帳號:guest(3.143.3.70)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉皓
作者(英文):Hao Liu
論文名稱:以分子束磊晶法成長六方氮化硼於不同基板之特性分析
論文名稱(英文):Characterizations of hexagonal boron nitride grown on different substrates by molecular beam epitaxy (MBE)
指導教授:余英松
指導教授(英文):Ing-Song Yu
口試委員:何焱騰
黃清安
余英松
口試委員(英文):Yan-Teng Ho
Ching-An Huang
Ing-Song Yu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922118
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:98
關鍵詞:二維材料分子束磊晶二硫化鉬二硫化鎢六方氮化硼
關鍵詞(英文):2D materialMBEMoS2WS2h-BN
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
二維材料自 2004 年石墨烯以膠帶重複黏貼撕開方法製備成功後便廣 受關注,其中六方氮化硼因具有較大的能隙(~6.1 eV)、原子級平滑表 面及優異的化學穩定性,被認為在光電與電子元件皆有優異的發展潛 力。在本篇論文中,將以電漿輔助式分子束磊晶系統 (Plasma-assisted molecular beam epitaxy, PA-MBE)成長六方氮化硼 (Hexagonal boron nitride, h-BN)在藍寶石 (c-Sapphire)、二硫化鉬(MoS2/sapphire)和二硫化鎢基板(WS2/sapphire)三種相異的基板上,透過控制各種成長條件來探討基板特性、成長溫度、成長時間等因素對於六方氮化硼的成長影響。

試片成長中會透過高能量反射式電子繞射儀 (Reflection high-energy electron diffraction, RHEED)監控其表面繞射圖示,後以拉曼光譜 (Raman spectrum)測定其結晶品質、原子力顯微鏡 (Atomic force microscope, AFM)和開爾文探針力顯微鏡 (Kelvin probe force microscope, KPFM)分析樣品表面形貌以及表面功函數、X 射線光電子能譜 (x-ray photoelectron spectroscope, XPS)分析原子的電子軌域並繪製異質結構的能帶圖、穿透式電子顯微鏡 (Transmission electronic microscope, TEM)觀察晶體結構及原子或分子堆疊方式、光致發光(Photon luminescence, PL)量測成長的氮化硼對基板材料的發光影響。在經過上述一系列分析後可發現,在不同基板條件下,六方氮化硼材料在二維二硫化鉬上最容易成長,此乃透過二維材料凡德瓦磊晶的成長機制,成長過程基板與薄膜間的晶格不匹配之影響大幅降低,使得有利於氮化硼的生長。另外,二硫化鎢因可受較高溫環境而不至分解,在成長溫度較高的樣品中有較佳的氮化硼成長。
Two-dimensional materials have attracted wide attention since graphene was successfully prepared by repeated sticking and tearing of tapes in 2004. Among 2D materials, hexagonal boron nitride (h-BN) has large band gap (~6.1 eV), atomic smooth surface and outstanding chemical stability. Therefore, h-BN has excellent potential for the applications in optoelectronics and electronics. In this work, the growth of hexagonal boron nitride was conducted on three different substrates (c-sapphire, 2D-MoS2/sapphire, 2D-WS2/sapphire) by plasma assisted molecular beam epitaxy (PA-MBE).
During the growth, the surface conditions were monitored by in-situ reflection high energy electron diffraction. After the growth, the samples were characterized by Raman, atomic force microscopy, Kelvin probe force microscopy, photoluminescence, transmission electron microscopy and X-ray photoelectron spectroscopy.

According to the results, the growth of h-BN was easily performed on the 2D-MoS2 surface, which can form h-BN/MoS2 heterostructure. This is because of the mechanism of van der Waals epitaxy. Moreover, h-BN on 2D-WS2 at higher growth temperature showed better crystallinity due to the higher temperature stability of WS2.
目錄
致謝 I
摘要 III
目錄 VII
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 二維材料簡介 3
1.2.1 氮化硼 4
1.2.2 二硫化鉬 6
1.2.3 二硫化鎢 8
1.3 文獻回顧 10
1.3.1 氮化硼成長與分析 10
1.3.2 氮化硼的應用與凡德瓦異質結構 18
1.3.3 凡德瓦磊晶機制 21
1.4 研究動機及目的 22
第二章 儀器應用與基礎原理 23
2.1 電漿輔助式分子束磊晶系統(Plasma-Assisted Molecular Beam Epitaxy, PA-MBE) 23
2.1.1真空腔體與泵浦裝置 24
2.1.2 鍍源及磊晶裝置 25
2.1.3 附屬分析裝置 26
2.2 反射式高能量電子繞射儀 (Reflection High Energy Electronic Diffraction, RHEED) 28
2.3 拉曼光譜 (Raman Spectroscopy) 30
2.4 原子力顯微鏡 (Atomic Force Microscopy, AFM) 32
2.5 開爾文探針力顯微鏡 (Kelvin Probe Force Microscope, KPFM) 34
2.6 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 35
2.7 穿透式電子顯微鏡 (Transmission Electronic Microscopy, TEM) 37
2.8 光致發光(Photoluminescence, PL) 39
第三章 實驗流程 41
3.1 機台真空環境建立 41
3.2 基板前處理 43
3.3 氮化硼成長 45
3.3.1 預硼處理 45
3.3.2 氮化處理 45
3.3.3 RHEED影像觀察 46
3.4 樣品分析 47
第四章 實驗結果與討論 49
4.1 實驗參數 49
4.2 氮化硼成長於藍寶石/二硫化鉬基板(A系列) 52
第一部分 不同鍍源溫度 52
第二部分 不同成長時間 66
4.3 氮化硼成長於二硫化鎢基板(B系列) 78
第一部分 成長於不同基板上 78
第二部分 不同成長溫度 83
第五章 結論 93
第六章 未來工作 95
參考資料 97

[1] C.Lee, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science 321(5887):385 (2008)
[2] Rouzbeh Shahsavari, “Intercalated Hexagonal Boron Nitride/Silicates as Bilayer Multifunctional Ceramics”, ACS Applied Materials & Interfaces, January 2018
[3] W.J. Hyun, Ana C. M. de Moraes, J. M. Lim et al, “High-Modulus Hexagonal Boron Nitride Nanoplatelet Gel Electrolytes for Solid-State Rechargeable Lithium-Ion Batteries”, ACS Nano 2019, 13, 8, 9664–9672
[4] Klass-Jan Tielrooij et al, “Out-of-plane heat transfer in van der Waals stacks through electron–hyperbolic phonon coupling” Nature Nanotechnology, volume 13, pages41–46 (2018)
[5] A.K. Geim, I.V. Grigorieva, “Van der Waals Heterostructures”, Nature 499 (2013) 419-425
[6] Materials Project, https://materialsproject.org/
[7] David A. Laleyan, Kelsey Mengle at el, “Effect of growth temperature on the structural and optical properties of few -layer hexagonal boron nitride by molecular beam epitaxy”, Optical EXPRESS, vol. 26, No. 18, 3 Sep 2.18
[8] Osaka, J., Senthil Kumar, M., Toyoda, H., Ishijima, T., Sugai, H., & Mizutani, T. (2007). Role of atomic nitrogen during GaN growth by plasma-assisted molecular beam epitaxy revealed by appearance mass spectrometry. Applied Physics Letters, 90(17), 172114. Doi : 10 .1063 /1.2734390
[9] Opoku, F., Govender, K. K., van Sittert, C. G. C. E., & Govender, P. P. (2017). Role of MoS2 and WS2 monolayers on photocatalytic hydrogen production and the pollutant degradation of monoclinic BiVO4: a first-principles study. New Journal of Chemistry, 41(20), 11701–11713. doi:10.1039/c7nj02340e
[10] A. Kuc, N. Zibouche, T. Heine, Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2, Phys. Rev. B 83, 245213 – Published 30 June 2011
[11] Coleman JN, Lotya M, O'Neill A, Bergin SD, At el, Nicolosi V. “Two-dimensional nanosheets produced by liquid exfoliation of layered materials.” Science. 2011 Feb 4;331(6017):568-71. doi: 10.1126/science.1194975
[12] Butler SZ, Hollen SM, LY Cao at el Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene, ACS Nano 2013, 7, 4, 2898–2926
[13] Wong, W. et al. Effect of post-annealing on sputtered MoS 2 films. Solid-State Electronics, 138, 62–65. (2017)
[14] 劉轟山,氮化鎵薄膜成長於化學氣相沉積二硫化鉬之特性分析,國立東華大學材料科學與工程學系 碩士論文,民國108年8月
[15] Appala Naidu Gandiand Udo Schwingenschlögl, WS2 As an Excellent High-Temperature Thermoelectric Material, hem. Mater. 2014, 26, 22, 6628–6637(11, 13, 2014)
[16] Kobayashi, Y., Akasaka, T., & Makimoto, T. (2008). Hexagonal boron nitride grown by MOVPE. Journal of Crystal Growth, 310(23), 5048–5052. doi:10.1016/j.jcrysgro.2008.07.057
[17] T.A. Chen, C.P. Chuu, C.C. Tseng et al. “Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111)” Nature 579, 219–223 (2020). Htt ps://doi.org/10.1038/s41586-020-2009-2
[18] Atsushi Koma, Kazumasa Sunouchi, Takao Miyajima, Fabrication and characterization of heterostructures with subnanometer thickness, Microelectronic Engineering, Volume 2, Issues 1–3, 1984, Pages 129-136, ISSN 0167-9317, https://doi.org/10.1016/0167-9317(84)90057-1.
[19] Koma, A. (1992). New epitaxial growth method for modulated structures using Van der Waals interactions. Surface Science, 267(1-3), 29–33. doi:10.1016/0039-6028(92)91081-l
[20] Koma, A. (1992). Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system. Thin Solid Films, 216(1), 72–76. doi:10.1016/0040-6090(92)90872-9
[21] T. Q. P. Vuong, G. Cassabois, P. Valvin, V. Jacques, A. V. D. Lee, A. Zobelli, K. Watanabe, T. Taniguchi, and B. Gil, “Phonon symmetries in hexagonal boron nitride probed by incoherent light emission,” 2D Mater. 4, 011004 (2017).
[22] G. Cassabois, P. Valvin, and B. Gil, “Hexagonal boron nitride is an indirect bandgap semiconductor,” Nat. Photonics 10(4), 262–266 (2016)
[23] I Stenger1 ,L Schué, “Low frequency Raman spectroscopy of few-atomic-layer thick hBN crystals”, 2D MATERIALS Volume4 Issue3 Article Number031003 DOI10.1088/2053-1583/aa77d4 PublishedSEP 2017
[24] L´eonard Schu´e , Ingrid Stenger , Fr´ed´eric Fossard , Annick Loiseau and Julien Barjon “Characterization methods dedicated to nanometer-thick hBN layers” 2D MATERIALS Volume4 Issue1 Article Number015028 DOI10 . 1088/2053-1583/4/1/015028 PublishedMAR 2017
[25] Marie Kreˇcmarová, “Optical Contrast and Raman Spectroscopy Techniques Applied to Few-Layer 2D Hexagonal Boron” Nanomaterials 2019, 9(7), 1047; https://doi.org/10.3390/nano9071047
[26] A.T. Barton, R. Yue, S. Anwar, H. Zhu, X. Peng, S. McDonnell, N. Lu, R. Addou a, L. Colombo, M.J. Kim , R.M. Wallace , C.L. Hinkle,” Transition metal dichalcogenide and hexagonal boron nitride heterostructures grown by molecular beam epitaxy”, Microelectronic Engineering, 147,306–309,2015
[27] Hone J.,Dean C.R., “Boron nitride substrates for high-quality graphene electronics” nature nanotechnology, 22 August 2010, DOI:10.1038/ NNANO.2010.172
[28] Mahnaz Mohammadi, Esmaeil Pakizeh, “Electronic Structure, Optical Properties, and Potential Applications of n BN/WS2 (n = 1 to4) Heterostructures”, Journal of Electronic Materials (2021) 50:4696–4704
[29] https://kknews.cc/zh-tw/science/92e9nnj.html
[30] A. Yan et al., Direct growth of single- and few-layer MoS2 on h-BN with preferred relative rotation angles. Nano Lett. 15, 6324–6331 (2015). doi: 10.1021/acs.nanolett.5b01311; pmid: 26317240
[31] Vivekanand Shukla, Naresh K. Jena et al. “Prospects of Graphene–hBN Heterostructure Nanogap for DNA Sequencing” ACS Appl. Mater. Interfaces 2017, 9, 46, 39945–39952 Publication November 3,2017
[32] Walsh, L. A., & Hinkle, C. L. (2017). van der Waals epitaxy: 2D materials and topological insulators. Applied Materials Today, 9, 504–515. doi:10.1016/j.apmt.2017.09.010
[33] Osaka, J., Senthil Kumar, M., Toyoda, H., Ishijima, T., Sugai, H., & Mizutani, T. (2007). Role of atomic nitrogen during GaN growth by plasma-assisted molecular beam epitaxy revealed by appearance mass spectrometry. Applied Physics Letters, 90(17), 172114. Doi : 10 .1063 /1.2734390
[34] Myoung, J. M., Gluschenkov, O., Kim, K., & Kim, S. (1999). Growth kinetics of GaN and effects of flux ratio on the properties of GaN films grown by plasma-assisted molecular beam epitaxy. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 17(5), 3019–3028. doi:10.1116/1.581975
[35] Ewald, P. P. (1921). Die Berechnung optischer und elektrostatischer Gitterpotentiale. Annalen Der Physik, 369(3), 253–287. doi:10.1002/andp.19213690304
[36] [36] Ewald, P. P. (1969). Introduction to the dynamical theory of X-ray diffraction. Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and General Crystallography, 25(1), 103–108. doi:10.1107/s0567739469000155
[37] https://www.youtube.com/watch?v=KnCRlfpF904&ab_channel=NTHUOCW
[38] Weigen Chen1 , Jianxin Wang1, Fu Wan1, Pinyi Wang “A Review of Optical Fiber Sensors for Electrical Equipment Characteristic State Parameters Detection” Journals The institution of Engineering and Technology November 2019 DOI:10.1049/hve.2019.0157
[39] Dissemination of IT for the Promotion of Materials Science (DoITPoMS-Project). University of Cambridge. Access: https://www.doitpoms.ac.uk /tlplib/raman/raman_microspectroscopy.php. Cited: 06.04.2018.
[40] http://web1.knvs.tp.edu.tw/afm/ch3.htm
[41] Re´gis Barattin and Normand Voyer, “Chemical modifications of AFM tips for the study of molecular recognition events”, Chemical Communcications Issue13, 2008 DOI: 10.1039/b614328h
[42] 蘇柏智,“以掃描探針測量矽半導體載子濃度”,國立交通大學電子工程學系電子研究所碩士班, 民國93年6月
[43] Ma et al.: Potential sensitivities in frequency modulation and heterodyne amplitude modulation Kelvin probe force microscopes. Nanoscale Research Letters 2013 8:532 doi:10.1186/1556-276X-8-532
[44] Doh W.H., Papaefthimiou V., Zafeiratos S. (2015) Applications of Synchrotron-Based X-Ray Photoelectron Spectroscopy in the Characterization of Nanomaterials. In: Kumar C.S.S.R. (eds) Surface Science Tools for Nanomaterials Characterization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-44551-8_9
[45] Mayer, J., Giannuzzi, L. A., Kamino, T., & Michael, J. (2007). TEM Sample Preparation and FIB-Induced Damage. MRS Bulletin, 32(05), 400–407. doi:10.1557/mrs2007.63
[46] Mayer, J., Giannuzzi, L. A., Kamino, T., & Michael, J. (2007). TEM Sample Preparation and FIB-Induced Damage. MRS Bulletin, 32(05), 400–407. doi:10.1557/mrs2007.63
[47] Michael Hons "Structural Survey on Cohesin and on Viomycin Inhibited 70S Ribosome by Single Particle Electron Microscopy" DOI: 10.13140/RG.2.2.31733.81127
[48] 黃偉銓,以電漿輔助式分子束磊晶法成長氮化硼材料,國立東華大學材料科學與工程學系 碩士論文,民國108年1月
[49] JinhoYang, Jae-Ung Lee, Hyeonsik Cheong,”Excitation energy dependence of Raman spectra of few-layer WS2” FlatChem Volume 3, June 2017, Pages 64-70, https://doi.org/10.1016/j.flatc.2017.06.001
[50] Pawan Mishra, “III-nitrides, 2D transition metal dichalcogenides, and their heterojunctions” In Partial Fulfillment of the Requirements For the Degree of Doctor of Philosophy In Electrical Engineering, King Abdullah University of Science and Technology, April, 2017
[51] Bulya Nazim, N., Abdullah, M.F., Soriadi, N. et al. Electrothermal Analysis of CVD-Grown hBN Heat Spreader using Pt/Cu/Ti Micro-Coil. J. Electron. Mater. 51, 4238–4247 (2022). https://doi.org/10.1007/s11664-022-09715-3

[52] Uchida, Y., Nakandakari, S., Kawahara, K., Yamasaki, S., Mitsuhara, M., & Ago, H. (2018). Controlled Growth of Large-Area Uniform Multilayer Hexagonal Boron Nitride as an Effective 2D Substrate. ACS Nano, 12(6), 6236–6244. doi:10.1021/acsnano.8b03055
[53] Majety, S., Cao, X. K., Dahal, R., Pantha, B. N., Li, J., Lin, J. Y., & Jiang, H. X. (2012). Semiconducting hexagonal boron nitride for deep ultraviolet photonics. Quantum Sensing and Nanophotonic Devices IX. doi:10.1117/12.914084
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *