J.J.o.V.S., T.B.M. Processing, and Phenomena, Focused ion beam technology and applications. 1987. 5(2): p. 469-495.
[31] Kubena, R.L., R.L. Seliger, and E.H. Stevens, High resolution sputtering using a focused ion beam. Thin Solid Films, 1982. 92(1): p. 165-169.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *