帳號:guest(3.142.54.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蔡羽翔
作者(英文):Yu-Hsiang Tsai
論文名稱:基於視覺感知之H.266/VVC畫面內編碼快速演算法
論文名稱(英文):Fast H.266/VVC Intra Coding Algorithm Based on Visual Perception
指導教授:陳美娟
指導教授(英文):Mei-Juan Chen
口試委員:徐敬亭
翁若敏
口試委員(英文):Ching-Ting Hsu
Ro-Min Weng
學位類別:碩士
校院名稱:國立東華大學
系所名稱:電機工程學系
學號:610923003
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:80
關鍵詞:多功能視訊編碼畫面內編碼編碼工具多類型樹機器學習視覺感知
關鍵詞(英文):Versatile Video CodingIntra CodingCoding ToolMulti-Type TreeMachine LearningVisual Perception
相關次數:
  • 推薦推薦:0
  • 點閱點閱:27
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
最新一代的多功能視訊編碼標準H.266/VVC可以支援4K至8K以上解析度的高畫質視訊。H.266/VVC除了基於H.265/HEVC的四元樹結構,新增了由二元樹和三元樹組成之多類型樹切割方法,提供更多元的切割。另外,也新增許多編碼工具,因此增加許多編碼時間。本論文提出一個基於視覺感知特性的H.266/VVC畫面內編碼快速演算法,根據最小視覺可辨差異取出視覺可辨像素,有條件地關閉兩個畫面內編碼工具,並使用隨機森林分類器提出快速二元樹和三元樹的水平或垂直切割決策。實驗結果顯示在All-intra的預測架構下,本論文所提演算法可以節省平均47.51%的編碼時間,保持平均1.454%的BDBR,效果優於參考文獻。
H.266/Versatile Video Coding (H.266/VVC) is the latest international video coding standard to support high-definition video with resolutions from 4K to 8K and beyond. In addition to the quad-tree structure in H.265/HEVC, the multi-type-tree (MTT) structure consisting of the binary tree and the ternary tree provides more diverse splits in H.266/VVC. It is also equipped with many new coding tools, which increases the encoding time. This thesis proposes a fast H.266/VVC intra coding algorithm based on the characteristics of visual perception. According to the just-noticeable-distortion, the visually distinguishable pixels are extracted. Two intra coding tools are turned off conditionally. By using random forest classifiers, the fast horizontal/vertical splitting decisions for the binary tree and the ternary tree are proposed. Under the All-intra configuration, the experimental results demonstrate that the proposed algorithm can save the encoding time by 47.51% with 1.454% BDBR on average. The proposed algorithm outperforms the previous research.
第一章 緒論 15
第二章 快速畫面內編碼之文獻回顧 31
第三章 所提出的畫面內編碼快速演算法 39
第四章 實驗結果 59
第五章 結論與未來展望 73
[1] B. Bross, J. Chen, J. R. Ohm, G. J. Sullivan, and Y. K. Wang, “Developments in International Video Coding Standardization After AVC, with an Overview of Versatile Video Coding (VVC),” Proceedings of the IEEE, pp. 1463-1493, January 2021.
[2] B. Bross, J. Chen, S. Liu, and Y. K. Wang, “Versatile Video Coding (Draft 10),” Doc. JVET-S2001, September 2020.
[3] https://vcgit.hhi.fraunhofer.de/jvet/VVCSoftware_VTM/-/tree/VTM-10.0, accessed on August 12, 2020.
[4] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1649-1668, December 2012.
[5] J. R. Ohm, G. J. Sullivan, H. Schwarz, T. K. Tan, and T. Wiegand, “Comparison of the Coding Efficiency of Video Coding Standards- Including High Efficiency Video Coding (HEVC),” IEEE Transactions on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1669-1684, December 2012.
[6] F. Bossen, J. Boyce, K. Suehring, X. Li, and V. Seregin, “JVET Common Test Conditions and Software Reference Configurations for SDR Video,” Doc. JVET-K1010, July 2018.
[7] F. Bossen, J. Boyce, X. Li, V. Seregin, and K. Sühring, JVET common
test conditions and software reference configurations for SDR video,
Doc. JVET-N1010, March 2019.
[8] A. Ortega and K. Ramchandran, “Rate-distortion Methods for Image and Video Compression,” IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 23-50, November 1998.
[9] M. Saldanha, G. Sanchez, C. Marcon, and L. Agostini, “Complexity Analysis of VVC Intra Coding,” IEEE International Conference on Image Processing (ICIP), Abu Dhabi, United Arab Emirates, pp. 3119–3123, October 2020.
[10] J. Lainema, F. Bossen, W. J. Han, J. Min, and K. Ugur, “Intra Coding of the HEVC Standard,” IEEE Transaction on Circuits and Systems for Video Technology, vol. 22, no. 12, pp. 1792-1801, December 2012.
[11] J. Pfaff, P. Helle, D. Maniry, S. Kaltenstadler, B. Stallenberger, P. Merkle, M. Siekmann, H. Schwarz, D. Marpe, and T. Wiegand, “Intra Prediction Modes Based on Neural Networks,” Doc. JVET-J0037, April 2018.
[12] T. Fu, H. Zhang, F. Mu, and H. Chen, “Fast CU Partitioning Algorithm for H.266/VVC Intra-frame Coding,” IEEE International Conference on Multimedia and Expo, Shanghai, China, July 2019.
[13] Sang-Hyo Park and Je-Won Kang, “Context-based Ternary Tree Decision Method in Versatile Video Coding for Fast Intra Coding,” IEEE Access, vol.7, pp. 172597-172605, November 2019.
[14] H. Yang, L. Shen, X. Dong, Q. Ding, P. An, and G. Jiang, “Low-Complexity CTU Partition Structure Decision and Fast Intra Mode Decision for Versatile Video Coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 30, no. 6, pp 1668-1682, June 2020.
[15] C. A. Lee, M. J. Chen, Y. H. Tsai, C. M. Yang, and C. H. Yeh, “Fast Partition Decision Based on Visual Perception and Machine Learning for H.266/Versatile Video Coding,” IPPR Conference on Computer Vision, Graphics, and Image Processing (CVGIP), Taiwan, August 2021.
[16] T. Li, M. Xu, R. Tang, Y. Chen, and Q. Xing, “DeepQTMT: A Deep Learning Approach for Fast QTMT-Based CU Partition of Intra-Mode VVC,” IEEE Transactions on Image Processing, vol. 30, pp. 5377-5390, May 2021.
[17] G. Wu, Y. Huang, C. Zhu, L. Song, and W. Zhang, “SVM Based Fast CU Partitioning Algorithm for VVC Intra Coding,” IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Korea, May 2021.
[18] Y. Fan, J. A. Chen, H. Sun, J. Katto, and M. E. Jing, “A Fast QTMT Partition Decision Strategy for VVC Intra Prediction,” IEEE Access, vol. 8, pp. 107900-107911, June 2020.
[19] S. Peng, Z. Peng, Y. Ren, and F. Chen, “Fast Intra-Frame Coding Algorithm for Versatile Video Coding Based on Texture Feature,” in Proceedings of 2019 IEEE International Conference on Real-time Computing and Robotics, Irkutsk, Russia, August 2019.
[20] J. Cui, T. Zhang, C. Gu, X. Zhang, and S. Ma, “Gradient-Based Early Termination of CU Partition in VVC Intra Coding,” in Proceedings of 2020 Data Compression Conference, Snowbird, UT, USA, March 2020.
[21] C. H. Chou and Y. C. Li, “A Perceptually Tuned Subband Image Coder Based on The Measure of Just-Noticeable-Distortion Profile,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 5, no. 6, pp. 467-476, December 1995.
[22] N. Jayant, J. Johnston, and R. Safranek, “Signal Compression Based on Models of Human Perception,” in Proceedings of the IEEE, vol. 81, no 10, pp. 1385-1422, Oct. 1993.
[23] L. Breiman, “Random Forests,” Machine Learning, vol. 45, no. 1, pp. 5-32, October 2001.
[24] L. Breiman, J. H. Friedman, and R. A. Olshen, Classification and Regression Trees, Routledge, 2017.
[25] J. R. Quinlan, “Induction of Decision Trees,” Machine Learning, pp. 81-106, 1986.
[26] T. Li, M. Xu, and X. Deng, “A Deep Convolutional Neural Network Approach for Complexity Reduction on Intra-Mode HEVC”, IEEE International Conference on Multimedia and Expo (ICME), pp. 1255-1260, July 2017.
[27] A. Mercat, M. Viitanen, and J. Vanne, “UVG Dataset: 50/120fps 4K Sequences for Video Codec Analysis and Development,” in Proceedings of the 11th ACM Multimedia Systems Conference, pp.297-302, Istanbul, Turkey, June 2020.
[28] G. Bjontegaard, “Calculation of Average PSNR Differences between RD-Curves,” ITU-T SG16/Q6 Document, VCEG-M33, Austin, April 2001.
[29] G. Bjontegaard, “Improvements of the BD-PSNR model,” ITU-T SG16/Q6, Document, VCEG-AI11, Berlin, July 2008.
[30] Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelli, “Image Quality Assessment: from Error Visibility to Structural Similarity,” IEEE Transactions on Image Processing, vol. 13, no. 4, pp. 600-612, April 2004.
(此全文20270927後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *