帳號:guest(3.17.177.158)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:郭已溱
作者(英文):Yi-Chen Kuo
論文名稱:氣相傳輸法合成鑑定二維硒化銦奈米結構與特性分析
論文名稱(英文):Vapor transport synthesis and characterization of 2D InSe nanostructures
指導教授:田禮嘉
指導教授(英文):Li-Chia Tien
口試委員:楊天賜
林育賢
田禮嘉
口試委員(英文):Tien-Syh Yang
Yu-Shyan Lin
Li-Chia Tien
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922119
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:54
關鍵詞:硒化銦氣相傳輸法二維材料
關鍵詞(英文):Indium selenidevapor transporttwo-dimensional materials
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
二維的硒化銦為n型半導體擁有良好的光學與電學性質,像是高電子遷移率、 高電子親和力和有非等向性的特性,在光電元件和光探測器上具有發展潛力。本研究以氣相傳輸法合成出不同相的二維硒化銦,分別為γ-InSe、α-In2Se3、β-In2Se3和γ-In2Se3,藉由控制成長溫度、成長時間和Se前驅物重量的多寡來確認不同相的成長條件與成長機制。在成長溫度為500、550、600、650 ℃及成長時間為30分鐘時,可以成長出三角和六角片狀的硒化銦結構,由XRD和FE-SEM分析樣品,觀察到α-In2Se3和β-In2Se3為三角片狀,γ-In2Se3為六角片狀,且樣品隨成長溫度越高結構的尺寸就越大。當成長時間為15分鐘且成長溫度為500 ℃時,由於成長時間不夠久且晶體還處於成核階段,而形成顆粒狀結構,因為成長初期銦和硒的蒸氣量供給量相近,導致表面吸附反應形成γ-InSe。在顯微拉曼光譜圖中有β-In2Se3和γ-In2Se3的訊號,且γ-In2Se3訊號隨成長溫度越高而強度下降,因此我們可以推斷出在成長溫度為高溫時β-In2Se3為主要的相,且當樣品的厚度減少時,可以觀察到A1和A1’的拉曼訊號皆往長波長的方向移動,這是因為層間的相互作用和相對震動,而導致紅移的現象。此外藉由機械剝離法得到少層的三角和六角片狀,可以發現皆為β-In2Se3的拉曼訊號,且γ-In2Se3的訊號消失,證實本研究觀察到的三角及六角狀結構為β-In2Se3。
The two-dimensional (2D) indium selenide (InSe) is an n-type semiconductor with excellent optical and electrical properties, such as exhibiting high carrier mobility, high electron affinity, and anisotropic electron and may be potentially useful for optoelectronic devices and photodetectors .Here we report a simple vapor transport method to synthesize different 2D InSe phases: γ-InSe, α-In2Se3, β-In2Se3, and γ-In2Se3 by adjusting synthetic conditions such as growth temperature, growth time, and the amount of Se metals used during the growth. The growth conditions and the growth mechanism of different phases of samples were investigated. Under the growth temperature of 500, 550, 600, and 650 °C, and the growth time was 30 min, the morphology of the sample was observed by XRD and FE-SEM. The samples were identified as α-In2Se3 and β-In2Se3 are trigonal crystal structures and γ-In2Se3 is the hexagonal crystal structure. It was also found that the size of the crystal increased with the growth temperature. When the growth time was 15 min and the growth temperature was 500 °C, the sample is still in the nucleation stage, due to the growth time is not long enough. During the early stages of growth, the vapor supply of In and Se was similar, which led to surface adsorption reactions and the formation of γ-InSe. The Raman spectra showed signals of β-In2Se3 and γ-In2Se3, and the intensity of the γ-In2Se3 signal decreased as the growth temperature increased. Therefore, we can infer that β-In2Se3 is the main phase at high growth temperatures. Additionally, as the sample thickness decreased, both the A1 and A1' Raman signals shifted towards longer wavelengths. This phenomenon, known as redshift, is caused by interlayer interactions and relative vibrations. Furthermore, through mechanical exfoliation, few-layer trigonal and hexagonal nanoflakes were obtained, showing Raman signals consistent with β-In2Se3, while the γ-In2Se3 signal disappeared. This confirms that the observed trigonal and hexagonal nanoflakes in this study are β-In2Se3.
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XIII
第一章 緒論 1
1.1 前言 1
1.2 研究目標 1
第二章 文獻回顧 3
2.1 二維材料的特性與發展 3
2.2 硒化銦的基本性質 3
2.2.1 InSe的性質 3
2.2.2 In2Se3的基本性質 4
2.3 硒化銦的製備 5
2.3.1 機械剝離法(mechanical exfoliation) 5
2.3.2 物理氣相傳輸法(physical vapor transport, PVT) 6
2.3.3 化學氣相沉積法(chemical vapor deposition, CVD) 6
2.3.4 分子束磊晶成長法(molecular beam epitaxy, MBE) 7
2.4 硒化銦的應用 8
第三章 實驗步驟與儀器介紹 19
3.1 實驗設計 19
3.2 實驗材料 19
3.2.1 基板 19
3.2.2 清潔溶劑 19
3.2.3 奈米結構成長源 19
3.3 實驗步驟 19
3.3.1 試片準備 19
3.3.2 成長硒化銦結構 20
3.4 實驗參數 20
3.4.1 改變成長溫度 20
3.4.2 改變成長時間 20
3.4.3 改變硒的前驅物重量 20
3.5 分析儀器 25
3.5.1 X光繞射分析儀(XRD) 25
3.5.2 場發射掃描式電子顯微鏡(FE-SEM) 25
3.5.3 能量散佈光譜儀(EDS) 26
3.5.4 顯微拉曼光譜儀(Raman) 26
第四章 結果與討論 27
4.1 改變成長溫度 27
4.1.1 表面形貌分析 27
4.1.2 晶體結構與相的鑑定 27
4.1.3 EDS定量分析 28
4.2 改變成長時間 28
4.2.1 表面形貌分析 28
4.2.2 晶體結構與相的鑑定 29
4.2.3 EDS定量分析 29
4.3 改變硒的前驅物重量 30
4.3.1 表面形貌分析 30
4.3.2 晶體結構與相的鑑定 30
4.3.3 EDS定量分析 31
4.4 成長機制 31
4.5 光學性質分析 32
4.5.1 Raman 光譜 32
4.5.2 層數相依性 33
4.5.3 少層片狀硒化銦 33
第五章 結論 49
第六章 參考文獻 51

[1] L. Debbichi, O. Eriksson, S. Lebègue, Two-dimensional indium selenides compounds: an ab initio study, The Journal of Physical Chemistry Letters, 6(15) (2015) 3098-3103.
[2] W. Feng, X. Zhou, W.Q. Tian, W. Zhengab, P.A. Hu, Performance improvement of multilayer InSe transistors with optimized metal contacts, Physical Chemistry Chemical Physics, 17(5) (2015) 3653-3658.
[3] A.A.A. Darwish, M.M. El-Nahass, M.H. Bahlol, Structural and electrical studies on nanostructured InSe thin films, Applied Surface Science, 276 (2013) 210-216.
[4] Y. Hu, W. Feng, M. Dai, H. Yang, X.S. Chen, G.B. Liu, S.C. Zhang, P.A. Hu, Temperature-dependent growth of few layer β-InSe and α-In2Se3 single crystals for optoelectronic device, Semiconductor Science and Technology, 33(12) (2018) 125002 (1-8).
[5] G. Giovannetti, P. A. Khomyakov, G.Brocks, P. J. Kelly , J. Vandenbrink, Substrate-induced band gap in graphene on hexagonal boron nitride: Ab initio density functional calculations, Physical Review B, 76(7) (2007) 073103 (1-4).
[6] 李明洋 (2018)。二維過渡金屬硫族化合物異質接面的合成與應用發展。真空科技, 31(2) 9-12.
[7] S. Manzeli, D. Ovchinnikov, D. Pasquier, O. V. Yazyev, A. Kis, 2D transition metal dichalcogenides, Nature Reviews Materials, 2(8) (2017) 1-15.
[8] Y. Sun, S.L. Luo, X.G. Zhao, K.S. Biswas, S.L. Li, L.J. Zhang, InSe: a two-dimensional material with strong interlayer coupling, Nanoscale, 10(17) (2018) 7991-7998.
[9] G. Han, Z.G. Chen, J. Drennan, J. Zou, Indium selenides: structural characteristics, synthesis and their thermoelectric performances, Small, 10(14) (2014) 2747-2765.
[10] H.C. Chang, C.L. Tu, K.I. Lin, J. Pu, T. Takenobu, C.N. Hsiao, C.H. Chen, Synthesis of large‐area InSe monolayers by chemical vapor deposition, Small, 14(39) (2018) 1802351(1-9).
[11] W. Huang, L. Gan, H. Li, Y. Ma, T. Zhai, Phase‐Engineered Growth of Ultrathin InSe Flakes by Chemical Vapor Deposition for High‐Efficiency Second Harmonic Generation, Chemistry–A European Journal, 24(58) (2018) 15678-15684.
[12] 吳妍葶(2019)。以共蒸鍍法成長InSe薄膜及其特性分析(碩士論文)。國立中山大學,高雄市。
[13] D.Y. Lyu, T.Y. Lin, T.W. Chang, S.M. Lan, T.N. Yang, C.C. Chiang, C.L. Chen, H.P. Chiang , Structural and optical characterization of single-phase γ-In2Se3 films with room-temperature photoluminescence, Journal of Alloys and Compounds, 499(1) (2010) 104-107.
[14] T.H. Nguyen, A.T. Duong, S. Cho, 2D semiconducting α-In2Se3 single crystals: Growth and huge anisotropy during transport, Journal of Alloys and Compounds, 810 (2019) 151968(1-5).
[15] C.L. Hsin, J.H. Huang, P. Spiewak, L. Ciupiński, S.W. Lee, Anisotropy of thermal conductivity in In2Se3 nanostructures, Applied Surface Science, 494 (2019) 867-870.
[16] M.S. Claro, J. Grzonka, N. Nicoara, P. J. Ferreira, S. Sadewasser, Wafer‐scale fabrication of 2D β‐In2Se3 photodetectors, Advanced Optical Materials, 9(1) (2021) 2001034(1-9).
[17] R. Panda, R. Naik, N.C. Mishra, Low-temperature growth of γ phase in thermally deposited In2Se3 thin films, Phase Transitions, 91(8) (2018) 862-871.
[18] C.H. Ho, Y.C. Chen, C.C. Pan, Structural phase transition and erasable optically memorized effect in layered γ-In2Se3 crystals, Journal of Applied Physics, 115(3) (2014) 033501(1-6).
[19] J.D. Zhou, Q.S. Zeng, D.H. Lv, L.F. Sun, L. Niu, W. Fu, F.C. Liu, Z. Shen, C.H. Jin, Z. Liu, Controlled synthesis of high-quality monolayered α-In2Se3 via physical vapor deposition, Nano Letters, 15(10) (2015) 6400-6405.
[20] M. Emziane, S. Marsillac, J.C. Bernède, Preparation of highly oriented α-In2Se3 thin films by a simple technique, Materials Chemistry and Physics, 62(1) (2000) 84-87.
[21] S.Y. Wan, Q. Peng, Z. Wu, Y.B. Zhou, Nonvolatile Ferroelectric Memory with Lateral β/α/β In2Se3 Heterojunctions, ACS Applied Materials & Interfaces, 14(22) (2022) 25693-25700.
[22] F.J. Lyu, X. Li, J. Tian, Z.W. Li, B. Liu, Q. Chen, Temperature-Driven α-β Phase Transformation and Enhanced Electronic Property of 2H α-In2Se3, ACS Applied Materials & Interfaces, 14(20) (2022) 23637-23644.
[23] D. Wu, A. J. Pak, Y.G. Liu, Y. Zhou, X.Y. Wu, Y. Zhu, M. Lin, Y. Han, Y. Ren, H.L. Peng, Y.H.Tsai, G. S. Hwang, K. Lai, Thickness-dependent dielectric constant of few-layer In2Se3 nanoflakes, Nano Letters, 15(12) (2015) 8136-8140.
[24] G.W. Mudd, S. A. Svatek, T. Ren, A. Patanè, O. Makarovsky, L. Eaves, P. H. Beton, Z. D. Kovalyuk, G. V. Lashkarev, Z. R. Kudrynskyi, A. I. Dmitriev, Tuning the Bandgap of Exfoliated InSe Nanosheets by Quantum Confinement, Advanced Materials, 25(40) (2013) 5714-5718.
[25] N. Balakrishnan, E.D. Steer, E.F. Smith, Z.R. Kudrynskyi, Z.D. Kovalyuk, L. Eaves, A. Patanè, P.H. Beton, Epitaxial growth of γ-InSe and α, β, and γ-In2Se3 on ε-GaSe, 2D Materials, 5(3) (2018) 035026(1-10).
[26] R. Rashid , F.C.C. Ling , S.P. Wang , K. Xiao , X.D. Cui , Q. Rao , D.K. Ki, IP and OOP ferroelectricity in hexagonal γ-In2Se3 nanoflakes grown by chemical vapor deposition, Journal of Alloys And Compounds, 870 (2021) 159344(1-10).
[27] C.H. Wu, Y.C. Huang, Y.T. Ho, S.J. Chang, S.K. Wu, C.H. Huang, W.C. Chou, C.S. Yang, Solid Phase Epitaxy of Single Phase Two-Dimensional Layered InSe Grown by MBE, Nanomaterials, 12(14) (2022) 2435(1-9).
[28] W. Huang, H. Hou, X. Chen, T. Zhai, Synthesis of InSe Nanoflakes with Near-infrared Photoresponse Grown by Chemical Vapor Deposition, Chemical Journal of Chinese Universities-Chinese ,41(4) (2020) 682-689.
[29] S. Lei, L.H. Ge, S. Najmaei, A. George, R. Kappera, J. Lou, M. Chhowalla, H. Yamaguchi, G. Gautam, R. Vajtai, Evolution of the Electronic Band Structure and Efficient Photo-Detection in Atomic Layers of InSe, ACS Nano ,8(2) (2014) 1263-1272.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *