帳號:guest(3.15.29.101)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:姚宗誠
作者(英文):Zong-Cheng Yao
論文名稱:應用奈米複合材料於鈣鈦礦太陽能電池緩衝層之研究
論文名稱(英文):Investigation of Applying Nanocomposite Materials as Buffer Layers for Perovskite Solar Cells
指導教授:蔡志宏
指導教授(英文):Chih-Hung Tsai
口試委員:游源祥
莊沁融
口試委員(英文):Yuan-Hsiang Yu
Chin-Jung Chuang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610925001
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:91
關鍵詞:鈣鈦礦太陽能電池複合材料緩衝層還原氧化石墨烯
關鍵詞(英文):Perovskite solar cellsComposite materialBuffer layerReduced graphene oxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:22
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
  鈣鈦礦太陽能電池是一種新穎的薄膜太陽能電池,是近年來發展速度非常快的太陽能電池,截至2021年,光電轉換效率已經突破了25%,相較於已研究許久的單晶矽太陽能電池所保持的最高光電轉換效率已經不遠了,由於鈣鈦礦太陽能電池具有諸多優異的特性,如高吸光係數、更長的載子擴散長度、適當的能隙,以及良好的載子移動率等,是非常有開發潛能的電池,也是目前許多研究團隊、科學家研究、開發的方向之一。
  本研究利用材料分析以及元件特性分析來研究不同的材料與製程對於鈣鈦礦太陽能電池的優化效果,共有三個部分,第一部分:「使用複合型材料,還原氧化石墨烯/銅,應用於鈣鈦礦太陽能電池電洞傳輸層PEDOT:PSS之上作為緩衝層,並嘗試不同比例來找出最佳優化元件的濃度,透過分析得出複合材料能提升元件的導電性,以及在J-V Curve中得知GO:Cu在比例1:10為最佳,達到10.50%的光電轉換效率。」
  第二部分:「使用複合型材料,還原氧化石墨烯/鎳,應用於鈣鈦礦太陽能電池電洞傳輸層PEDOT:PSS之上作為緩衝層,並嘗試不同比例來找出最佳優化元件的濃度,透過分析得出複合材料能提升元件的導電性,以及在J-V Curve中得知GO:Ni在比例1:10為最佳,達到12.58%的光電轉換效率。」
  第三部分:「使用複合型材料,還原氧化石墨烯/鈷,應用於鈣鈦礦太陽能電池電洞傳輸層PEDOT:PSS之上作為緩衝層,並嘗試不同比例來找出最佳優化元件的濃度,透過分析得出複合材料能提升元件的導電性,以及在J-V Curve中得知GO:Co在比例1:1為最佳,達到11.59%光電轉換效率。」
Perovskite solar cells (PSCs) are a new kind of thin film solar cell, which have developed very fast in recent years. As of now (2021), the power conversion efficiency has exceeded 25%. Compared with the power conversion efficiency maintained by monocrystalline silicon solar cells that have been studied for a long time, the efficiency between the two is very close. Because of perovskite solar cell have several excellent properties, such as high absorption coefficient, longer carrier diffusion length, optimal band gap, and high carrier mobility, etc. This kind of solar cell has great development potential and has become one of the research directions of many research teams and scientists.
In this study, through materials analysis and solar cell characteristic analysis, we investigated the optimization of the materials and processes on perovskite solar cells. This study is divided into three parts. First, we used reduced graphene oxide/copper (GO/Cu) nanocomposites as a buffer layer on the PEDOT:PSS hole transport layer for PSCs. The results showed that the GO/Cu nanocomposites increased the conductivity of the PSCs. A highest power conversion efficiency of 10.50% was obtained when the device was fabricated with the GO/Cu 1:10 buffer layer.
Second, we used reduced graphene oxide/nickel (GO/Ni) composites as a buffer layer on PEDOT:PSS hole transport layer for PSCs. The results showed that the GO/Ni composites increased the conductivity of the PSCs. A highest power conversion efficiency of 12.58% was obtained when the device was fabricated with the GO/Ni 1:10 buffer layer.
Third, we used reduced graphene oxide/cobalt (GO/Co) nanocomposites as a buffer layer on PEDOT:PSS hole transport layer for PSCs. The results showed that the GO/Co nanocomposites increased the conductivity of the PSCs. A highest power conversion efficiency of 11.59% was obtained when the device was fabricated with the GO/Co 1:1 buffer layer.
第一章 緒論 1
第二章 金屬大環還原氧化石墨烯GO/Cu 應用於鈣鈦礦太陽能電池緩衝層 17
第三章 金屬大環還原氧化石墨烯GO/Ni 應用於鈣鈦礦太陽能電池緩衝層 39
第四章 金屬大環還原氧化石墨烯GO/Co 應用於鈣鈦礦太陽能電池緩衝層 61
第五章 總結論 83
1. https://ourworldindata.org/energy-mix
2. Global Carbon Project & CDIAC
3. Edenhofer, O., R. Pichs-Madruga, Y. Sokona, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, T. Zwickel and J.C. Minx.Climate Change 2014: Mitigation of Climate Change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC (2014)
4. http: //www. globalsolaratlas.info
5. M. Blal, S. Khelifi, R. Dabou, N. Sahouane, A. Slimani, A. Rouabhia, A. Ziane, A. Necaibia,A. Bouraiou, B. Tidjar, A prediction models for estimating global solar radiation and evaluation meteorological effect on solar radiation potential under several weather conditions at the surface of Adrar environment,Measurement (2019)
6. 林家銘,《染料敏化與鈣鈦礦太陽能電池材料及元件特性分析》,國立東華大學光電工程研究所碩士論文,2017
7. E. Becquerel.Mémoire sur les effets électriques produits sous l'influence des rayons solaires. Comptes Rendus. (1839)
8. 陳柏豪,《染料敏化與鈣鈦礦太陽能電池材料及製程優化之研究》,國立東華大學光電工程研究所碩士論文,2019
9. Marinova, N., Valero, S., & Delgado, J. L. Organic and perovskite solar cells: Working principles, materials and interfaces. Journal of Colloid and Interface Science, 488, 373–389. (2017)

10. 王政凱、林明璋,《氮化銦/二氧化鈦太陽能電池:利用硼酸和亞磷酸修飾二氧化鈦表面之效應》,國立交通大學應用化學系碩士論文,2007
11. Conibeer, G.. Third-generation photovoltaics. Material Today, 10(11), 44-50. (2007)
12. Data from United States Department of Energy, National Renewable Energy Laboratory, Reference Solar Spectral Irradiance: ASTM G-173
13. NREL, https://www.nrel.gov/pv/cell-efficiency.html
14. Chen, Y., Zhang, L., Zhang, Y., Gao, H., & Yan, H. Large-area perovskite solar cells – a review of recent progress and issues. RSC Advances, 8(19), 10489–10508. (2018)
15. Kulkarni, F.T. Ciacchi, S. Giddey, C. Munnings, S.P.S. Badwal, J.A. Kimpton, D. Fini. Mixed ionic electronic conducting perovskite anode for direct carbon fuel cells, International Journal of Hydrogen Energy, 37(24), 19092–19102. (2012)
16. Akihiro Kojima, Kenjiro Teshima, Tsutomu Miyasaka and Yasuo Shirai, Novel Photoelectrochemical Cell with Mesoscopic Electrodes Sensitized by Lead-Halide Compounds (2)
17. Akihiro Kojima, Kenjiro Teshima, Yasuo Shirai, Tsutomu Miyasaka, Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic Cells. J. Am. Chem. Soc. 131, 17, 6050–6051. (2009)
18. Im, J.-H., Lee, C.-R., Lee, J.-W., Park, S.-W., & Park, N.-G. 6.5% efficient perovskite quantum-dot-sensitized solar cell. Nanoscale, 3(10), 4088. (2011)
19. Kim, H.-S., Lee, C.-R., Im, J.-H., Lee, K.-B., Moehl, T., Marchioro, A., … Park, N.-G. (2012). Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9%. Scientific Reports, 2(1). (2012)

20. You, J., Hong, Z., Yang, Y. (Michael), Chen, Q., Cai, M., Song, T.-B., … Yang, Y. Low-Temperature Solution-Processed Perovskite Solar Cells with High Efficiency and Flexibility. ACS Nano, 8(2), 1674–1680. (2014)
21. Shao, Y., Yuan, Y., & Huang, J. Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells. Nature Energy, 1(1), 15001. (2016)
22. Nie, W., Tsai, H., Asadpour, R., Blancon, J.-C., Neukirch, A. J., Gupta, G., … Mohite, A. D. High-efficiency solution-processed perovskite solar cells with millimeter-scale grains. Science, 347(6221), 522–525. (2015)
23. Kim, D. B., Yu, J. C., Nam, Y. S., Kim, D. W., Jung, E. D., Lee, S. Y., … Song, M. H. Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO3 composite layer. Journal of Materials Chemistry C, 4(35), 8161–8165. (2016)
24. Zuo, C., Vak, D., Angmo, D., Ding, L., & Gao, M. One-step roll-to-roll air processed high efficiency perovskite solar cells. Nano Energy, 46, 185–192. (2018)
25. Yeo, J.-S., Kang, R., Lee, S., Jeon, Y.-J., Myoung, N., Lee, C.-L., … Na, S.-I. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy, 12, 96–104. (2015)
26. Yang, D., Yang, R., Ren, X., Zhu, X., Yang, Z., Li, C., & Liu, S. F. Hysteresis-Suppressed High-Efficiency Flexible Perovskite Solar Cells Using Solid-State Ionic-Liquids for Effective Electron Transport. Advanced Materials, 28(26), 5206–5213. (2016)
27. Yang, D., Yang, R., Zhang, J., Yang, Z., (Frank) Liu, S., & Li, C. High efficiency flexible perovskite solar cells using superior low temperature TiO2. Energy & Environmental Science, 8(11), 3208–3214. (2015)

28. 黃偉智,《奈米複合材料於染料敏化太陽能電池對電極之研究》,國立東華大學光電工程研究所碩士論文,2015
29. 王文璇,《還原氧化石墨烯/大環金屬錯合物混成材料在染料敏化太陽能電池貝電極之研究》,天主教輔仁大學化學研究所碩士論文,(2017)
30. Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature, 457(7230), 706–710. (2009)
31. X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner,A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L.Colombo, and R. S. Ruoff, “Large-Area Synthesis of High-quality and Uniform Graphene Films on CopperFoils”, Science, 324, pp. 1312-1314. (2009)
32. Amr Hessein, Ahmed Abd El-Moneim ‘’Developing Cost Effective Graphene Conductive Coating and its Application as Counter Electrode for CdS Quantum Dot Sensitized Solar Cell’’. Proceedings of the World Congress on New Technologies. Paper No. 307. (2015)
33. 施純鈞,《石墨烯奈米複合材料於染料敏化太陽能電池對電極之研究》,國立東華大學光電工程研究所碩士論文,2017
34. Mann, D. S., Seo, Y.-H., Kwon, S.-N., & Na, S.-I.. Efficient and stable planar perovskite solar cells with a PEDOT:PSS/SrGO hole interfacial layer. (2019)
35. Yeo, J.-S., Kang, R., Lee, S., Jeon, Y.-J., Myoung, N., Lee, C.-L., … Na, S.-I. Highly efficient and stable planar perovskite solar cells with reduced graphene oxide nanosheets as electrode interlayer. Nano Energy, 12, 96–104. (2015)



36. Yeo, J.-S., Yun, J.-M., Jung, Y.-S., Kim, D.-Y., Noh, Y.-J., Kim, S.-S., & Na, S.-I. Sulfonic acid-functionalized, reduced graphene oxide as an advanced interfacial material leading to donor polymer-independent high-performance polymer solar cells. J. Mater. Chem. A, 2(2), 292–298. (2014).
37. Lee, D.-Y., Na, S.-I., & Kim, S.-S. Graphene oxide/PEDOT:PSS composite hole transport layer for efficient and stable planar heterojunction perovskite solar cells. Nanoscale, 8(3), 1513–1522. (2016)
38. Yu, J. C., Hong, J. A., Jung, E. D., Kim, D. B., Baek, S.-M., Lee, S., … Song, M. H. Highly efficient and stable inverted perovskite solar cell employing PEDOT:GO composite layer as a hole transport layer. Scientific Reports, 8(1). doi:10.1038/s41598-018-19612-7. (2018)
39. Yu, J.-H., Lee, C.-H., Joh, H.-I., Yeo, J.-S., & Na, S.-I. Synergetic effects of solution-processable fluorinated graphene and PEDOT as a hole-transporting layer for highly efficient and stable normal-structure perovskite solar cells. Nanoscale, 9(44), 17167–17173. (2017).
40. https://zh.wikipedia.org
(此全文20260613後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *