帳號:guest(3.12.136.3)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:凌崇軒
作者(英文):CHONG-SYUAN LING
論文名稱:氣相傳輸法合成與鑑定鎳硒化合物奈米結構應用於超級電容器
論文名稱(英文):Vapor transport synthesis and characterization of nickel selenide nanostructures for supercapacatiors applications
指導教授:田禮嘉
指導教授(英文):Li-Chia Tien
口試委員:楊天賜
林育賢
田禮嘉
口試委員(英文):Tien-Syh Yang
Yu-Shyan Lin
Li-Chia Tien
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922107
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:64
關鍵詞:金屬硒化物硒化鎳二硒化三鎳氣相傳輸法偽電容電容器
關鍵詞(英文):metal selenidesnickel selenidetrinickel diselenidevapor transportpseudocapacitors
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
金屬硒化物由於具有良好的導電率和電傳輸性能,被廣泛研究研究應用於許多地方。本研究使用氣相傳輸法在泡沫鎳基板上進行硒化,合成出六方晶結構的硒化鎳(NiSe)與三方晶結構的二硒化三鎳(Ni3Se2)這兩種不同的奈米結構。透過控制成長的溫度(350 - 450 ℃)、硒粉的使用量(1 g、0.5 g、0.25 g)、成長時通入的氣體流速(100、50 sccm)、成長時的壓力(0.5、0.3 torr ),來達成材料的生長。研究中發現NiSe與Ni3Se2相比,其生長的溫度較Ni3Se2高;在改變硒的供給量實驗中,發現硒供給量對合成出鎳硒化合物有很大的影響,隨著硒供給量增加,樣品奈米結構尺寸有隨之增加的趨勢,硒的供給量越多NiSe結構產率提升,反之硒供給量減少Ni3Se2越容易生長出來;之後為了長出品質更好的Ni3Se2,進行改變氣體流量與成長壓力的實驗,在改變通入的氣體流量實驗中,由於流速降低使硒蒸鍍源到達基板較緩慢,從而影響材料的生成;在改變成長的壓力實驗中,壓力下降造成基板上接觸的硒蒸鍍源減少,樣品的合成透過表面反應控制使結果產生混相結構。在電化學的分析中,將透過氣相傳輸法合成的樣品,以刮刀成型法製作成NiSe、NiSe/Ni3Se2、Ni3Se2三種不同的電極,在3 M KOH的電解液中進行CV與GCD量測,在CV和GCD量測結果中,都可以觀察到明顯的氧化還原峰,代表這三種電極的儲能方式都是偽電容電容器的型態,在氧化還原峰的電流密度與掃描速率的平方根都呈現出線性的關係,表示這三個電極的電化學反應機制是由離子擴散到電極表面所控制。在掃描速率5 mV/s的 CV量測結果中NiSe電極在三個電極中擁有最高的比電容106.76 F/g,其次是Ni3Se2電極的比電容86.9 F/g,最差的是NiSe/Ni3Se2電極的比電容70.99 F/g,在GCD的量測結果中,在電流密度1 A/g下,NiSe電極計算出的比電容也是最高的349.49 A/g,其次是Ni3Se2電極的比電容178.98 A/g,最低的是NiSe/Ni3Se2電極的比電容163.04 A/g,之後在GCD量測中進行250次循環充放電量測,三個電極都保有很高的初始比電容,顯示奈米金屬硒化物具有超級電容器電極的應用潛力。
Metal selenides have been widely studied and applied in various fields due to their excellent conductivity and electronic transport properties. In this study, a gas-phase transport method was used to synthesize two different nanostructures: hexagonal crystal structure nickel selenide (NiSe) and trigonal crystal structure trinickel diselenide (Ni3Se2) on a nickel foam substrate.The growth of these materials was achieved by controlling the growth temperature (350 - 450 °C), the amount of selenium powder used (1 g, 0.5 g, 0.25 g), the gas flow rate (100, 50 sccm), and the growth pressure (0.5, 0.3 torr) during growth. It was observed that NiSe requires a higher growth temperature compared to Ni3Se2. In experiments involving varying selenium supply, it was found that the amount of selenium has a significant impact on the synthesis of nickel selenide compounds. Increasing the selenium supply resulted in an increase in the size of the nanostructures, with higher selenium supply favoring the formation of NiSe, while reducing the selenium supply made it easier for Ni3Se2 to grow.Furthermore, in order to achieve higher quality Ni3Se2, experiments were conducted to modify the gas flow rate and growth pressure. In experiments involving changes in gas flow rate, the decreased flow rate slowed down the deposition of selenium vapor onto the substrate, affecting the material formation. In experiments involving changes in growth pressure, the decreased pressure resulted in reduced contact of selenium vapor with the substrate, leading to the formation of mixed-phase structures controlled by surface reactions. In the electrochemical analysis, the samples synthesized through gas-phase transport method were fabricated into three different electrodes: NiSe, NiSe/Ni3Se2, and Ni3Se2, using the blade coating technique. These electrodes were then subjected to cyclic voltammetry (CV) and galvanostatic charge-discharge (GCD) measurements in a 3 M KOH electrolyte.In the CV and GCD measurements, distinct oxidation and reduction peaks were observed for all three electrodes, indicating that the energy storage mechanism of these electrodes is in the form of pseudocapacitive capacitors. The current density of the oxidation/reduction peaks exhibited a linear relationship with the square root of the scan rate, suggesting that the electrochemical reaction mechanism of these three electrodes is controlled by ion diffusion to the electrode surface.Among the CV measurements conducted at a scan rate of 5 mV/s, the NiSe electrode exhibited the highest specific capacitance of 106.76 F/g, followed by the Ni3Se2 electrode with a specific capacitance of 86.9 F/g, and the NiSe/Ni3Se2 electrode exhibited the lowest specific capacitance of 70.99 F/g. In the GCD measurements, at a current density of 1 A/g, the NiSe electrode showed the highest specific capacitance of 349.49 A/g, followed by the Ni3Se2 electrode with a specific capacitance of 178.98 A/g, and the NiSe/Ni3Se2 electrode exhibited the lowest specific capacitance of 163.04 A/g. Furthermore, after 250 cycles of charge-discharge measurements in GCD, three electrodes maintained a high initial specific capacitance, indicating the potential application of nanoscale metal selenides as supercapacitor electrodes.
謝誌 I
摘要 III
Abstract V
圖目錄 XI
表目錄 XVII
第一章緒論 1
1.1前言 1
1.2研究目標 2
第二章文獻回顧 3
2.1鎳硒化合物的基本性質 3
2.2泡沫鎳 4
2.3鎳硒化合物的合成 4
2.3.1化學氣相傳輸法合成(Chemical Vapor Deposition,CVD ) 4
2.3.2溶劑熱合成法 5
2.3.3離子交換法 6
2.3.4電沉積法 6
2.4超級電容器 7
2.5鎳硒化合物的應用 7
第三章實驗步驟與分析儀器 19
3.1實驗設計 19
3.2實驗材料 19
3.2.1使用儀器 19
3.2.2基板 19
3.2.3基板清洗使用溶液 19
3.2.4氣相傳輸成長源 19
3.2.5電化學實驗材料 20
3.3實驗步驟 20
3.3.1基板清洗與處理 20
3.3.2合成鎳硒化合物樣品 20
3.3.3電化學測量之電解液配置 21
3.3.4硒化鎳電極製作 21
3.4實驗參數 21
3.4.1改變成長溫度 21
3.4.2改變硒供給量 22
3.4.3改變載流氣體流量 22
3.4.4改變成長壓力 22
3.5材料鑑定分析儀器 22
3.5.1場發射掃描式電子顯微鏡(FE-SEM) 22
3.5.2 X光繞射儀(XRD) 23
3.6電化學分析儀器 23
3.6.1循環伏安法(CV) 23
3.6.2恆電流充放電(GCD) 24
第四章結果與討論 27
4.1研究樣品在不同成長溫度的影響 27
4.1.1表面形貌分析 27
4.1.2 EDS定性分析 28
4.1.3晶體結構分析 28
4.2研究樣品在不同硒供給量的影響 29
4.2.1表面形貌分析 30
4.2.2晶體結構分析 31
4.3研究樣品在不同載流氣體流量的影響 32
4.3.1表面形貌分析 32
4.3.2晶體結構分析 32
4.4研究樣品在不同成長壓力的影響 33
4.4.1表面形貌分析 33
4.4.2晶體結構分析 33
4.5樣品電化學性質分析 34
4.5.1循環伏安分析 34
4.5.2恆電流充放電分析 36
第五章結論 61
第六章參考文獻 63

[1] G. McDowell, C. Huggel, H. Frey, F.M. Wang, K. Cramer, V. Ricciardi. Adaptation action and research in glaciated mountain systems: Are they enough to meet the challenge of climate change? Global Environmental Change, (2019) 54 19-30.
[2] L. Du, W. Du, H.L. Ren, N. Wang, Z.J. Yao, X.S. Shi, B. Zhang, J.T Zai, X.F. Qian. Honeycomb-like metallic nickel selenide nanosheet arrays as binder-free electrodes for high-performance hybrid asymmetric supercapacitors. Journal of Materials Chemistry A, (2017) 5(43) 22527-22535.
[3] S. Bekhit, S. Mohamed, I. Ghayad, S. Attia, W. Metwally, R. Abdel-Karim, S.M. El-Raghy. Snow crystal-like structure of NiSe as a binder-free electrode for high-performance hybrid supercapacitor. Journal of Materials Science, (2022) 1-16.
[4] C. Xia, Q. Jiang, C. Zhao, M.N. Hedhili, H.N. Alshareef, Selenide‐based electrocatalysts and scaffolds for water oxidation applications. Advanced Materials, (2016) 28(1) 77-85.
[5] X. Li, S. Li, Z. Zhang, C. Liu, B. Qu, J. Pu, Ni3Se2 electrodes for high performance lithium-ion and sodium-ion batteries. Materials Letters, (2018) 220 86-89.
[6] C.Y. Fan, X.H. Zhang, Y.H. Shi, H.Y. Xu, J.P. Zhang, X.L. Wu, Three-dimensional hierarchical Ni3Se2 nanorod array as binder/carbon-free electrode for high-areal-capacity Na storage. Nanoscale, (2018) 10(40) 18942-18948.
[7] M. Urbani, M.E. Ragoussi, M.K. Nazeeruddin, T. Torres, Phthalocyanines for dye-sensitized solar cells. Coordination Chemistry Reviews, (2019). 381 1-64.
[8] A.T. Swesi, J. Masud, W.P. Liyanage, S. Umapathi, E.W. Bohannan, J.E. Medvedeva, M. Nath, Textured NiSe₂ Film: Bifunctional Electrocatalyst for Full Water Splitting at Remarkably Low Overpotential with High Energy Efficiency. (2017).
[9] T.J.S. Anand, M. Zaidan, S. Shariza, Effect of additives on optical measurements of NiSe2 thin films. Procedia Engineering, (2013) 53 555-561.
[10] Z. Zhuang, Q. Peng, J. Zhuang, X. Wang, Y. Li, Controlled hydrothermal synthesis and structural characterization of a nickel selenide series. Chemistry–A European Journal, (2006) 12(1) 211-217.
[11] M.S. Begum, A.J. Ahamed, Synthesis and characterization of NiSe and doped NiSe: Mn. Journal of Chemical and Pharmaceutical Research, (2015) 7(3)2031-2039.
[12] K. Unoki, A. Yoshiasa, G. Kitahara, T. Nishiayama, M. Tokuda, K. Sugiyama, A. Nakatsuka, Crystal structure refinements of stoichiometric Ni3Se2 and NiSe. Acta Crystallographica Section C: Structural Chemistry, (2021) 77(4) 169-175.
[13] N.A. Salleh, S. Kheawhom, A.A. Mohamad, Mohamad, Characterizations of nickel mesh and nickel foam current collectors for supercapacitor application. Arabian Journal of Chemistry, (2020) 13(8) 6838-6846.
[14] F. Liang, L. Zhan, T. Guo, X. Wu, J. Chu, CVD-Grown 2D Nonlayered NiSe as a Broadband Photodetector. Micromachines, (2021) 12(9) 1066.
[15] L. Zhao, P. Zhang, Y. Zhang, Z. Zhang, L. Yang, Z.G. Chen, Facile synthesis of hierarchical Ni3Se2 nanodendrite arrays for supercapacitors. Journal of Materials Science & Technology, (2020) 54 69-76.
[16] J. Zhang, F. Zhao, K. Du, Y. Zhou, Self-Supported NiSe/Ni Foam: An Efficient 3D Electrode for High-Performance Supercapacitors. Nano, (2018) 13(11) 1850136.
[17] Y. Tian, Y. Ruan, J. Zhang, Z. Yang, J. Jiang, C. Wang, Controllable growth of NiSe nanorod arrays via one-pot hydrothermal method for high areal-capacitance supercapacitors. Electrochimica Acta, (2017) 250 327-334.
[18] A. Sivanantham, S. Shanmugam, Nickel selenide supported on nickel foam as an efficient and durable non-precious electrocatalyst for the alkaline water electrolysis. Applied Catalysis B: Environmental, (2017) 203 485-493.
[19] S. Huang, W. Zhang, S. Cui, W. Chen, L. Mi, Sequential partial ion exchange synthesis of composite Ni3S2/Co9S8/NiSe nanoarrays with a lavender-like hierarchical morphology. Inorganic Chemistry Frontiers, (2017). 4(4) 727-735.
[20] H. Li, J. Gong, J. C. Li, X. Zhang, C. Tang, H. Yao, Q. Ding, Synthesis of nickel selenide thin films for high performance all-solid-state asymmetric supercapacitors. Chinese Chemical Letters, (2020) 31(9) 2275-2279.
[21] T. S. Mathis, N. Kurra, X. Wang, D. Pinto, P. Simon, Y. Gogotsi, Energy storage data reporting in perspective—guidelines for interpreting the performance of electrochemical energy storage systems. Advanced Energy Materials, (2019) 9(39) 1902007.
[22] Y. Li, D. Yan, Y. Zou, C. Xie, Y. Wang, Y. Zhang, S. Wang, Rapidly engineering the electronic properties and morphological structure of NiSe nanowires for the oxygen evolution reaction. Journal of Materials Chemistry A, (2017)5(48) 25494-25500.
[23] Y. Jiang, J. Liu, Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, (2019) 2(1) 30-37.
[24] F. Tesfaye, P. Taskinen, Phase equilibria and thermochemistry of selected sulfide systems in the pyrometallurgy of Ni and Cu. (2012).
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *