帳號:guest(3.146.35.80)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:許廷毓
作者(英文):Ting-Yu Hsu
論文名稱:液滴磊晶法成長氮化銦鎵量子點於矽基板上與結構分析
論文名稱(英文):Microstructures of InGaN Quantum Dots Grown on Si (111) by Droplet Epitaxy.
指導教授:余英松
指導教授(英文):Ing-Song Yu
口試委員:何焱騰
李炤佑
余英松
口試委員(英文):Yen-Teng Ho
Chao-Yu Lee
Ing-Song Yu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922108
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:91
關鍵詞:電漿輔助式分子束磊晶系統液滴磊晶模式氮化銦鎵量子點
關鍵詞(英文):Molecular beam epitaxyDroplet epitaxyInGaNQuantum dots
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本研究利用電將輔助式分子束磊晶系統,以液滴磊晶模式,藉由改變三種不同參數系列:成長溫度、氮化時間與液滴沉積時間,在矽基板(111)上成長氮化銦鎵量子點,實驗過程中利用反射式高能量電子繞射儀來做現場的初步分析與判斷成長材料的結晶類型,以電子顯微鏡與原子力顯微鏡分析量子點表面形貌,探討氮化銦鎵量子點的密度、尺寸與銦鎵元素比之影響,以X射線光電子能譜儀分析量子點化學成分,在80K低溫下使用光致發光來測量材料的能隙與銦鎵元素比,藉由以上分析數據來探討三元化合物量子點氮化銦鎵材料的成長機制。
從實驗結果,我們可以發現改變基板成長溫度對氮化銦鎵量子點的各項數據影響最為劇烈,成長溫度較高時,容易使結構有聚集的現象,量子點尺寸差異甚大,密度大幅降低,相分離劇烈;低溫能有效改善相分離的現象,並大幅提高銦金屬濃度比例;而延長氮化時間可以提高氮化銦鎵的品質,液滴沉積時間容易影響量子點的尺寸平均度。
本研究首次使用分子束磊晶系統藉由液滴磊晶模式成功地成長高銦金屬含量的氮化銦鎵量子點,並且以三種不同的參數對成長量子點的影響關係討論,解決了多年以來的氮化銦鎵材料相分離問題,還能有效控制鍵結度品質、量子點尺寸均勻性,最後甚至提出了新的成長方式為之後的氮化銦鎵量子點有更高品質的可能性。
In the report, Indium Gallium Nitride quantum dots was grown on Si (111) by plasma-assisted molecular beam epitaxy (MBE) via droplet epitaxy (DE) technique. This work had three different series of growth parameters: Substrate temperature, nitridation times, the deposition time of metal droplets. During the growth, reflection high energy electron diffraction (RHEED) can monitor the growth of InGaN quantum dots on the surface of Si. After the droplet epitaxy process, secondary electron microscopy and atomic force microscopy were used to observe the surface morphology and density of InGaN dots. The surface chemical composition was analyzed by X-ray photoelectron spectroscopy, and analysis optical properties by photoluminescence. According to the results, we propose the growth mechanism of InGaN quantum dots by droplet epitaxy.
In our results, we found that the density of InGaN quantum dots were influenced strongly by growth temperatures. In the higher growth temperature, nanodots of InGaN had lower density, larger size distribution and phase separation of InGaN. On the other hand, lower-temperature growth can obtain the InGaN nanodots with higher density and Indium ratio. Longer nitridation time can increase quality of InGaN. Droplet deposition time influenced the uniformity of InGaN dots.
This report proposed firstly the higher In composition in InGaN quantum dots via DE growth mode by MBE. According to different growth parameters, the growth mechanism of InGaN dots were investigated. The phase separation phenomenon of InGaN could be overcomed by DE mode for the applications of InGaN quantum dots.
誌謝 i
摘要 iii
Abstract v
目錄 vii
圖目錄 xi
表目錄 xv
第一章 緒論 1
1.1 氮化銦鎵發展歷史 1
1.2 氮化銦鎵材料 2
1.3 奈米材料 4
1.3.1 量子侷限效應(Quantum Confinement) 5
1.3.2 奈米材料成長方法 6
1.4 液滴磊晶模式 10
1.5 退火對量子點結構之影響 14
1.6 分析氮化銦鎵中的銦/鎵濃度比例 18
1.7 研究動機 24
第二章 儀器介紹與分析原理 25
2.1 電漿輔助式分子束磊晶系統 25
2.1.1 真空裝置 25
2.1.2 磊晶裝置 27
2.1.3 分析儀器 28
2.2 場發射掃描電子顯微鏡 30
2.2.1 二次電子成像 31
2.2.2 背向散射電子成像 31
2.3 原子力顯微鏡(Atomic Force Microscope, AFM) 32
2.4 開爾文探針力顯微鏡(Kelvin probe force microscope, KPFM) 33
2.5 X射線光電子能譜儀(X-ray photoelectron spectroscopy, XPS) 34
2.6 光致發光(Photoluminescence, PL) 35
第三章 實驗方式與流程 37
3.1 超高真空環境搭建 37
3.2 基板前處理 37
3.2.1 化學清洗 38
3.2.2 熱清洗 38
3.3 樣品成長流程 38
3.3.1 預先氮化處理 39
3.3.2 液滴沉積 39
3.3.3 後氮 39
3.3.4 退火 40
3.3.5 樣品傳出與分析 40
3.4 粒徑分析方法 40
3.5 實驗流程圖與實驗參數表 41
第四章 數據分析與結果討論 45
4.1 改變成長基板溫度對氮化銦鎵量子點的影響討論 45
4.1.1 利用RHEED觀測氮化銦鎵量子點表面結構成長狀態 45
4.1.2 利用FE-SEM觀測氮化銦鎵量子點表面形貌 47
4.1.3 利用XPS測量氮化銦鎵量子點之原子鍵結與元素組成比例 50
4.1.4 利用AFM與KPFM測量氮化銦鎵量子點之高度與表面功函數 52
4.1.5 利用低溫PL分析氮化銦鎵放光光譜 55
4.1.6 不同成長溫度在結晶過程之討論 57
4.2 改變氮化時間對氮化銦鎵量子點的影響討論 59
4.2.1 利用FE-SEM觀測氮化銦鎵量子點表面型態 59
4.2.2 利用XPS測量氮化銦鎵量子點之原子鍵結與元素組成比例 61
4.2.3 利用AFM與KPFM測量氮化銦鎵量子點之高度與表面功函數 64
4.2.4 利用低溫PL分析氮化銦鎵放光光譜 66
4.2.5 不同氮化時間在結晶過程之討論 68
4.3 改變液滴沉積時間對氮化銦鎵量子點的影響討論 70
4.3.1 利用FE-SEM觀測氮化銦鎵量子點表面形貌 70
4.3.2 利用XPS測量氮化銦鎵量子點之原子鍵結與元素組成比例 73
4.3.3 利用AFM與KPFM測量氮化銦鎵量子點之高度與表面功函數 75
4.3.4 利用低溫PL分析氮化銦鎵放光光譜 77
4.3.5 不同液滴沉積時間在結晶過程之討論 80
第五章 結論 83
參考文獻 84
附錄 90
試片實驗參數與分析編號 90

S.Nakamura, T.Mukai, andM.Senoh, “Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes,” Applied Physics Letters, vol. 64, no. 13. pp. 1687–1689, 1994.
[2] F.Bernardini, V.Fiorentini, andD.Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 56, no. 16, pp. R10024–R10027, 1997.
[3] Y.Xuan, Y. Q.Wu, andP. D.Ye, “High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm,” IEEE Electron Device Lett., vol. 29, no. 4, pp. 294–296, 2008.
[4] O.Moriwaki, T.Someya, K.Tachibana, S.Ishida, andY.Arakawa, “Narrow photoluminescence peaks from localized states in InGaN quantum dot structures,” Appl. Phys. Lett., vol. 76, no. 17, pp. 2361–2363, 2000.
[5] B.Applications, Chapter IC-6 - High Efficiency III–V Multijunction Solar Cells, Second Edi. Elsevier Ltd, 1998.
[6] K. H.Schlereth, “III-V semiconductor lasers: Application in telecommunication systems - Suitability for spectroscopy,” Infrared Phys. Technol., vol. 37, no. 1, pp. 129–142, 1996.
[7] H.Morkoç, “Potential applications of III–V nitride semiconductors,” Mater. Sci. Eng. B, vol. 43, pp. 137–146, 1997.
[8] T. D.Moustakas et al., “Growth and device applications of III-nitrides by MBE,” Journal of Crystal Growth, vol. 227–228. pp. 13–20, 2001.
[9] K.Kusakabe andA.Yoshikawa, Dynamic Atomic Layer Epitaxy of InN on/in GaN and Its Application for Fabricating Ordered Alloys in Whole III-N System, 1st ed., vol. 96. Elsevier Inc., 2017.
[10] K. P.O’Donnell, I.Fernandez-Torrente, P. R.Edwards, andR. W.Martin, “The composition dependence of the InxGa1-xN bandgap,” Journal of Crystal Growth, vol. 269, no. 1. pp. 100–105, 2004.
[11] A. G.Bhuiyan, A.Hashimoto, andA.Yamamoto, “Indium nitride (InN): A review on growth, characterization, and properties,” J. Appl. Phys., vol. 94, no. 5, pp. 2779–2808, 2003.
[12] K.Yamaguchi, K.Yujobo, andT.Kaizu, “Stranski-Krastanov growth of InAs quantum dots with narrow size distribution,” Jpn. J. Appl. Phys., vol. 39, no. 12 A, pp. 8–12, 2000.
[13] Y.Chen andJ.Washburn, “Structural transition in large-lattice-mismatch heteroepitaxy,” Phys. Rev. Lett., vol. 77, no. 19, pp. 4046–4049, 1996.
[14] H. R.Eisenberg andD.Kandel, “Wetting layer thickness and early evolution of epitaxially strained thin films,” Phys. Rev. Lett., vol. 85, no. 6, pp. 1286–1289, 2000.
[15] V. G.Dubrovskii, N.V.Sibirev, X.Zhang, andR. A.Suris, “Stress-driven nucleation of three-dimensional crystal islands: From quantum dots to nanoneedles,” Cryst. Growth Des., vol. 10, no. 9, pp. 3949–3955, 2010.
[16] S.Figge, C.Tessarek, T.Aschenbrenner, andD.Hommel, “Ingan quantum dot growth in the limits of stranski-krastanov and spinodal decomposition,” Phys. Status Solidi Basic Res., vol. 248, no. 8, pp. 1765–1776, 2011.
[17] R.Belghouthi andM.Aillerie, “Temperature dependence of InGaN / GaN multiple quantum well solar cells,” Energy Procedia, vol. 157, no. 2018, pp. 793–801, 2019.
[18] A. K.Viswanath, Photoluminescence in GaN and InGaN and their applications in photonics, vol. 1. 2001.
[19] R. J.Moon, A.Martini, J.Nairn, J.Simonsen, andJ.Youngblood, Cellulose nanomaterials review: Structure, properties and nanocomposites, vol. 40, no. 7. 2011.
[20] H.Yu, J.Li, R. A.Loomis, L. W.Wang, andW. E.Buhro, “Two-versus three-dimensional quantum confinement in indium phosphide wires and dots,” Nat. Mater., vol. 2, no. 8, pp. 517–520, 2003.
[21] J.Jeevanandam, A.Barhoum, Y. S.Chan, A.Dufresne, andM. K.Danquah, “Review on nanoparticles and nanostructured materials: History, sources, toxicity and regulations,” Beilstein J. Nanotechnol., vol. 9, no. 1, pp. 1050–1074, 2018.
[22] T.Takagahara andK.Takeda, “Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials,” Phys. Rev. B, vol. 46, no. 23, pp. 15578–15581, 1992.
[23] S.Ghimire andV.Biju, “Relations of exciton dynamics in quantum dots to photoluminescence, lasing, and energy harvesting,” J. Photochem. Photobiol. C Photochem. Rev., vol. 34, pp. 137–151, 2018.
[24] K.Hoshino andY.Arakawa, “Formation of high-density GaN self-assembled quantum dots by MOCVD,” J. Cryst. Growth, vol. 272, no. 1-4 SPEC. ISS., pp. 161–166, 2004.
[25] D. H.Kang et al., “Fabrication and characterization of inx Ga1-x N quantum dots using nitridation of nano-alloyed droplet growth technique,” Jpn. J. Appl. Phys., vol. 47, no. 4 PART 2, pp. 3053–3055, 2008.
[26] S.Sanguinetti, S.Bietti, andN.Koguchi, “Droplet Epitaxy of Nanostructures,” in Molecular Beam Epitaxy, 2018, pp. 293–314.
[27] N. L.Shwartz, M. A.Vasilenko, A. G.Nastovjak, andI. G.Neizvestny, “Concentric GaAs nanorings formation by droplet epitaxy — Monte Carlo simulation,” Comput. Mater. Sci., vol. 141, pp. 91–100, 2018.
[28] P.Aseev et al., “Formation mechanisms of single-crystalline InN quantum dots fabricated via droplet epitaxy,” J. Cryst. Growth, vol. 493, pp. 65–75, 2018.
[29] M.Tian et al., “Investigation of high indium-composition InGaN/GaN heterostructures on ZnO grown by metallic organic chemical vapor deposition,” Opt. Mater. Express, vol. 8, no. 10, p. 3184, 2018.
[30] T.Kimura et al., “Investigation of InN mole fraction fluctuation in InGaN films grown by RF-MBE,” Physica Status Solidi (C) Current Topics in Solid State Physics, vol. 8, no. 5. pp. 1499–1502, 2011.
[31] P. M.Lytvyn et al., “Growth kinetics and nanoscale structure-property relationships of InN nanostructures on GaN(0 0 0 1),” Appl. Surf. Sci., vol. 537, no. September 2020, 2021.
[32] 黃榮俊, “分子束磊晶技術之發展與 磁性薄膜之製備應用,” 科儀新知第二十三卷第六期 91.6, 2002.
[33] F.Tang, T.Parker, G. C.Wang, andT. M.Lu, “Surface texture evolution of polycrystalline and nanostructured films: RHEED surface pole figure analysis,” J. Phys. D. Appl. Phys., vol. 40, no. 23, 2007.
[34] A.Billah, “Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication,” no. July, 2017.
[35] H. J.Butt, B.Cappella, andM.Kappl, “Force measurements with the atomic force microscope: Technique, interpretation and applications,” Surf. Sci. Rep., vol. 59, no. 1–6, pp. 1–152, 2005.
[36] “Kelvin probe force microscope,” [Online]. Available: https://en.wikipedia.org/wiki/Kelvin_probe_force_microscope.
[37] XPS工作原理, “https://www.wikiwand.com/zh-hk/X射线光电子能谱学.”
[38] Á.Nemcsics, “On the shape formation of the droplet epitaxial quantum dots,” Microelectron. Reliab., vol. 56, pp. 73–77, 2016.
[39] R.Singh, D.Doppalapudi, T. D.Moustakas, andL. T.Romano, “Phase separation in InGaN thick films and formation of InGaN/GaN double heterostructures in the entire alloy composition,” Appl. Phys. Lett., vol. 70, no. 9, pp. 1089–1091, 1997.
[40] M. A.Vasilenko, I. G.Neizvestny, andN. L.Shwartz, “Formation of GaAs nanostructures by droplet epitaxy - Monte Carlo simulation,” Comput. Mater. Sci., vol. 102, pp. 286–292, 2015.
[41] K.Reyes et al., “Unified model of droplet epitaxy for compound semiconductor nanostructures: Experiments and theory,” Phys. Rev. B - Condens. Matter Mater. Phys., vol. 87, no. 16, 2013.
[42] Y.Li et al., “Surface morphology and optical properties of InGaN quantum dots with varying growth interruption time,” Mater. Res. Express, vol. 7, no. 1, 2019.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *