帳號:guest(3.22.248.94)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:翁培涵
作者(英文):PEI-HAN WENG
論文名稱:用於超級電容器的鎳基金屬有機骨架電催化劑的開發與應用
論文名稱(英文):Development of Ni-Metal Organic framework based Electrocatalyst for Supercapaction Application
指導教授:傅彥培
指導教授(英文):Yen-Pei Fu
口試委員:陳怡嘉
胡安仁
傅彥培
口試委員(英文):Yi-Jia Chen
An-Ren Hu
Yen-Pei Fu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922117
出版年(民國):111
畢業學年度:111
語文別:中文
論文頁數:165
關鍵詞:金屬有機框架超級電容器比電容四元複合物Swagelok電池裝置
關鍵詞(英文):Metal-Organic-framework (MOF)SupercapacitorsSpecific capacitanceQuaternary compositeSwagelok cell setup
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
在本實驗中我們採用化學氧化法使CuO自生長在泡沫銅(Cu-Foam)上。以苯-1,4-二羧酸(Benzene-1,4-dicarboxylic acid)作為有機配體,利用水熱法合成贋電容複合超級電容器之電極材料,成功使片狀的鎳金屬有機框架(Ni-MOF)生長在CuO/Cu-Foam上。形成分層結構的Cu-Foam/CuO/Ni-MOF三元複合電極。接下來以簡單的回流法來合成片狀的鎳金屬有機框架(Metal-Organic-framework)結構的(Ni-MOF、PANI/Ni-MOF、PANI/g-C3N4/Ni-MOF、PANI/g-C3N4/NiO/Ni-MOF),藉由進一步添加導電聚合物聚苯胺(Polyaniline)、導電碳材石墨相氮化碳(g-C3N4)和金屬氧化物(NiO),來強化純材料的各種電化學性質,像是比電容、電子擴散係數和循環穩定性等等。
通過X-ray粉末繞射、傅立葉變換紅外光譜、拉曼光譜和X射線光電子能譜儀等儀器進行材料的特徵分析。通過掃描和穿透式電子顯微鏡獲得顯微圖像來研究分析材料的形貌。最後開發的電極運用於超級電容器中。
其中PANI/g-C3N4/NiO/Ni-MOF四元複合材料電極在5 A/g的輸入電流密度下顯示出較高的比電容為2420 F/g,並且在20 A/g的高輸入電流密度下仍保有初始比電容數值的75.2%約為1820 F/g的比電容保持能力。最後將四元複合材料用於開發固態不對稱超級電容器,並通過Swagelok cell裝置進行製造分析。負極和正極分別為活性碳(AC)電極和四元複合電極的不對稱超級電容器表現出高功率和能量密度。所製造的超級電容器在長達3000次循環後表現出優異的穩定性,與初始5個循環相比仍保留99.5%的比電容值,表明它具有進一步的工作潛力。
In this experiment, we used the chemical oxidation method to make CuO self-grown on copper foam (Cu-Foam). Using benzene-1,4-dicarboxylic acid as an organic ligand, a pseudocapacitor electrode materials was synthesized by a hydrothermal method, and a sheet-like nickel metal organic framework (Ni-MOF) was successfully grown on CuO/Cu-Foam. Formation of a layered Cu-Foam/CuO/Ni-MOF ternary composite electrode. Next, we used a simple reflow method to synthesize sheet-like nickel metal-organic-framework structures (Ni-MOF, PANI/Ni-MOF, PANI/g-C3N4/Ni-MOF, PANI/g-C3N4/NiO/Ni-MOF), by further adding conductive polymer polyaniline, conductive carbon material graphitic carbon nitride (g-C3N4) and metal oxide (NiO), to enhance the electrochemical performance of pure materials properties, such as specific capacitance, electron diffusion coefficient, and cycling stability, among others.
The obtained materials were confirmed with characterization tools such as X-ray powder diffraction, Fourier transform infrared, Raman spectroscopy and X-ray photoelectron spectroscopy. The morphology was studied by obtaining microscopic images from scanning electron microscopy and transmission electron microscopy. Finally, developed electrodes were used in applications of supercapacitors.
The quaternary composite material of PANI/g-C3N4/NiO/Ni-MOF shows a higher specific capacitance of 2420 F/g at a current density output of 5 A/g, and at a current density of 20 A/g, the specific capacitance is 1820 F/g and still retains 75.2% of the initial specific capacitance. This result is higher than other electrodes. Finally, the quaternary composite material was used to develop solid state asymmetric supercapacitors and the fabrication analysis was done via Swagelok cell setup. The asymmetric supercapacitor with activated carbon (AC) electrode and quaternary composite electrode in negative and positive side respectively, showed high energy and power density. In addition, the fabricated supercapacitor showed excellent stability after up to 3000 cycles, and still retained 99.5% of the specific capacitance value compared with the initial 5 cycles and showed that it has further working potentials.
第一章 緒論   1
1.1 前言  1
1.2 研究動機  4
1.3 研究目的  7
第二章 文獻回顧   13
2.1 超級電容器簡介  13
2.2 超級電容器的種類  17
2.3 電雙層超級電容器(EDLCs)  20
2.3-1 活性碳(Acitvated Carbon)  21
2.3-2 碳黑(Carbon Black, (CB))  22
2.3-3 活化和改質碳基材料  23
2.4 贋電容超級電容器(pseudocapacitor)  24
2.4-1 金屬有機框架電極(MOF)  25
2.4-2 MOF的結構  25
2.4-3 MOF結構相對於構建的多樣性  27
2.4-4 MOF結構在尺寸的多樣性  27
2.4-5 如何強化MOF的性質  29
第三章 實驗流程與分析   31
3.1 實驗儀器  31
3.2 實驗藥品  33
3.3 實驗流程  35
3.3-1 合成g-C3N4材料  35
3.3-2 合成氧化物NiO材料  35
3.3-3 合成PANI, PANI/g-C3N4和PANI/g-C3N4/NiO複合材料  37
3.3-4 複合電極材料PANI/g-C3N4/NiO/Ni-MOF合成和製作  39
3.3-5 複合電極材料Ni-MOF/CuO/Cu foam合成和製作  41
3.3-6 固液態電解質製作流程  43
3.3-7 超級電容器製作組裝流程  44
3.4 材料特性分析  46
3.4-1 X-光繞射分析(X-ray diffraction, XRD)  46
3.4-2 拉曼光譜分析(Raman spectra)  47
3.4-3 傅立葉轉變紅外光譜分析(FT-IR spectra)  48
3.4-4 N2吸附/脫附等溫曲線  50
3.4-5 X-ray光電子能譜分析(XPS)  52
3.4-6 表面微觀分析(SEM、EDS、FE-SEM、TEM)  52
第四章 實驗結果與討論   54
4.1 PANI/g-C3N4/NiO/Ni-MOF四元複合材料之結果與討論  54
4.1-1 X-ray繞射分析  54
4.1-2 拉曼光譜Raman spectra分析  56
4.1-3 傅立葉變換紅外光譜FT-IR分析  58
4.1-4 熱重熱差TGA分析  60
4.1-5 比表面積與孔隙度分析儀BET分析  61
4.1-6 X-ray 光電子能譜XPS分析  63
4.1-7 形貌和顯微結構研究  65
4.1-8 合成材料的電化學性質  69
4.1-9 不對稱超級電容器組件(Swagelok cell)的性能  88
4.1-10 超級電容器的實際應用  93
4.2 Ni-MOF/CuO/Cu foam三元複合材料之結果與討論  95
4.2-1 X-ray 繞射分析  95
4.2-2 拉曼光譜Raman spectra分析  97
4.2-3 傅立葉變換紅外光譜FT-IR分析  99
4.2-4 氫氣程序升溫還原(H2-TPR)分析  100
4.2-5 X-ray 光電子能譜XPS分析  101
4.2-6 形貌和顯微結構研究  103
4.2-7 合成材料的電化學性質  106
4.2-8 不對稱超級電容器組件(Swagelok cell)的性能  122
4.2-9 超級電容器的實際應用  125
第五章 結論   127
參考文獻  129
[1]鄧名傑, 陳錦明, 超級電池超級能耐, 科學發展, 514, 56-61, 2015.
[2]林宜慶,2009,〈超級電容器技術發展與應用趨勢分析〉,彰化:財團法人車輛研究測試中心。
[3]Rezk, H., Nassef, A. M., Abdelkareem, M. A., Alami, A. H., & Fathy, A. (2021). Comparison among various energy management strategies for reducing hydrogen consumption in a hybrid fuel cell/supercapacitor/battery system. International Journal of Hydrogen Energy, 46(8), 6110-6126.
[4]2019-2025年中國超級電容器市場專項調查及發轉趨勢分析報告,智研諮詢集團開發出版。
[5]經濟部能源局官方網站能源統計網頁,109年發電概況。
[6]Ma, A., Wu, J., Han, Y., Chen, F., Li, B., Cai, S., ... & Liu, J. (2018). Rational synthesis of a luminescent uncommon (3, 4, 6)-c connected Zn (II) MOF: a dual channel sensor for the detection of nitroaromatics and ferric ions. Dalton Transactions, 47(29), 9627-9633.
[7]Armutlulu, A., Bottomley, L. A., Bidstrup Allen, S. A., & Allen, M. G. (2015). Supercapacitor electrodes based on three‐dimensional copper structures with precisely controlled dimensions. ChemElectroChem, 2(2), 236-245.
[8]Luz, I., i Xamena, F. L., & Corma, A. (2010). Bridging homogeneous and heterogeneous catalysis with MOFs:“Click” reactions with Cu-MOF catalysts. Journal of Catalysis, 276(1), 134-140.
[9]Xiao, Y., Wei, W., Zhang, M., Jiao, S., Shi, Y., & Ding, S. (2019). Facile surface properties engineering of high-quality graphene: toward advanced Ni-MOF heterostructures for high-performance supercapacitor electrode. ACS Applied Energy Materials, 2(3), 2169-2177.
[10]Yang, F., Li, W., & Tang, B. (2018). Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. Journal of Alloys and Compounds, 733, 8-14.
[11]Nguyen, T. H., Fei, H., Sapurina, I., Ngwabebhoh, F. A., Bubulinca, C., Munster, L., ... & Saha, P. (2021). Electrochemical performance of composites made of rGO with Zn-MOF and PANI as electrodes for supercapacitors. Electrochimica Acta, 367, 137563.
[12]Zhu, G., Wen, H., Ma, M., Wang, W., Yang, L., Wang, L., ... & Yao, Y. (2018). A self-supported hierarchical Co-MOF as a supercapacitor electrode with ultrahigh areal capacitance and excellent rate performance. Chemical Communications, 54(74), 10499-10502.
[13]Liu, K., Deng, L., Li, H., Bao, Y., Xiao, Z., Li, B., ... & Wang, L. (2019). Two isostructural Co/Ni fluorine-containing metal-organic frameworks for dye adsorption and supercapacitor. Journal of Solid State Chemistry, 275, 1-7.
[14]Morozan, A., & Jaouen, F. (2012). Metal organic frameworks for electrochemical applications. Energy & environmental science, 5(11), 9269-9290.
[15]Xia, W., Mahmood, A., Liang, Z., Zou, R., & Guo, S. (2016). Earth‐abundant nanomaterials for oxygen reduction. Angewandte Chemie International Edition, 55(8), 2650-2676.
[16]Wu, S., Liu, J., Wang, H., & Yan, H. (2019). A review of performance optimization of MOF‐derived metal oxide as electrode materials for supercapacitors. International Journal of Energy Research, 43(2), 697-716.
[17]Zhong, Y., Cao, X., Ying, L., Cui, L., Barrow, C., Yang, W., & Liu, J. (2020). Homogeneous nickel metal-organic framework microspheres on reduced graphene oxide as novel electrode material for supercapacitors with outstanding performance. Journal of colloid and interface science, 561, 265-274.
[18]Cheng, Q., Tao, K., Han, X., Yang, Y., Yang, Z., Ma, Q., & Han, L. (2019). Ultrathin Ni-MOF nanosheet arrays grown on polyaniline decorated Ni foam as an advanced electrode for asymmetric supercapacitors with high energy density. Dalton Transactions, 48(13), 4119-4123.
[19]Dong, B., Li, M., Chen, S., Ding, D., Wei, W., Gao, G., & Ding, S. (2017). Formation of g-C3N4@ Ni (OH) 2 honeycomb nanostructure and asymmetric supercapacitor with high energy and power density. ACS Applied Materials & Interfaces, 9(21), 17890-17896.
[20]Li, X., Du, X., Ma, X., Wang, Z., Hao, X., Abudula, A., ... & Guan, G. (2017). CuO nanowire@ Co3O4 ultrathin nanosheet core-shell arrays: An effective catalyst for oxygen evolution reaction. Electrochimica Acta, 250, 77-83.
[21]Liu, Y., Cao, X., Jiang, D., Jia, D., & Liu, J. (2018). Hierarchical CuO nanorod arrays in situ generated on three-dimensional copper foam via cyclic voltammetry oxidation for high-performance supercapacitors. Journal of Materials Chemistry A, 6(22), 10474-10483.
[22]Fang, Z., ur Rehman, S., Sun, M., Yuan, Y., Jin, S., & Bi, H. (2018). Hybrid NiO–CuO mesoporous nanowire array with abundant oxygen vacancies and a hollow structure as a high-performance asymmetric supercapacitor. Journal of Materials Chemistry A, 6(42), 21131-21142.
[23]Saddique, J., Cheng, X., Shi, H., Wu, R., & Zhang, Y. (2019). High-performance Ni-Co sulfide nanosheet-nanotubes grown on Ni Foam as a binder free electrode for supercapacitors. Applied Sciences, 9(15), 3082.
[24]Liu, W., Niu, H., Yang, J., Cheng, K., Ye, K., Zhu, K., ... & Yan, J. (2018). Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chemistry of Materials, 30(3), 1055-1068.
[25]Iqbal, M. F., Ashiq, M. N., & Zhang, M. (2021). Design of metals sulfides with carbon materials for supercapacitor applications: a review. Energy Technology, 9(4), 2000987.
[26]Huang, J., Wang, K., & Wei, Z. (2010). Conducting polymer nanowire arrays with enhanced electrochemical performance. Journal of Materials Chemistry, 20(6), 1117-1121.
[27]Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., ... & Zhang, L. (2009). Progress of electrochemical capacitor electrode materials: A review. International journal of hydrogen energy, 34(11), 4889-4899.
[28]Kate, R. S., Khalate, S. A., & Deokate, R. J. (2018). Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review. Journal of Alloys and Compounds, 734, 89-111.
[29]Yang, J., Xiong, P., Zheng, C., Qiu, H., & Wei, M. (2014). Metal–organic frameworks: a new promising class of materials for a high performance supercapacitor electrode. Journal of Materials Chemistry A, 2(39), 16640-16644.
[30]Li, Z. X., Yang, B. L., Zou, K. Y., Kong, L., Yue, M. L., & Duan, H. H. (2019). Novel porous carbon nanosheet derived from a 2D Cu-MOF: Ultrahigh porosity and excellent performances in the supercapacitor cell. Carbon, 144, 540-548.
[31]Rajak, R., Saraf, M., Mohammad, A., & Mobin, S. M. (2017). Design and construction of a ferrocene based inclined polycatenated Co-MOF for supercapacitor and dye adsorption applications. Journal of Materials Chemistry A, 5(34), 17998-18011.
[32]Wang, C., Qiao, G. Y., Qin, J. S., & Yu, J. (2020). Discrete nanographene implanted in zirconium metal-organic framework for electrochemical energy storage. Journal of Solid State Chemistry, 287, 121377.
[33]Sui, Y., Zhang, D., Han, Y., Sun, Z., Qi, J., Wei, F., ... & Meng, Q. (2018). Effects of carbonization temperature on nature of nanostructured electrode materials derived from Fe-MOF for supercapacitors. Electronic Materials Letters, 14(5), 548-555.
[34]Feng, C., Lv, C. P., Zhao, H., Li, Z. Q., Xie, W. N., Sun, L. N., & Wang, Y. (2020). Structural elucidation and supercapacitive performance on a Mn (II)-based MOF. Crystal Growth & Design, 20(9), 5682-5687.
[35]SO, D. N. N. A. F. (2016). Ramesh K. Ramesh S. Facile sonochemical synthesis of nanostructured NiO with different particle sizes and its electrochemical properties for supercapacitor application. J. Colloid Interface Sci, 471, 136-144.
[36]Yao, M., Hu, Z., Xu, Z., Liu, Y., Liu, P., & Zhang, Q. (2015). Template synthesis and characterization of nanostructured hierarchical mesoporous ribbon-like NiO as high performance electrode material for supercapacitor. Electrochimica Acta, 158, 96-104.
[37]Zang, L., Zhu, J., & Xia, Y. (2014). Facile synthesis of porous NiO nanofibers for high-performance supercapacitors. Journal of materials engineering and performance, 23(2), 679-683.
[38]Sun, X., Wang, G., Hwang, J. Y., & Lian, J. (2011). Porous nickel oxide nano-sheets for high performance pseudocapacitance materials. Journal of Materials Chemistry, 21(41), 16581-16588.
[39]Wang, Y., Chang, B., Guan, D., Pei, K., Chen, Z., Yang, M., & Dong, X. (2014). Preparation of nanospherical porous NiO by a hard template route and its supercapacitor application. Materials Letters, 135, 172-175.
[40]Abbas, S. A., & Jung, K. D. (2016). Preparation of mesoporous microspheres of NiO with high surface area and analysis on their pseudocapacitive behavior. Electrochimica Acta, 193, 145-153.
[41]Abas, A., Sheng, H., Ma, Y., Zhang, X., Wei, Y., Su, Q., ... & Xie, E. (2019). PEDOT: PSS coated CuO nanowire arrays grown on Cu foam for high-performance supercapacitor electrodes. Journal of Materials Science: Materials in Electronics, 30(12), 10953-10960.
[42]Moosavifard, S. E., El-Kady, M. F., Rahmanifar, M. S., Kaner, R. B., & Mousavi, M. F. (2015). Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors. ACS applied materials & interfaces, 7(8), 4851-4860.
[43]He, D., Xing, S., Sun, B., Cai, H., Suo, H., & Zhao, C. (2016). Design and construction of three-dimensional flower-like CuO hierarchical nanostructures on copper foam for high performance supercapacitor. Electrochimica Acta, 210, 639-645.
[44]Xu, W., Dai, S., Liu, G., Xi, Y., Hu, C., & Wang, X. (2016). CuO nanoflowers growing on carbon fiber fabric for flexible high-performance supercapacitors. Electrochimica Acta, 203, 1-8.
[45]Budhiraja, N., Kumar, V., Tomar, M., Gupta, V., & Singh, S. K. (2019). Multifunctional CuO nanosheets for high-performance supercapacitor electrodes with enhanced photocatalytic activity. Journal of Inorganic and Organometallic Polymers and Materials, 29(4), 1067-1075.
[46]Yousaf, S., Aadil, M., Zulfiqar, S., Warsi, M. F., Agboola, P. O., Aboud, M. F. A., & Shakir, I. (2020). Hierarchically porous CuO microspheres and their r-GO based nanohybrids for electrochemical supercapacitors applications. Journal of Materials Research and Technology, 9(6), 14158-14167.
[47]Conway, B. E. (2013). Electrochemical supercapacitors: scientific fundamentals and technological applications. Springer Science & Business Media.
[48]Huang, J., Sumpter, B. G., & Meunier, V. (2008). A universal model for nanoporous carbon supercapacitors applicable to diverse pore regimes, carbon materials, and electrolytes. Chemistry–A European Journal, 14(22), 6614-6626.
[49]bin Ramli, M. M., & bin Ahmad, M. R. (2020). Capacitance-based microfluidic device for early ammonia detection in river water. Indonesian Journal of Electrical Engineering and Computer Science, 20(2), 761-767.
[50]Feng, G., Qiao, R., Huang, J., Sumpter, B. G., & Meunier, V. (2010, August). Computational modeling of carbon nanostructures for energy storage applications. In 10th IEEE International Conference on Nanotechnology (pp. 100-104). IEEE.
[51]Liu, Q., Xie, L., Shi, X., Du, G., Asiri, A. M., Luo, Y., & Sun, X. (2018). High-performance water oxidation electrocatalysis enabled by a Ni-MOF nanosheet array. Inorganic Chemistry Frontiers, 5(7), 1570-1574.
[52]Fu, K., Han, D., Ma, C., & Bohn, P. W. (2017). Ion selective redox cycling in zero-dimensional nanopore electrode arrays at low ionic strength. Nanoscale, 9(16), 5164-5171.
[53]Afshari, M., Dinari, M., & Momeni, M. M. (2018). Ultrasonic irradiation preparation of graphitic-C3N4/polyaniline nanocomposites as counter electrodes for dye-sensitized solar cells. Ultrasonics Sonochemistry, 42, 631-639.
[54]Ike, I. S., Sigalas, I. J., Iyuke, S. E., & Kalu, E. E. (2019). The Contributions of Electrolytes in Achieving the Performance Index of Next-Generation Electrochemical Capacitors (ECs). In Electrochemical Devices for Energy Storage Applications (pp. 215-248). CRC Press.
[55]Wu, Z., Xie, J., Xu, Z. J., Zhang, S., & Zhang, Q. (2019). Recent progress in metal–organic polymers as promising electrodes for lithium/sodium rechargeable batteries. Journal of Materials Chemistry A, 7(9), 4259-4290.
[56]Chen, K., Zhao, S., Sun, J., Zhou, J., Wang, Y., Tao, K., ... & Han, L. (2021). Enhanced capacitance performance by coupling 2D conductive metal–organic frameworks and conducting polymers for hybrid supercapacitors. ACS Applied Energy Materials, 4(9), 9534-9541.
[57]Li, C., Wang, K., Li, J., & Zhang, Q. (2020). Nanostructured potassium–organic framework as an effective anode for potassium-ion batteries with a long cycle life. Nanoscale, 12(14), 7870-7874.
[58]Jiang, Y., & Liu, J. (2019). Definitions of pseudocapacitive materials: a brief review. Energy & Environmental Materials, 2(1), 30-37.
[59]da Silva, M. I., Machadoa, Í. R., Toma, H. E., Araki, K., Angnes, L., & Gonçalves, J. M. (2021). Recent progress in water-splitting and supercapacitor electrode materials based on MOF-derived sulfides. Journal of Materials Chemistry A.
[60]Jiang, Y., Peng, M., Lan, J., Zhao, Y., Lu, Y. R., Chan, T. S., ... & Tan, Y. (2019). A self-reconstructed (oxy) hydroxide@ nanoporous metal phosphide electrode for high-performance rechargeable zinc batteries. Journal of Materials Chemistry A, 7(37), 21069-21078.
[61]Chodankar, N. R., Pham, H. D., Nanjundan, A. K., Fernando, J. F., Jayaramulu, K., Golberg, D., ... & Dubal, D. P. (2020). True meaning of pseudocapacitors and their performance metrics: asymmetric versus hybrid supercapacitors. Small, 16(37), 2002806.
[62]Pandolfo, A. G., & Hollenkamp, A. F. (2006). Carbon properties and their role in supercapacitors. Journal of power sources, 157(1), 11-27.
[63]Shi, H. (1996). Activated carbons and double layer capacitance. Electrochimica Acta, 41(10), 1633-1639.
[64]Gamby, J., Taberna, P. L., Simon, P., Fauvarque, J. F., & Chesneau, M. (2001). Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. Journal of power sources, 101(1), 109-116.
[65]Qu, D., & Shi, H. (1998). Studies of activated carbons used in double-layer capacitors. Journal of Power Sources, 74(1), 99-107.
[66]Sing, K. S. (1985). Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984). Pure and applied chemistry, 57(4), 603-619.
[67]Ahmadpour, A., & Do, D. D. (1996). The preparation of active carbons from coal by chemical and physical activation. Carbon, 34(4), 471-479.
[68]Teng, H., & Wang, S. C. (2000). Preparation of porous carbons from phenol–formaldehyde resins with chemical and physical activation. Carbon, 38(6), 817-824.
[69]Simon, P., & Gogotsi, Y. (2008). Materials for electrochemical capacitors. Nature materials, 7(11), 845-854.
[70]Hu, C. C., & Chen, W. C. (2004). Effects of substrates on the capacitive performance of RuOx· nH2O and activated carbon–RuOx electrodes for supercapacitors. Electrochimica Acta, 49(21), 3469-3477.
[71]Dicks, A. L. (2006). The role of carbon in fuel cells. Journal of Power Sources, 156(2), 128-141.
[72]Wu, C. Y., Wu, P. W., Lin, P., Li, Y. Y., & Lin, Y. M. (2007). Silver-carbon nanocapsule electrocatalyst for oxygen reduction reaction. Journal of the Electrochemical Society, 154(10), B1059.
[73]Neburchilov, V., Wang, H., Martin, J. J., & Qu, W. (2010). A review on air cathodes for zinc–air fuel cells. Journal of Power Sources, 195(5), 1271-1291.
[74]Shin, H. C., Cho, W. I., & Jang, H. (2006). Electrochemical properties of carbon-coated LiFePO4 cathode using graphite, carbon black, and acetylene black. Electrochimica Acta, 52(4), 1472-1476.
[75]Richner, R., Müller, S., & Wokaun, A. (2002). Grafted and crosslinked carbon black as an electrode material for double layer capacitors. Carbon, 40(3), 307-314.
[76]Rodriguez-Reinoso, F., Molina-Sabio, M., & González, M. T. (1995). The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon, 33(1), 15-23.
[77]Yoshida, N., Yamada, Y., Nishimura, S. I., Oba, Y., Ohnuma, M., & Yamada, A. (2013). Unveiling the origin of unusual pseudocapacitance of RuO2· n H2O from its hierarchical nanostructure by small-angle x-ray scattering. The Journal of Physical Chemistry C, 117(23), 12003-12009.
[78]Augustyn, V., Simon, P., & Dunn, B. (2014). Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy & Environmental Science, 7(5), 1597-1614.
[79]Kim, J. W., Augustyn, V., & Dunn, B. (2012). The effect of crystallinity on the rapid pseudocapacitive response of Nb2O5. Advanced Energy Materials, 2(1), 141-148.
[80]Shao, Y., El-Kady, M. F., Sun, J., Li, Y., Zhang, Q., Zhu, M., ... & Kaner, R. B. (2018). Design and mechanisms of asymmetric supercapacitors. Chemical reviews, 118(18), 9233-9280.
[81]Naoi, K., & Simon, P. (2008). New materials and new configurations for advanced electrochemical capacitors. The Electrochemical Society Interface, 17(1), 34.
[82]Guo, Y., Wang, K., Hong, Y., Wu, H., & Zhang, Q. (2021). Recent progress on pristine two-dimensional metal-organic frameworks as active components in supercapacitors. Dalton Transactions.
[83]Wang, B., Zhao, M., Li, L., Huang, Y., Zhang, X., Guo, C., ... & Zhang, H. (2020). Ultra-thin metal-organic framework nanoribbons. National science review, 7(1), 46-52.
[84]Yu, D., Shao, Q., Song, Q., Cui, J., Zhang, Y., Wu, B., ... & Wu, Y. (2020). A solvent-assisted ligand exchange approach enables metal-organic frameworks with diverse and complex architectures. Nature communications, 11(1), 1-10.
[85]Feng, C., Lv, C. P., Li, Z. Q., Zhao, H., & Huang, H. H. (2018). A porous 2D Ni-MOF material with a high supercapacitive performance. Journal of Solid State Chemistry, 265, 244-247.
[86]Zhang, X., Yang, S., Lu, W., Lei, D., Tian, Y., Guo, M., ... & Zhao, Y. (2021). MXenes induced formation of Ni-MOF microbelts for high-performance supercapacitors. Journal of Colloid and Interface Science, 592, 95-102.
[87]Wang, J., Xu, M., Liang, X., Zhang, Y., Yang, D., Pan, L., ... & Wang, F. (2021). Development of a novel 2D Ni-MOF derived NiO@ C nanosheet arrays modified Ti/TiO2NTs/PbO2 electrode for efficient electrochemical degradation of salicylic acid wastewater. Separation and Purification Technology, 263, 118368.
[88]Xu, C., Liu, L., Wu, C., & Wu, K. (2020). Unique 3D heterostructures assembled by quasi-2D Ni-MOF and CNTs for ultrasensitive electrochemical sensing of bisphenol A. Sensors and Actuators B: Chemical, 310, 127885.
[89]Wen, P., Gong, P., Sun, J., Wang, J., & Yang, S. (2015). Design and synthesis of Ni-MOF/CNT composites and rGO/carbon nitride composites for an asymmetric supercapacitor with high energy and power density. Journal of Materials Chemistry A, 3(26), 13874-13883.
[90]Xiong, S., Jiang, S., Wang, J., Lin, H., Lin, M., Weng, S., ... & Chen, J. (2020). A high-performance hybrid supercapacitor with NiO derived NiO@ Ni-MOF composite electrodes. Electrochimica Acta, 340, 135956.
[91]Wang, G., Yan, Z., Wang, N., Xiang, M., & Xu, Z. (2021). NiO/Ni Metal–Organic Framework Nanostructures for Asymmetric Supercapacitors. ACS Applied Nano Materials, 4(9), 9034-9043.
[92]Lee, C. S., Lim, J. M., Park, J. T., & Kim, J. H. (2021). Direct growth of highly organized, 2D ultra-thin nano-accordion Ni-MOF@ NiS2@ C core-shell for high performance energy storage device. Chemical Engineering Journal, 406, 126810.
[93]Yang, N., Qi, P., Ren, J., Yu, H., Liu, S., Li, J., ... & Ling, S. (2019). Polyvinyl alcohol/silk fibroin/borax hydrogel ionotronics: a highly stretchable, self-healable, and biocompatible sensing platform. ACS applied materials & interfaces, 11(26), 23632-23638.
[94]Zhao, X., Bi, Q., Yang, C., Tao, K., & Han, L. (2021). Design of trimetallic sulfide hollow nanocages from metal–organic frameworks as electrode materials for supercapacitors. Dalton Transactions, 50(42), 15260-15266.
[95]Naoi, K., Naoi, W., Aoyagi, S., Miyamoto, J. I., & Kamino, T. (2013). New generation “nanohybrid supercapacitor”. Accounts of chemical research, 46(5), 1075-1083.
[96]Cericola, D., & Kötz, R. (2012). Hybridization of rechargeable batteries and electrochemical capacitors: Principles and limits. Electrochimica Acta, 72, 1-17.
[97]Simon, P., Gogotsi, Y., & Dunn, B. (2014). Where do batteries end and supercapacitors begin?. Science, 343(6176), 1210-1211.
[98]Naoi, K. (2010). ‘Nanohybrid capacitor’: the next generation electrochemical capacitors. Fuel cells, 10(5), 825-833.
[99]Naoi, K., Ishimoto, S., Miyamoto, J. I., & Naoi, W. (2012). Second generation ‘nanohybrid supercapacitor’: evolution of capacitive energy storage devices. Energy & Environmental Science, 5(11), 9363-9373.
[100]Lukatskaya, M. R., Dunn, B., & Gogotsi, Y. (2016). Multidimensional materials and device architectures for future hybrid energy storage. Nature communications, 7(1), 1-13.
[101]Turrell, G., Gardiner, D. J., & Graves, P. R. (1989). Practical Raman Spectroscopy. Gardiner, DJ, 13-54.
[102]Jellinger, K. A. (2003). Neuropathological spectrum of synucleinopathies. Movement disorders: official journal of the Movement Disorder Society, 18(S6), 2-12.
[103]Mohanty, M. M., & Pal, B. K. (2017). Sorption behavior of coal for implication in coal bed methane an overview. International Journal of Mining Science and Technology, 27(2), 307-314.
[104]Yang, J., Li, P., Wang, L., Guo, X., Guo, J., & Liu, S. (2019). In-situ synthesis of Ni-MOF@ CNT on graphene/Ni foam substrate as a novel self-supporting hybrid structure for all-solid-state supercapacitors with a high energy density. Journal of Electroanalytical Chemistry, 848, 113301.
[105]Zhang, Z., Wang, B., Zhu, C., Gao, P., Tang, Z., Sun, N., ... & Sun, Y. (2015). Facile one-pot synthesis of mesoporous carbon and N-doped carbon for CO2 capture by a novel melting-assisted solvent-free method. Journal of Materials Chemistry A, 3(47), 23990-23999.
[106]Zakaria, H., Mansor, W. S. W., & Shahrin, N. (2018). Development of water treatment sachets from the seeds of moringa oleifera and activated carbon. International Journal of Science and Technology, 3(3), 240-252.
[107]Kennedy, L. J., Vijaya, J. J., Kayalvizhi, K., & Sekaran, G. (2007). Adsorption of phenol from aqueous solutions using mesoporous carbon prepared by two-stage process. Chemical Engineering Journal, 132(1-3), 279-287.
[108]Prakash, O., Kumar, S., Singh, P., Deckert, V., Chatterjee, S., Ghosh, A. K., & Singh, R. K. (2016). Surface‐enhanced Raman scattering characteristics of CuO: Mn/Ag heterojunction probed by methyl orange: effect of Mn2+ doping. Journal of Raman Spectroscopy, 47(7), 813-818.
[109]Bordiga, S., Lamberti, C., Ricchiardi, G., Regli, L., Bonino, F., Damin, A., ... & Zecchina, A. (2004). Electronic and vibrational properties of a MOF-5 metal–organic framework: ZnO quantum dot behaviour. Chemical communications, (20), 2300-2301.
[110]Nguyen, T. D., Nguyen, O. K. T., Tran, T. V., Nguyen, V. H., Bach, L. G., Tran, N. V., ... & Do, S. T. (2019). The synthesis of N-(pyridin-2-yl)-benzamides from aminopyridine and trans-beta-nitrostyrene by Fe2Ni-BDC bimetallic metal–organic frameworks. Processes, 7(11), 789.
[111]Sadezky, A., Muckenhuber, H., Grothe, H., Niessner, R., & Pöschl, U. (2005). Raman microspectroscopy of soot and related carbonaceous materials: Spectral analysis and structural information. Carbon, 43(8), 1731-1742.
[112]Xu, X., Song, W., Huang, D., Gao, B., Sun, Y., Yue, Q., & Fu, K. (2015). Performance of novel biopolymer-based activated carbon and resin on phosphate elimination from stream. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 476, 68-75.
[113]Nemanich, R. J., & Solin, S. A. (1979). First-and second-order Raman scattering from finite-size crystals of graphite. Physical Review B, 20(2), 392.
[114]Zhou, X., Qu, X., Zhang, R., & Bi, J. (2015). Study of the microtextural transformation of coal char during supercritical water activation. Fuel Processing Technology, 135, 195-202.
[115]Yao, S., Zhang, J., Shen, D., Xiao, R., Gu, S., Zhao, M., & Liang, J. (2016). Removal of Pb (II) from water by the activated carbon modified by nitric acid under microwave heating. Journal of colloid and interface science, 463, 118-127.
[116]Li, Z., Xu, Z., Tan, X., Wang, H., Holt, C. M., Stephenson, T., ... & Mitlin, D. (2013). Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy & Environmental Science, 6(3), 871-878.
[117]Cheng, S., Zhang, L., Xia, H., & Peng, J. (2017). Characterization and adsorption properties of La and Fe modified activated carbon for dye wastewater treatment. Green Processing and Synthesis, 6(5), 487-498.
[118]Sudha, V., Murugadoss, G., & Thangamuthu, R. (2021). Structural and morphological tuning of Cu-based metal oxide nanoparticles by a facile chemical method and highly electrochemical sensing of sulphite. Scientific reports, 11(1), 1-12.
[119]Zou, W., Liu, L., Zhang, L., Li, L., Cao, Y., Wang, X., ... & Dong, L. (2015). Crystal-plane effects on surface and catalytic properties of Cu2O nanocrystals for NO reduction by CO. Applied Catalysis A: General, 505, 334-343.
[120]Choya, A., de Rivas, B., Gutiérrez-Ortiz, J. I., González-Velasco, J. R., & López-Fonseca, R. (2019). Synthesis, Characterization and Kinetic Behavior of Supported Cobalt Catalysts for Oxidative after-Treatment of Methane Lean Mixtures. Materials, 12(19), 3174.
[121]Kumar, R., Kumar, K., Pant, K. K., & Choudary, N. V. (2020). Tuning the metal-support interaction of methane tri-reforming catalysts for industrial flue gas utilization. International Journal of Hydrogen Energy, 45(3), 1911-1929.
[122]Beka, L. G., Bu, X., Li, X., Wang, X., Han, C., & Liu, W. (2019). A 2D metal–organic framework/reduced graphene oxide heterostructure for supercapacitor application. RSC advances, 9(62), 36123-36135.
[123]Li, X., Liu, H., Jia, X., Li, G., An, T., & Gao, Y. (2018). Novel approach for removing brominated flame retardant from aquatic environments using Cu/Fe-based metal-organic frameworks: A case of hexabromocyclododecane (HBCD). Science of the Total Environment, 621, 1533-1541.
[124]Wang, X., Yang, N., Li, Q., He, F., Yang, Y., Wu, B., ... & Xiong, S. (2019). Solvothermal synthesis of flower-string-like NiCo-MOF/MWCNT composites as a high-performance supercapacitor electrode material. Journal of Solid State Chemistry, 277, 575-586.
[125]Wang, Q., Luo, Y., Hou, R., Zaman, S., Qi, K., Liu, H., ... & Xia, B. Y. (2019). Redox tuning in crystalline and electronic structure of bimetal–organic frameworks derived cobalt/nickel boride/sulfide for boosted faradaic capacitance. Advanced Materials, 31(51), 1905744.
[126]Yang, J., Yu, C., Fan, X., Liang, S., Li, S., Huang, H., ... & Qiu, J. (2016). Electroactive edge site-enriched nickel–cobalt sulfide into graphene frameworks for high-performance asymmetric supercapacitors. Energy & Environmental Science, 9(4), 1299-1307.
[127]Li, Q., Guo, H., Xue, R., Wang, M., Xu, M., Yang, W., ... & Yang, W. (2020). Self-assembled Mo doped Ni-MOF nanosheets based electrode material for high performance battery-supercapacitor hybrid device. International journal of hydrogen energy, 45(41), 20820-20831.
[128]Li, C., Balamurugan, J., Kim, N. H., & Lee, J. H. (2018). Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors. Advanced Energy Materials, 8(8), 1702014.
[129]Mei, B. A., Munteshari, O., Lau, J., Dunn, B., & Pilon, L. (2018). Physical interpretations of Nyquist plots for EDLC electrodes and devices. The Journal of Physical Chemistry C, 122(1), 194-206.
[130]Yue, L., Guo, H., Wang, X., Sun, T., Liu, H., Li, Q., ... & Yang, W. (2019). Non-metallic element modified metal-organic frameworks as high-performance electrodes for all-solid-state asymmetric supercapacitors. Journal of colloid and interface science, 539, 370-378.
[131]Yan, J., Wei, T., Shao, B., Ma, F., Fan, Z., Zhang, M., ... & Wei, F. (2010). Electrochemical properties of graphene nanosheet/carbon black composites as electrodes for supercapacitors. Carbon, 48(6), 1731-1737.
[132]Anantharaj, S., & Noda, S. (2020). Appropriate use of electrochemical impedance spectroscopy in water splitting electrocatalysis. ChemElectroChem, 7(10), 2297-2308.
[133]Ramachandran, R., Xuan, W., Zhao, C., Leng, X., Sun, D., Luo, D., & Wang, F. (2018). Enhanced electrochemical properties of cerium metal–organic framework based composite electrodes for high-performance supercapacitor application. RSC advances, 8(7), 3462-3469.
[134]Yuan, M., Wang, R., Sun, Z., Lin, L., Yang, H., Li, H., ... & Ma, S. (2019). Morphology-controlled synthesis of Ni-MOFs with highly enhanced electrocatalytic performance for urea oxidation. Inorganic Chemistry, 58(17), 11449-11457.
[135]Radhika, M. G., Gopalakrishna, B., Chaitra, K., Bhatta, L. K. G., Venkatesh, K., Kamath, M. S., & Kathyayini, N. (2020). Electrochemical studies on Ni, Co & Ni/Co-MOFs for high-performance hybrid supercapacitors. Materials Research Express, 7(5), 054003.
[136]He, W., Wang, C., Zhuge, F., Deng, X., Xu, X., & Zhai, T. (2017). Flexible and high energy density asymmetrical supercapacitors based on core/shell conducting polymer nanowires/manganese dioxide nanoflakes. Nano Energy, 35, 242-250.
[137]Wang, J., Polleux, J., Lim, J., & Dunn, B. (2017). Pesudocapacitive contributions to electrochemical energy storage in TiO2 (Anatase). J. Phy. Chem, 111(40), 14925-14931.
[138]Xu, D., Chen, C., Xie, J., Zhang, B., Miao, L., Cai, J., ... & Zhang, L. (2016). A hierarchical N/S‐codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high‐performance sodium‐ion batteries. Advanced Energy Materials, 6(6), 1501929.
[139]Li, N., Du, Y., Feng, Q. P., Huang, G. W., Xiao, H. M., & Fu, S. Y. (2017). A novel type of battery–supercapacitor hybrid device with highly switchable dual performances based on a carbon skeleton/Mg2Ni free-standing hydrogen storage electrode. ACS applied materials & interfaces, 9(51), 44828-44838.
[140]Nguyen, T., Boudard, M., Carmezim, M. J., & Montemor, M. F. (2017). Layered Ni (OH) 2-Co (OH) 2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Scientific reports, 7(1), 1-10.
[141]Zang, Y., Luo, H., Zhang, H., & Xue, H. (2021). Polypyrrole nanotube-interconnected NiCo-LDH nanocages derived by ZIF-67 for supercapacitors. ACS Applied Energy Materials, 4(2), 1189-1198.
[142]Yang, C., Li, X., Yu, L., Liu, X., Yang, J., & Wei, M. (2020). A new promising Ni-MOF superstructure for high-performance supercapacitors. Chemical Communications, 56(12), 1803-1806.
[143]Yue, L., Wang, X., Sun, T., Liu, H., Li, Q., Wu, N., ... & Yang, W. (2019). Ni-MOF coating MoS2 structures by hydrothermal intercalation as high-performance electrodes for asymmetric supercapacitors. Chemical Engineering Journal, 375, 121959.
[144]Zhang, C., Zhang, Q., Zhang, K., Xiao, Z., Yang, Y., & Wang, L. (2018). Facile synthesis of a two-dimensional layered Ni-MOF electrode material for high performance supercapacitors. RSC advances, 8(32), 17747-17753.
[145]Zhang, J., Li, Y., Han, M., Xia, Q., Chen, Q., & Chen, M. (2021). Constructing ultra-thin Ni-MOF@ NiS2 nanosheets arrays derived from metal organic frameworks for advanced all-solid-state asymmetric supercapacitor. Materials Research Bulletin, 137, 111186.
[146]Tian, D., Song, N., Zhong, M., Lu, X., & Wang, C. (2019). Bimetallic MOF nanosheets decorated on electrospun nanofibers for high-performance asymmetric supercapacitors. ACS applied materials & interfaces, 12(1), 1280-1291.
[147]Gao, S., Sui, Y., Wei, F., Qi, J., Meng, Q., Ren, Y., & He, Y. (2018). Dandelion-like nickel/cobalt metal-organic framework based electrode materials for high performance supercapacitors. Journal of colloid and interface science, 531, 83-90.
[148]Zhu, B., Liu, B., Qu, C., Zhang, H., Guo, W., Liang, Z., ... & Zou, R. (2018). Tailoring biomass-derived carbon for high-performance supercapacitors from controllably cultivated algae microspheres. Journal of Materials Chemistry A, 6(4), 1523-1530.
[149]Xu, H., Wang, L., Zhang, Y., Chen, Y., & Gao, S. (2021). Pore-structure regulation of biomass-derived carbon materials for an enhanced supercapacitor performance. Nanoscale, 13(22), 10051-10060.
[150]Chang, C., Li, M., Wang, H., Wang, S., Liu, X., Liu, H., & Li, L. (2019). A novel fabrication strategy for doped hierarchical porous biomass-derived carbon with high microporosity for ultrahigh-capacitance supercapacitors. Journal of Materials Chemistry A, 7(34), 19939-19949.
[151]Xu, H., Zhang, Y., Wang, L., Chen, Y., & Gao, S. (2021). Hierarchical porous biomass-derived carbon framework with ultrahigh surface area for outstanding capacitance supercapacitor. Renewable Energy, 179, 1826-1835.
[152]Zhang, H., Zhang, Z., Luo, J. D., Qi, X. T., Yu, J., Cai, J. X., ... & Yang, Z. Y. (2019). A Chemical Blowing Strategy to Fabricate Biomass‐Derived Carbon‐Aerogels with Graphene‐Like Nanosheet Structures for High‐Performance Supercapacitors. ChemSusChem, 12(11), 2462-2470.
[153]Guo, R., Guo, N., Luo, W., Xu, M., Zhou, D., Ma, R., ... & Wang, L. (2021). A dual‐activation strategy to tailor the hierarchical porous structure of biomass‐derived carbon for ultrahigh rate supercapacitor. International Journal of Energy Research, 45(6), 9284-9294.
[154]Zhou, Y., Mao, Z., Wang, W., Yang, Z., & Liu, X. (2016). In-situ fabrication of graphene oxide hybrid Ni-based metal–organic framework (Ni–MOFs@ GO) with ultrahigh capacitance as electrochemical pseudocapacitor materials. ACS applied materials & interfaces, 8(42), 28904-28916.
[155]Jiao, Y., Pei, J., Chen, D., Yan, C., Hu, Y., Zhang, Q., & Chen, G. (2017). Mixed-metallic MOF based electrode materials for high performance hybrid supercapacitors. Journal of Materials Chemistry A, 5(3), 1094-1102.
[156]Qu, C., Jiao, Y., Zhao, B., Chen, D., Zou, R., Walton, K. S., & Liu, M. (2016). Nickel-based pillared MOFs for high-performance supercapacitors: design, synthesis and stability study. Nano Energy, 26, 66-73.
[157]Carton, A., Mesbah, A., Mazet, T., Porcher, F., & François, M. (2007). Ab initio crystal structure of nickel (II) hydroxy-terephthalate by synchrotron powder diffraction and magnetic study. Solid state sciences, 9(6), 465-471.
[158]Li, G., Cai, H., Li, X., Zhang, J., Zhang, D., Yang, Y., & Xiong, J. (2019). Construction of hierarchical NiCo2O4@ Ni-MOF hybrid arrays on carbon cloth as superior battery-type electrodes for flexible solid-state hybrid supercapacitors. ACS applied materials & interfaces, 11(41), 37675-37684.
[159]Stejskal, J., Trchová, M., Bober, P., Humpolíček, P., Kašpárková, V., Sapurina, I., ... & Varga, M. (2002). Conducting polymers: polyaniline. Encyclopedia of polymer science and technology, 1-44.
[160]Wang, H., Zhang, X., Xie, J., Zhang, J., Ma, P., Pan, B., & Xie, Y. (2015). Structural distortion in graphitic-C 3 N 4 realizing an efficient photoreactivity. Nanoscale, 7(12), 5152-5156.
[161]Shakoor, A., & Rizvi, T. Z. (2010). Raman spectroscopy of conducting poly (methyl methacrylate)/polyaniline dodecylbenzenesulfonate blends. Journal of Raman Spectroscopy: An International Journal for Original Work in all Aspects of Raman Spectroscopy, Including Higher Order Processes, and also Brillouin and Rayleigh Scattering, 41(2), 237-240.
[162]Arasi, A. Y., Jeyakumari, J. J. L., Sundaresan, B., Dhanalakshmi, V., & Anbarasan, R. (2009). The structural properties of poly (aniline)—analysis via FTIR spectroscopy. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 74(5), 1229-1234.
[163]Ipadeola, A. K., Lisa Mathebula, N. Z., Pagliaro, M. V., Miller, H. A., Vizza, F., Davies, V., ... & Ozoemena, K. I. (2020). Unmasking the Latent Passivating Roles of Ni (OH) 2 on the Performance of Pd–Ni Electrocatalysts for Alkaline Ethanol Fuel Cells. ACS Applied Energy Materials, 3(9), 8786-8802.
[164]William, J. J., Babu, I. M., & Muralidharan, G. (2019). Microwave assisted fabrication of L-arginine capped α-Ni (OH) 2 microstructures as an electrode material for high performance hybrid supercapacitors. Materials Chemistry and Physics, 224, 357-368.
[165]Chen, Y., Ni, D., Yang, X., Liu, C., Yin, J., & Cai, K. (2018). Microwave-assisted synthesis of honeycomblike hierarchical spherical Zn-doped Ni-MOF as a high-performance battery-type supercapacitor electrode material. Electrochimica Acta, 278, 114-123.
[166]Wang, Y., Liu, Y., Wang, H., Liu, W., Li, Y., Zhang, J., ... & Yang, J. (2019). Ultrathin NiCo-MOF nanosheets for high-performance supercapacitor electrodes. ACS Applied Energy Materials, 2(3), 2063-2071.
[167]Abd, A., Ali, R., & Hussein, A. (2016). Fabrication and characterization of nickel oxide nanoparticles/silicon heterojunction. J Multidiscip Eng Sci Stud, 2, 434-40.
[168]Abd El Salam, H. M., Nassar, H. N., Khidr, A. S., & Zaki, T. (2018). Antimicrobial activities of green synthesized Ag nanoparticles@ Ni-MOF nanosheets. Journal of Inorganic and Organometallic Polymers and Materials, 28(6), 2791-2798.
[169]Ahsan, M. A., Jabbari, V., Imam, M. A., Castro, E., Kim, H., Curry, M. L., ... & Noveron, J. C. (2020). Nanoscale nickel metal organic framework decorated over graphene oxide and carbon nanotubes for water remediation. Science of the Total Environment, 698, 134214.
[170]Singu, B. S., Palaniappan, S., & Yoon, K. R. (2016). Polyaniline–nickel oxide nanocomposites for supercapacitor. Journal of Applied Electrochemistry, 46(10), 1039-1047.
[171]Shambharkar, B. H., & Umare, S. S. (2011). Synthesis and characterization of polyaniline/NiO nanocomposite. Journal of Applied Polymer Science, 122(3), 1905-1912.
[172]Lu, G. M., & Zhao, X. S. (Eds.). (2004). Nanoporous materials: science and engineering (Vol. 4). World Scientific.
[173]Mukoyoshi, M., Kobayashi, H., Kusada, K., Hayashi, M., Yamada, T., Maesato, M., ... & Kitagawa, H. (2015). Hybrid materials of Ni NP@ MOF prepared by a simple synthetic method. Chemical Communications, 51(62), 12463-12466.
[174]Wang, Y., Nie, S., Liu, Y., Yan, W., Lin, S., Cheng, G., ... & Luo, J. (2019). Room-temperature fabrication of a nickel-functionalized copper metal–organic framework (Ni@ Cu-MOF) as a new pseudocapacitive material for asymmetric supercapacitors. Polymers, 11(5), 821.
[175]Shi, Y., Chu, Q., Xiong, W., Gao, J., Huang, L., Zhang, Y., & Ding, Y. (2021). A new type bimetallic NiMn-MOF-74 as an efficient low-temperatures catalyst for selective catalytic reduction of NO by CO. Chemical Engineering and Processing-Process Intensification, 159, 108232.
[176]Zhu, D., Guo, C., Liu, J., Wang, L., Du, Y., & Qiao, S. Z. (2017). Two-dimensional metal–organic frameworks with high oxidation states for efficient electrocatalytic urea oxidation. Chemical communications, 53(79), 10906-10909.
[177]Wang, Y., Xie, C., Liu, D., Huang, X., Huo, J., & Wang, S. (2016). Nanoparticle-stacked porous nickel–iron nitride nanosheet: a highly efficient bifunctional electrocatalyst for overall water splitting. ACS applied materials & interfaces, 8(29), 18652-18657.
[178]Le, T. M. O., Lam, T. H., Pham, T. N., Ngo, T. C., Lai, N. D., Do, D. B., & Nguyen, V. M. (2018). Enhancement of rhodamine B degradation by Ag nanoclusters-loaded g-C3N4 nanosheets. Polymers, 10(6), 633.
[179]Wang, H., Zou, H., Liu, Y., Liu, Z., Sun, W., Lin, K. A., ... & Luo, S. (2021). Ni2P nanocrystals embedded Ni-MOF nanosheets supported on nickel foam as bifunctional electrocatalyst for urea electrolysis. Scientific reports, 11(1), 1-11.
[180]Ahuja, P., Ujjain, S. K., Arora, I., & Samim, M. (2018). Hierarchically grown NiO-decorated polyaniline-reduced graphene oxide composite for ultrafast sunlight-driven photocatalysis. ACS omega, 3(7), 7846-7855.
[181]You, S. M., El Rouby, W. M., Assaud, L., Doong, R. A., & Millet, P. (2021). Water photo-electrooxidation using mats of TiO2 nanorods, surface sensitized by a metal–organic framework of nickel and 1, 2-benzene dicarboxylic acid. Hydrogen, 2(1), 58-75.
[182]Gopi, S., Al-Mohaimeed, A. M., Al-onazi, W. A., Elshikh, M. S., & Yun, K. (2021). Metal organic framework-derived Ni-Cu bimetallic electrocatalyst for efficient oxygen evolution reaction. Journal of King Saud University-Science, 33(3), 101379.
[183]Gao, S., Sui, Y., Wei, F., Qi, J., Meng, Q., & He, Y. (2018). Facile synthesis of cuboid Ni-MOF for high-performance supercapacitors. Journal of materials science, 53(9), 6807-6818.
[184]Al-Daghman, A. N. J. (2018). Optical Characteristics of Conductive Polymer Polyaniline PANI-EB. Int. J. Res. Appl. Sci. Eng. Technol, 6, 1555-1560.
[185]Lee, K., Cho, S., Kim, M., Kim, J., Ryu, J., Shin, K. Y., & Jang, J. (2015). Highly porous nanostructured polyaniline/carbon nanodots as efficient counter electrodes for Pt-free dye-sensitized solar cells. Journal of Materials Chemistry A, 3(37), 19018-19026.
[186]Xu, H., Zeng, M., Li, J., & Tong, X. (2015). Facile hydrothermal synthesis of flower-like Co-doped NiO hierarchical nanosheets as anode materials for lithium-ion batteries. RSC advances, 5(111), 91493-91499.
[187]Zhou, E., Tian, L., Cheng, Z., & Fu, C. (2019). Design of NiO flakes@ CoMoO4 nanosheets core-shell architecture on Ni foam for high-performance supercapacitors. Nanoscale research letters, 14(1), 1-11.
[188]Lin, J., Liang, H., Jia, H., Chen, S., Guo, J., Qi, J., ... & Feng, J. (2017). In situ encapsulated Fe 3 O 4 nanosheet arrays with graphene layers as an anode for high-performance asymmetric supercapacitors. Journal of Materials Chemistry A, 5(47), 24594-24601.
[189]Zeng, G., Li, W., Ci, S., Jia, J., & Wen, Z. (2016). Highly dispersed NiO nanoparticles decorating graphene nanosheets for non-enzymatic glucose sensor and biofuel cell. Scientific reports, 6(1), 1-8.
[190]Sun, Z., Hui, L., Ran, W., Lu, Y., & Jia, D. (2016). Facile synthesis of two-dimensional (2D) nanoporous NiO nanosheets from metal–organic frameworks with superior capacitive properties. New Journal of Chemistry, 40(2), 1100-1103.
[191]Chai, Z., Wang, Z., Wang, J., Li, X., & Guo, H. (2018). Potentiostatic deposition of nickel cobalt sulfide nanosheet arrays as binder-free electrode for high-performance pseudocapacitor. Ceramics International, 44(13), 15778-15784.
[192]Deshmukh, A. D., Urade, A. R., Nanwani, A. P., Deshmukh, K. A., Peshwe, D. R., Sivaraman, P., ... & Gupta, B. K. (2018). Two-dimensional double hydroxide nanoarchitecture with high areal and volumetric capacitance. ACS omega, 3(7), 7204-7213.
[193]Elmas, S., Beelders, W., Pan, X., & Nann, T. (2018). Conducting Copper (I/II)-Metallopolymer for the Electrocatalytic Oxygen Reduction Reaction (ORR) with High Kinetic Current Density. Polymers, 10(9), 1002.
[194]Wang, Y., Ohnishi, R., Yoo, E., He, P., Kubota, J., Domen, K., & Zhou, H. (2012). Nano-and micro-sized TiN as the electrocatalysts for ORR in Li–air fuel cell with alkaline aqueous electrolyte. Journal of Materials Chemistry, 22(31), 15549-15555.
[195]Wang, J., Zhong, Q., Xiong, Y., Cheng, D., Zeng, Y., & Bu, Y. (2019). Fabrication of 3D Co-doped Ni-based MOF hierarchical micro-flowers as a high-performance electrode material for supercapacitors. Applied Surface Science, 483, 1158-1165.
[196]Yang, J., Zheng, C., Xiong, P., Li, Y., & Wei, M. (2014). Zn-doped Ni-MOF material with a high supercapacitive performance. Journal of Materials Chemistry A, 2(44), 19005-19010.
[197]Bendi, R., Kumar, V., Bhavanasi, V., Parida, K., & Lee, P. S. (2016). Metal organic framework‐derived metal phosphates as electrode materials for supercapacitors. Advanced Energy Materials, 6(3), 1501833.
[198]Yan, Y., Gu, P., Zheng, S., Zheng, M., Pang, H., & Xue, H. (2016). Facile synthesis of an accordion-like Ni-MOF superstructure for high-performance flexible supercapacitors. Journal of Materials Chemistry A, 4(48), 19078-19085.
[199]Liu, Y., Wang, Y., Wang, H., Zhao, P., Hou, H., & Guo, L. (2019). Acetylene black enhancing the electrochemical performance of NiCo-MOF nanosheets for supercapacitor electrodes. Applied Surface Science, 492, 455-463.
[200]Du, Y., Li, G., Chen, M., Yang, X., Ye, L., Liu, X., & Zhao, L. (2019). Hollow nickel-cobalt-manganese hydroxide polyhedra via MOF templates for high-performance quasi-solid-state supercapacitor. Chemical Engineering Journal, 378, 122210.
[201]Zheng, W., Sun, S., Xu, Y., Yu, R., & Li, H. (2019). Sulfidation of Hierarchical NiAl− LDH/Ni− MOF Composite for High‐Performance Supercapacitor. ChemElectroChem, 6(13), 3375-3382.
[202]Tripathy, R. K., Samantara, A. K., & Behera, J. N. (2021). Metal–organic framework (MOF)-derived amorphous nickel boride: an electroactive material for electrochemical energy conversion and storage application. Sustainable Energy & Fuels, 5(4), 1184-1193.
[203]Chen, C., Wu, M. K., Tao, K., Zhou, J. J., Li, Y. L., Han, X., & Han, L. (2018). Formation of bimetallic metal–organic framework nanosheets and their derived porous nickel–cobalt sulfides for supercapacitors. Dalton Transactions, 47(16), 5639-5645.
[204]Yang, Z., Ma, Q., Han, L., & Tao, K. (2019). Design of Mo-doped cobalt sulfide hollow nanocages from zeolitic imidazolate frameworks as advanced electrodes for supercapacitors. Inorganic Chemistry Frontiers, 6(8), 2178-2184.
[205]Sundriyal, S., Shrivastav, V., Mishra, S., & Deep, A. (2020). Enhanced electrochemical performance of nickel intercalated ZIF-67/rGO composite electrode for solid-state supercapacitors. International Journal of Hydrogen Energy, 45(55), 30859-30869.
[206]Qi, J., Chang, Y., Sui, Y., He, Y., Meng, Q., Wei, F., ... & Jin, Y. (2017). Facile construction of 3D reduced graphene oxide wrapped Ni3S2 nanoparticles on Ni foam for high‐performance asymmetric supercapacitor electrodes. Particle & Particle Systems Characterization, 34(12), 1700196.
[207]Wang, H., Bao, S., Sun, S., Zhang, W., Su, Z., & Yu, J. (2022). Cycle life prediction of NiCo2O4//activated carbon asymmetric supercapacitors. Journal of Energy Storage, 53, 105035.
[208]Yang, F., Guo, H., Chen, Y., Xu, M., Yang, W., Wang, M., ... & Yang, W. (2021). Ultrahigh Rate Capability and Lifespan MnCo2O4/Ni‐MOF Electrode for High Performance Battery‐Type Supercapacitor. Chemistry–A European Journal, 27(58), 14478-14488.
[209]Kim, S. Y., Gopi, C. V. M., Reddy, A. E., & Kim, H. J. (2018). Facile synthesis of a NiO/NiS hybrid and its use as an efficient electrode material for supercapacitor applications. New Journal of Chemistry, 42(7), 5309-5313.
(此全文20251011後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *