帳號:guest(3.129.71.64)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林昀昇
作者(英文):Yun-Sheng Lin
論文名稱:光還原法自組裝微奈米銀線之研究
論文名稱(英文):The Study Of Self-Assembly of Silver Micro- Nanowires by Photo Reduction Method
指導教授:黃士龍
張文固
指導教授(英文):Shyh-Lung Hwang
Wen-Ku Chang
口試委員:黃士龍
張文固
胡紹華
口試委員(英文):Shyh-Lung Hwang
Wen-Ku Chang
Shao-Hua Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922116
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:92
關鍵詞:奈米導線自組裝光催化
關鍵詞(英文):NanowireSilverSelf-AssemblyPhotocatalysis
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
本研究利用光還原法搭配硝酸銀溶液於 TiO2 薄膜上預劃製之微奈米尺度溝槽中照光生長銀微奈米線,並改變實驗參數,探討銀微奈米線的生長變化及機制。
本實驗之矽基板試片製備流程為:先使用真空濺鍍法鍍一層厚度約100nm 之非晶質 TiO2 薄膜,再經 450℃熱處理使非晶質相轉變為Anatase 相,接著使用旋轉塗布機以不同轉速鍍上膜厚約 100~160nm 之 PMMA(聚甲基丙烯酸甲酯)阻隔層,最後使用 FIB(聚焦離子束)於阻隔層中切割出寬度約 20~40nm、長度約 10μm 之選區生長溝槽。接著再將試片置於 0.1~100ppm 之硝酸銀水溶液中,經 UVB 光照射還原銀離子,並自組裝於溝槽中。
變更成長條件實驗結果顯示,合適成長自組裝銀線的實驗條件首為於低濃度硝酸銀溶液中長時間照光生長;如於 0.1ppm 之溶液中照光10min,可以長出連結性不錯、寬約為 100nm 的銀線。其次為於低濃度-高濃度溶液中進行二次成長:如於 0.1ppm 或 0.5ppm 之溶液中照光1min 進行銀晶粒成核,再於 1ppm 溶液中照光 1min 進行二次成長,即可分別還原出現寬約為 150nm 或 180nm、連結性不錯之銀線。
The self-assemble silver nano-wires were successfully fabricated in the pre-cut grooves on TiO2 film by photocatalyic reduction reactions in dilute silver ion solutions subjected to ultraviolet irradiation.
The sample preparation procedure included sputtering-coating of a thin layer of amorphous TiO2 film (~100 nm in thickness) on the surface of silicon wafer, further annealing at 450°C for 2 hours for the transformation of amorphous phase into anatase phase, and the spin-coating of a PMMA (polymethyl methacrylate) layer (~100-160 nm in thickness) on anatase surface, This was then followed by the making of through-thickness grooves of ~20-40 nm in width and ~10 μm in length on buffer layer by focused ion beam milling techniques. The photocatalytic reduction experiments were performed in the diluted silver nitrate solutions of ~0.1-100 ppm concentrations under the irradiation of UVB light.
After experimenting with various parameters such as solution
concentrations and irradiation times, it was concluded that silver nanowires of good connectivity could be readily/rapidly fabricated in a few minutes by the photocatalytic reduction of Ag2+ ions from solution and the consequent self-assembly of reduced Ag atoms onto the pre-cut grooves on the buffer layer. In the single step process, the siliver nanowires of ~110 nm in width were fabricated in 10 minutes by using 0.1 ppm solution. Alternatively, in the two-step process involving Ag particle nucleation in 0.1-0.5 ppm solution for 1 minute, followed by Ag particle growth in 1 ppm solution for another minute, the siliver nanowires of ~160 nm in width were also obtained.
第一章 緒論   1
1-1 前言   1
1-2 研究動機   2
1-3 研究目的   3
第二章 文獻回顧   5
2-1 奈米材料的製備   5
2-1-1 模板生長法   5
2-1-2 多元醇合法   7
2-1-3 晶種促進生長法   8
2-2 自組裝(self-assembly)   9
2-2-1 以氣-液-固 (VLS)生長奈米氧化鋅線   10
2-2-2 以親和性差異性選區生長奈米銀粒子   12
2-2-3 以化學溶液法選區生長氧化鋅奈米棒   13
2-3 二氧化鈦光觸媒性質的介紹   14
2-4 尖端放電效應   16
2-5 聚焦離子束(Focused Ion Beam)   16
2-6 物理氣相沉積法(PVD)   18
第三章 實驗方法   21
3-1 實驗藥品及設備   21
3-1-1 實驗藥品   21
3-1-2 實驗設備   21
3-2 實驗步驟   22
3-2-1 實驗流程   22
3-2-2 實驗流程說明   23
3-3 實驗分析儀器   25
第四章 結果與討論   27
4-1 TiO2薄膜表面形貌與分析   27
4-2 PMMA薄膜分析   30
4-3 試片照光分析   32
4-3-1 有無退火之試片在 UVB 下於 1ppm 生長之形貌變化   33
4-3-2 在 UVB 下不同溝槽寬度於 0.1ppm 下之生長變化   35
4-3-3 在 UVB 下不同溶液濃度之生長變化   37
4-3-4 在 UVB 下生長不同時間下試片形貌分析   41
4-3-5 在UVB 下溶液為四氯金酸與硝酸銀下生長形貌之差異   45
4-3-6 以不同旋轉速度塗布 PMMA 之照光生長形貌差異   48
4-3-7 在UVB 下進行二次成長之形貌分析   50
4-3-8 在UVB 下不同溶液濃度之生長變化-三條線   61
4-3-9 在UVB 下不同照光時間之生長變化-三條線   65
4-3-10 在UVB 進行二次成長之生長變化-三條線   68
4-3-11 生長後之試片以 250℃退火 2 小時之形貌分析-三條線   73
4-4 TEM 微結構分析   76
4-4 電性測量   85
第五章 結論   89
參考文獻   91
1. Liu, Y., Z. Ma, and S. Ramakrishna, One Dimensional Nanomaterials:
Preparation, Structures, and Assembly. Current Nanoscience, 2006. 2: p. 71-78.
2. Makita, T., et al., Structures and electronic properties of aluminum nanowires.The Journal of Chemical Physics, 2003. 119(1): p. 538-546.
3. Subbaiah, L.V., et al., Novel Effects of Nanoparticulate Delivery of Zinc on Growth, Productivity, and Zinc Biofortification in Maize (Zea mays L.). Journal of Agricultural and Food Chemistry, 2016. 64(19): p. 3778-3788.
4. Yao, Y. and S. Chen, Surface effect on resonant properties of nanowires predicted by an elastic theory for nanomaterials. Journal of Applied Physics,2015. 118(4).
5. Zhou, H.S., et al., Controlled synthesis and quantum-size effect in gold-coated nanoparticles. Phys Rev B Condens Matter, 1994. 50(16): p. 12052-12056.
6. Vayssieres, L., et al., One-Dimensional Quantum-Confinement Effect in αFe2O3 Ultrafine Nanorod Arrays. Advanced Materials, 2005. 17(19): p. 2320-2323.
7. 林宗邑, 以熱及光還原法組裝微米銀線及其電性研究, in 材料科學與工程學系. 2013, 國立東華大學. p. 76.
8. 潘健晟, 光還原法自組裝微奈米金之形貌分析, in 材料科學與工程學系.2020, 國立東華大學. p. 78.
9. Habig, K.H., Chemical vapor deposition and physical vapor deposition coatings: Properties, tribological behavior, and applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): p. 2832-2843.
10. Rossnagel, S.M., Thin film deposition with physical vapor deposition and related technologies. Journal of Vacuum Science & Technology A: Vacuum,Surfaces, and Films, 2003. 21(5): p. S74-S87.
11. Sigmund, P., Mechanisms and theory of physical sputtering by particle impact.Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 1987. 27(1): p. 1-20.
12. 李常鉉, 以陽極氧化鋁模板在矽基材上輔助成長奈米結構材料, in 材料科學與工程學系所. 2004, 國立交通大學. p. 70.
13. Xia, Y., et al., One-Dimensional Nanostructures: Synthesis, Characterization,and Applications. Advanced Materials, 2003. 15(5): p. 353-389.
14. Lu, X., et al., Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem, 2009. 60: p. 167-92.
15. Grzelczak, M., et al., Directed Self-Assembly of Nanoparticles. ACS Nano,2010. 4(7): p. 3591-3605.
16. 許如宏, 利用原子力顯微術製作奈米結構並應用於選區成長一維奈米材料,in 材料科學工程學系. 2005, 國立清華大學: 新竹市. p. 81.
17. Yun, H., et al., Site-selective synthesis of silver nanoparticles in pre-patterned trenches and their localized surface plasmon resonances. Nanotechnology,2012. 23(1): p. 015306.
18. Kim, Y.-J., et al., Controlled selective growth of ZnO nanorod and microrod arrays on Si substrates by a wet chemical method. Applied Physics Letters,2006. 89(16).
19. Lee, S.-Y. and S.-J. Park, TiO2 photocatalyst for water treatment applications.Journal of Industrial and Engineering Chemistry, 2013. 19(6): p. 1761-1769.
20. Guo, Q., et al., Fundamentals of TiO2 Photocatalysis: Concepts, Mechanisms,and Challenges. Adv Mater, 2019. 31(50): p. e1901997.92
21. Akpan, U.G. and B.H. Hameed, Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater,2009. 170(2-3): p. 520-9.
22. Chang, J., P.A. Lawless, and T. Yamamoto, Corona discharge processes. IEEE Transactions on Plasma Science, 1991. 19(6): p. 1152-1166.
23. 楊舜傑, 聚焦離子束於石英玻璃奈米結構加工之探討, in 機械與機電工程學系研究所. 2008, 國立中山大學: 高雄市. p. 96.
24. Ogihara, S., et al., Application of FIB technique to introduction of a notch into a carbon fiber for direct measurement of fracture toughness. Journal of Physics:Conference Series, 2009. 191.
25. Phaneuf, M.W., FIB for Materials Science Applications - a Review, in Introduction to Focused Ion Beams: Instrumentation, Theory, Techniques and Practice, L.A. Giannuzzi and F.A. Stevie, Editors. 2005, Springer US: Boston,MA. p. 143-172.
26. Mayer, J., et al., TEM Sample Preparation and FIB-Induced Damage. MRS Bulletin, 2007. 32(5): p. 400-407.
27. Mattox, D.M., Physical vapor deposition (PVD) processes. Metal Finishing,2002. 100: p. 394-408.
28. Baptista, A., et al., Sputtering Physical Vapour Deposition (PVD) Coatings: A Critical Review on Process Improvement and Market Trend Demands. Coatings,2018. 8(11).
29. Schiller, S., et al., PVD coating of plastic webs and sheets with high rates on large areas. Surface and Coatings Technology, 2000. 125(1): p. 354-360.
(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *