帳號:guest(3.144.31.14)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:張力仁
作者(英文):Li-Jen Chang
論文名稱:具有CdS/CdSe量子點/染料共敏化光陽極及NiS2對電極之新型太陽能電池
論文名稱(英文):New Solar cells with CdS/CdSe quantum dot/dye co-sensitized photoanode and NiS2 counter electrode
指導教授:林育賢
指導教授(英文):Yu-Shyan Lin
口試委員:田禮嘉
鄭岫盈
林育賢
口試委員(英文):Li-Chia Tien
Shiou-Ying Cheng
Yu-Shyan Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:610922122
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:94
關鍵詞:染料敏化太陽能電池量子點共敏化二硫化鎳
關鍵詞(英文):Dye-sensitized solar cellsQuantum dotsCo-sensitizationNickel disulfide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
本實驗以寬能隙金屬氧化物半導體TiO2做為光敏化劑的吸附載體,調整不同TiO2粉末顆粒製作出包含工作層和散射層結構的工作電極,以量子點和染料做為光敏化劑進行共吸附,以此作為染料敏化太陽能電池之光陽極。
以連續離子層吸附反應(SILAR)和化學浴沉積(CBD)法合成量子點於TiO2上,並與染料以共敏化的方式於元件上,實驗中改變CdS量子點的循環層,結果表明為三層時效率4.56 %最佳,為進一步提升染料敏化太陽能電池的效率,故後續再以SILAR法合成2層鈍化層於量子點上,最後成功將元件的效率提升至5.08 %。
成功利用水熱法合成出NiS2粉末,並以不同NiS2粉末濃度的溶液製作出染料敏化太陽能電池之對電極,實驗與Pt進行比較,結果表明以濃度為0.0125 g/ml的溶液製作的對電極最佳,在元件上表現也最為接近Pt對電極。
In this experiment, wide-gap metal oxide semiconductor TiO2 was used as the adsorption carrier of photosensitizer. The different TiO2 powder particles were adjusted to make the working electrodes and scattering layers. The quantum dots and dyes were co-adsorption and they were used as photosensitizers. The above layers form the photo-anodes for dye-sensitized solar cells (DSSCs).
Successive ionic layer adsorption and reaction (SILAR) and chemical bath deposition (CBD) methods were used to synthesize the quantum dots on TiO2. The quantum dots were co-sensitized with dyes. The experimental results showed that the best efficiency of 4.56 % was achieved for the DSSC with three layers. In order to further improve the efficiency of the DSSC, two passivation layers were synthesized on the quantum dots by the SILAR method, and the DSSC efficiency was increased to 5.08%.
The NiS2 powder was successfully synthesized by hydrothermal method. The cathodes of the DSSCs were fabricated with different concentrations of NiS2 powder. When the concentration of NiS2 is 0.0125 g/ml, the DSSC has the best efficiency of the studied DSSCs. The efficiency of the DSSC with NiS2 counter electrode is comparable to that of the DSSC using the Pt counter electrode.
1 第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
2 第二章 文獻回顧 5
2.1 太陽能電池 5
2.2 太陽能電池種類 6
2.3 染料敏化太陽能電池(Dye-sensitized solar cells) 8
2.4 量子點敏化太陽能電池(Quantum-dot sensitized solar cells) 11
2.5 敏化太陽能電池的基本組成架構 12
2.5.1 導電基板 (Conductive substrate) 13
2.5.2 金屬氧化物半導體 (Metal oxide semiconductor) 14
2.5.3 染料光敏劑 (Dye sensitizer) 15
2.5.4 量子點 (Quantum dots) 16
2.5.5 電解液 (Electrolyte) 19
2.5.6 對電極 (Counter electrode) 19
2.6 二硫化鎳 20
3 第三章 實驗步驟與設備 23
3.1 實驗儀器設備 23
3.1.1 超純水系統 (Ultrapure water purification system) 23
3.1.2 加熱磁石攪拌器 (Magnetic stirrer) 23
3.1.3 超音波震盪機 (Ultrasonic cleaner) 24
3.1.4 網印版 (Screen printer) 25
3.1.5 烘箱 (Oven) 25
3.1.6 高溫管型爐 (High temperature tube furnace) 25
3.1.7 電子秤 (Electronic scales) 26
3.1.8 鑽孔機 (Driller) 26
3.1.9 微量滴管 (Micropipette) 27
3.1.10 熱壓機 (Thermo compressor) 28
3.1.11 離心機 (Centrifuge) 28
3.1.12 水熱釜 (Hydrothermal autoclave reactor) 29
3.2 測量儀器設備 30
3.2.1 X光繞射儀 (X-Ray diffraction, XRD) 30
3.2.2 X射線光電子能譜儀 (X-ray photoelectron spectroscopy, XPS) 32
3.2.3 場發射掃描式電子顯微鏡 (Field emission of scanning electron microscope, FE-SEM) 34
3.2.4 太陽電池I-V量測系統 (Solar cell I-V measurement) 36
3.2.5 三維輪廓儀 (3D-surface profiler) 39
3.2.6 電化學工作站 (Electrochemical workstation) 40
3.2.7 紫外-可見光光譜儀 (Ultraviolet–visible spectroscopy, UV-Vis) 46
3.3 實驗藥品 48
3.4 實驗流程 50
3.4.1 工作電極漿料製備 50
3.4.2 散射層漿料製備 51
3.4.3 二硫化鎳(NiS2)製備 52
3.4.4 四氯化鈦前處理緻密層製備 53
3.4.5 工作電極的製備 54
3.4.6 量子點製備 55
3.4.7 染料製備 57
3.4.8 Pt對電極製作 58
3.4.9 NiS2對電極製作 58
3.4.10 電池封裝 59
4 第四章 結果與討論 61
4.1 XRD 61
4.1.1 工作電極與散射層 61
4.1.2 量子點 63
4.1.3 二硫化鎳 63
4.2 XPS 65
4.2.1 量子點 65
4.2.2 二硫化鎳 67
4.3 SEM 70
4.3.1 量子點 70
4.3.2 二硫化鎳 72
4.4 薄膜厚度 74
4.4.1 TiO2塗佈層數 74
4.5 UV-Vis 76
4.5.1 量子點 76
4.6 Tafel測量 78
4.6.1 Pt和不同NiS2粉末濃度的對稱元件Tafel比較 78
4.7 EIS測量 80
4.7.1 Pt和不同NiS2粉末濃度的對稱元件EIS比較 80
4.8 I-V測試 82
4.8.1 Pt對電極與量子點染料共敏化太陽能電池 82
4.8.2 Pt和NiS2粉末濃度的對電極比較 85
5 第五章 結論 87
參考文獻 88
[1]R. C. Willson, and A. V. Mordvinov, “Secular total solar irradiance trend during solar cycles 21-23,” Geophys. Res. Lett., vol. 30, no. 5, 1199, 2003.
[2]K. Shen, G. Saranya, and M. Chen, “Theoretical prediction and design for chalcogenide-quantum-dot/TiO2 heterojunctions for solar cell applications,” RSC Adv, vol. 12, no. 45, pp. 29375-29384, 2022.
[3]M. A. K. L. Dissanayake, T. Jaseetharan, G. K. R. Senadeera, B. E. Mellander, I. Albinsson, and M. Furlani, “Optimizing the size and amount of CdS quantum dots for efficiency enhancement in CdS/N719 co-sensitized solar cells,” Phys. E: Low-Dimens. Syst. Nanostructures., vol. 144, 115469, 2022.
[4]R. E. Bailey, A. M. Smith, and S. Nie, “Quantum dots in biology and medicine,” Phys. E: Low-Dimens. Syst. Nanostructures., vol. 25, no. 1, pp. 1-12, 2004.
[5]蔣宗儒,染料敏化太陽能電池光電極之研究,” 材料科學與工程學系,國立東華大學,花蓮,2014.
[6]A. E. Becquerel, “Memoire sur les effects d’electriques produits sous l’Influence des rayons solaires,” C. R. Acad. Bulg. Sci., vol. 9, pp. 561-567, 1839.
[7]C. E. Fritts, “On a new form of selenium cell, and some electrical discoveries made by its use,” Am. J. Sci., vol. s3-26, no. 156, pp. 465–472, 1883.
[8]胥景涵 ,“石墨烯/二氧化鈦光陽極於染料敏化太陽能電池特性研究,” 材料科學與工程學系,國立東華大學,花蓮,2017.
[9]M. A. Green, E. D. Dunlop, M. Yoshita, N. Kopidakis, K. Bothe, G. Siefer., and X. Hao., “Solar cell efficiency tables (version 62),” Prog. Photovolt.: Res. Appl., vol. 31, no. 7, pp. 651-663, 2023.
[10]K. Ranabhat, L. Patrikeev, A. Antal'evna-Revina, K. Andrianov, V. Lapshinsky, and E. Sofronova, “An introduction to solar cell technology,” J. Appl. Eng. Sci., vol. 14, no. 4, pp. 481-491, 2016.
[11]J. Pastuszak, and P. Wegierek, “Photovoltaic cell generations and current research directions for their development,” Materials, vol. 15, no. 16, 5542, 2022.
[12]劉建惟,“漫談太陽能電池的發展,” 清流月刊.,四月號, 2009.
[13]P.C.Choubey., A. Oudhia, and R. Dewangan, “Solar cell current scenario and future trends ” Recent res. sci. technol., vol. 4, no. 8, pp. 99-101 2012.
[14]W. A. Badawy, “A review on solar cells from Si-single crystals to porous materials and quantum dots,” J Adv Res, vol. 6, no. 2, pp. 123-132, 2015.
[15]B. O'Regan, and M. Grätzel, “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films,” Nature, vol. 353, no. 6346, pp. 737-740, 1991.
[16]J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem Rev, vol. 115, no. 5, pp. 2136-2173, 2015.
[17]A. Listorti, B. O’Regan, and J. R. Durrant, “Electron transfer dynamics in dye-sensitized solar cells,” Chem. Mater., vol. 23, no. 15, pp. 3381-3399, 2011.
[18]J. Wu, Z. Lan, J. Lin, M. Huang, Y. Huang, L. Fan, and G. Luo, “Electrolytes in dye-sensitized solar cells,” Chem. Rev., vol. 115, no. 5, pp. 2136-2173, 2015.
[19]郭韋志,“以水熱法合成硒化鎳化合物應用於染料敏化太陽能電池,” 材料科學與工程學系,國立東華大學,花蓮,2019.
[20]A. F. Palmstrom, P. K. Santra, and S. F. Bent, “Atomic layer deposition in nanostructured photovoltaics: tuning optical, electronic and surface properties,” Nanoscale, vol. 7, no. 29, pp. 12266-12283, 2015.
[21]H. Tada, M. Fujishima, and H. Kobayashi, “Photodeposition of metal sulfide quantum dots on titanium(IV) dioxide and the applications to solar energy conversion,” Chem Soc Rev, vol. 40, no. 7, pp. 4232-4243, 2011.
[22]M. A. M. Al-Alwani, A. B. Mohamad, N. A. Ludin, A. A. H. Kadhum, and K. Sopian, “Dye-sensitised solar cells: Development, structure, operation principles, electron kinetics, characterisation, synthesis materials and natural photosensitisers,” Renew. Sust. Energ. Rev., vol. 65, pp. 183-213, 2016.
[23]C. Sima, C. Grigoriu, and S. Antohe, “Comparison of the dye-sensitized solar cells performances based on transparent conductive ITO and FTO,” Thin Solid Films, vol. 519, no. 2, pp. 595-597, 2010.
[24]劉育典,“水熱合成法製備二氧化鈦奈米顆粒於染料敏化太陽能電池特性研究,” 材料科學與工程學系,國立東華大學,花蓮, 2017.
[25]Y. S. Lin, and C. C. Lu, “Improved AlGaN/GaN metal–oxide– semiconductor high-electron mobility transistors with TiO2 gate dielectric annealed in nitrogen,” IEEE Trans. Electron Devices, vol. 65, no. 2, pp. 783-787, 2018.
[26]J. Wang, Z. Wang, W. Wang, Y. Wang, X. Hu, J. Liu, X. Gong, W. Miao, L. Ding, X. Li, and J. Tang, “Synthesis, modification and application of titanium dioxide nanoparticles: a review,” Nanoscale, vol. 14, no. 18, pp. 6709-6734, 2022.
[27]V. Etacheri, C. Di Valentin, J. Schneider, D. Bahnemann, and S. C. Pillai, “Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments,” J. Photochem. Photobiol. C: Photochem. Rev., vol. 25, pp. 1-29, 2015.
[28]楊承諺,“染料敏化太陽能電池之奈米二氧化鈦光電極研究,” 光電工程學系,國立東華大學,花蓮,2012.
[29]J. Xu, J. Jin, Z. Ying, W. Shi, and T. Peng, “Composite electrode of TiO2 particles with different crystal phases and morphology to significantly improve the performance of dye-sensitized solar cells,” RSC Adv, vol. 5, no. 41, pp. 32536-32545, 2015.
[30]K. E. Lee, M. A. Gomez, S. Elouatik, and G. P. Demopoulos, “Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal raman imaging,” Langmuir, vol. 26, no. 12, pp. 9575-9583, 2010.
[31]M. Giroux, Z. Zahra, O. A. Salawu, R. M. Burgess, K. T. Ho, and A. S. Adeleye, “Assessing the environmental effects related to quantum dot structure, function, synthesis and exposure,” Environ Sci Nano, vol. 9, no. 3, pp. 867-910, 2022.
[32]M. L. Liu, B. B. Chen, C. M. Li, and C. Z. Huang, “Carbon dots: synthesis, formation mechanism, fluorescence origin and sensing applications,” Green Chem., vol. 21, no. 3, pp. 449-471, 2019.
[33]M. Ye, X. Gao, X. Hong, Q. Liu, C. He, X. Liu, and C. Lin, “Recent advances in quantum dot-sensitized solar cells: insights into photoanodes, sensitizers, electrolytes and counter electrodes,” Sustain. Energy Fuels, vol. 1, no. 6, pp. 1217-1231, 2017.
[34]Y. Zhang, B. Liu, Z. Liu, and J. Li, “Research progress in the synthesis and biological application of quantum dots,” New J. Chem., vol. 46, no. 43, pp. 20515-20539, 2022.
[35]J. Tian, and G. Cao, “Semiconductor quantum dot-sensitized solar cells,” Nano Rev., vol. 4, no. 1, 22578, 2013.
[36]Q. Shen, J. Kobayashi, L. J. Diguna, and T. Toyoda, “Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells,” J. Appl. Phys., vol. 103, no. 8, 084304, 2008.
[37]X. Xiang, L. Wang, J. Zhang, B. Cheng, J. Yu, and W. Macyk, “Cadmium chalcogenide (CdS, CdSe, CdTe) quantum dots for solar-to-fuel conversion,” Adv. Photon. Res., vol. 3, no. 11, 2200065, 2022.
[38]J. Zhang, S. Wageh, A. Al-Ghamdi, and J. Yu, “New understanding on the different photocatalytic activity of wurtzite and zinc-blende CdS,” Appl. Catal. B: Environ., vol. 192, pp. 101-107, 2016.
[39]Y. Zi, J. Zhu, M. Wang, L. Hu, Y. Hu, S. Wageh, O. A. Al-Hartomy, A. Al-Ghamdi, W. Huang, and H. Zhang, “CdS@CdSe core/shell quantum dots for highly improved self-powered photodetection performance,” Inorg. Chem., vol. 60, no. 24, pp. 18608-18613, 2021.
[40]陳韋宏,“以水熱法改質二氧化鈦散射層與摻雜氧化石墨烯於電解液之染料敏化太陽能電池之特性研究,” 材料科學與工程學系, 國立東華大學,花蓮,2018.
[41]魏本傑,“以水熱法合成二硫化鎳作為對電極於染料敏化太陽能電池之特性研究,” 材料科學與工程學系,國立東華大學,花蓮,2021.
[42]G. Boschloo, and A. Hagfeldt, “Characteristics of the iodide/triiodide redox mediator in dye-sensitized solar cells,” Acc. Chem. Res., vol. 42, no. 11, pp. 1819-1826, 2009.
[43]S. Thomas, T. G. Deepak, G. S. Anjusree, T. A. Arun, S. V. Nair, and A. S. Nair, “A review on counter electrode materials in dye-sensitized solar cells,” J. Mater. Chem. A, vol. 2, no. 13, pp. 4474-4490, 2014.
[44]L. Sun, Y. Bai, N. Zhang, and K. Sun, “The facile preparation of a cobalt disulfide–reduced graphene oxide composite film as an efficient counter electrode for dye-sensitized solar cells,” Chem. Commun., vol. 51, no. 10, pp. 1846-1849, 2015.
[45]Z. Ku, X. Li, G. Liu, H. Wang, Y. Rong, M. Xu, L. Liu, M. Hu, Y. Yang, and H. Han, “Transparent NiS counter electrodes for thiolate/disulfide mediated dye-sensitized solar cells,” J. Mater. Chem. A, vol. 1, no. 2, pp. 237-240, 2013.
[46]K. Han, J. Meng, X. Hong, X. Wang, and L. Mai, “Three-dimensional graphene-supported nickel disulfide nanoparticles promise stable and fast potassium storage,” Nanoscale, vol. 12, no. 15, pp. 8255-8261, 2020.
[47]C. Jin, L. Fu, J. Zhu, W. Yang, D. Li, and L. Zhou, “A hierarchical carbon modified nano-NiS2 cathode with high thermal stability for a high energy thermal battery,” J. Mater. Chem. A, vol. 6, no. 16, pp. 7123-7132, 2018.
[48]T. Wang, X. Guo, J. Zhang, W. Xiao, P. Xi, S. Peng, and D. Gao, “Electronic structure modulation of NiS2 by transition metal doping for accelerating the hydrogen evolution reaction,” J. Mater. Chem. A, vol. 7, no. 9, pp. 4971-4976, 2019.
[49]F. Habeb Abdulrazzak, A. Fadel Alkiam, and F. Hasan Hussein, "Behavior of x-ray analysis of carbon nanotubes," Perspective of Carbon Nanotubes., 2019.
[50]S. J. Ling, J. Sanny, and W. Moebs, "X-Ray Diffraction," University Physics Volume 3, Samurai Media Limited, 2016.
[51]新村典康,“X線光電子分光法(XPS)の原理と応用,” JAIMA Season Summer,2016.
[52]劉玥蘭, “二氧化鈦散射層於染料敏化太陽能電池中之特性研究,” 材料科學與工程學系,國立東華大學,花蓮,2015.
[53]曹. 張鑒清(2002) ,電化學阻抗譜導論,科學出版社.
[54]K. Fushimi, L. Neelakantan, G. Eggeler, and A. W. Hassel, “On the electropolishing mechanism of nickel titanium in methanolic sulfuric acid − an electrochemical impedance study,” Phys. Status Solidi A, vol. 215, no. 15, 1800011, 2018.
[55]I. Oshina, and J. Spigulis, “Beer-Lambert law for optical tissue diagnostics: current state of the art and the main limitations,” J Biomed Opt, vol. 26, no. 10, 100901, 2021.
[56]B. Streetman, and S. Banerjee, "Atoms and electrons," Solid State Electronic Devices, 6/e: Pearson, 2009.
[57]M. Shaban, J. Poostforooshan, and A. P. Weber, “Surface-initiated polymerization on unmodified inorganic semiconductor nanoparticles via surfactant-free aerosol-based synthesis toward core–shell nanohybrids with a tunable shell thickness,” J. Mater. Chem. A, vol. 5, no. 35, pp. 18651-18663, 2017.
[58]M. Hezam, S. M. H. Qaid, I. M. Bedja, F. Alharbi, M. K. Nazeeruddin, and A. Aldwayyan, “Synthesis of pure brookite nanorods in a nonaqueous growth environment,” Crystals, vol. 9, no. 11, 562, 2019.
[59]W. Wu, Q. Xiang, Z. Wu, G. Shan, and L. Zhu, “Depletion of double-layer coated nano-TiO2 and generation of reactive oxygen species in the presence of ethanol under simulated solar irradiation,” NanoImpact, vol. 11, pp. 164-169, 2018.
[60]X. Zuo, S. Yan, B. Yang, G. Li, M. Wu, Y. Ma, S. Jin, and K. Zhu, “Hollow spherical NiS/NiS2 composite as effective counter electrode catalyst for dye-sensitized solar cells,” J. Mater. Sci.-Mater. Electron., vol. 27, no. 8, pp. 7974-7978, 2016.
[61]D. Fang, F. He, J. Xie, and L. Xue, “Calibration of Binding Energy Positions with C1s for XPS Results,” J. Wuhan Univ. Technol. Mater. Sci. Ed., vol. 35, no. 4, pp. 711-718, 2020.
[62]J. Park, T. Back, W. C. Mitchel, S. S. Kim, S. Elhamri, J. Boeckl, S. B. Fairchild, R. Naik, and A. A. Voevodin, “Approach to multifunctional device platform with epitaxial graphene on transition metal oxide,” Sci Rep, vol. 5, 14374, 2015.
[63]L. Zhu, Q. Lu, L. Lv, Y. Wang, Y. Hu, Z. Deng, Z. Lou, Y. Hou, and F. Teng, “Ligand-free rutile and anatase TiO2 nanocrystals as electron extraction layers for high performance inverted polymer solar cells,” RSC Adv, vol. 7, no. 33, pp. 20084-20092, 2017.
[64]B. Bharti, S. Kumar, H. N. Lee, and R. Kumar, “Formation of oxygen vacancies and Ti 3+ state in TiO2 thin film and enhanced optical properties by air plasma treatment,” Sci Rep, vol. 6, 32355, 2016.
[65]Y. Liu, F. Dai, R. Zhao, X. Huai, J. Han, and L. Wang, “Aqueous synthesis of core/shell/shell CdSe/CdS/ZnS quantum dots for photocatalytic hydrogen generation,” J Mater Sci, vol. 54, no. 11, pp. 8571-8580, 2019.
[66]J. Fang, W. Lv, Y. Lei, J. Deng, P. Zhang, and W. Huang, “Structural evolution from the CdSSe alloy to the CdS/CdSe core/shell in Cd(S and Se) composite quantum dots and its impact on the performance of sensitized solar cells,” Dalton Trans., vol. 50, no. 41, pp. 14672-14683, 2021.
[67]M. Lu, N. Gao, X. J. Zhang, and G. S. Wang, “Reduced graphene oxide decorated with octahedral NiS2/NiS nanocrystals: facile synthesis and tunable high frequency attenuation,” RSC Adv, vol. 9, no. 10, pp. 5550-5556, 2019.
[68]S. P. Lonkar, V. V. Pillai, and S. M. Alhassan, “Scalable solid-state synthesis of MoS2–NiS2/graphene nanohybrids as bifunctional electrocatalysts for enhanced overall water splitting,” Mater. Adv., vol. 1, no. 4, pp. 794-803, 2020.
[69]G. Zhao, Y. Zhang, L. Yang, Y. Jiang, Y. Zhang, W. Hong, Y. Tian, H. Zhao, J. Hu, L. Zhou, H. Hou, X. Ji, and L. Mai, “Nickel chelate derived NiS2 decorated with bifunctional carbon: An efficient strategy to promote sodium storage performance,” Adv. Funct. Mater., vol. 28, no. 41, 1803690, 2018.
(此全文20280813後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *