帳號:guest(3.146.34.146)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:翁苙荃
作者(英文):Li-Chuan Weng
論文名稱:定量與改進紋影成像系統
論文名稱(英文):Improved and quantitative schlieren system
指導教授:莊沁融
指導教授(英文):Chin-Jung Chuang
口試委員:馬仕信
蔡志宏
口試委員(英文):Shih-Hsin Ma
Chih-Hung Tsai
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610925002
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:60
關鍵詞:紋影成像影像分析靈敏度三原色光改進實驗架構
關鍵詞(英文):schlierenimage analysissensitivityRGB color lightimproved system
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏收藏:0
本文首先提出一種新的定量方法,利用電腦的影像特徵分析來定量系統的靈敏度,不再以視覺感受來比較圖像的對比度,而是利用數據去進行分析,這裡使用灰階差分統計法與灰階共生矩陣法來分析圖像對比度,再配合溫度計得到系統的靈敏度,最後是灰階共生矩陣法比較適合。
實驗利用三原色光源進行分析,在三原色光源中的綠光會比其他色光有更高靈敏度,推論是主要受到相機靈敏度的影響,故未來只要分析三原色光的靈敏度,可以依照顏色的混和比例得出不同光的靈敏度。
為了提升系統的靈敏度,我們仿效前人進行紋影成像系統的改進,在系統中添加一面凹面鏡,將紋影成像直接投影在測量物旁,雖然數據顯示沒有提升系統的靈敏度,但改進後的實驗架構能夠量測出從室溫到40度之間的變化,適合溫度變化不大的實驗,運用在風速的測量上也有不錯的成果,風速5m/s前誤差只有11%。此外,改進的架構也避免雷射損害相機感光元件,有助於長期使用雷射觀測紋影的研究,同時也讓研究者更容易觀測實驗過程。
This study proposes a new quantitative method, which using computerized image analysis to quantify the sensitivity of the system; therefore, we no longer weigh the pros and cons of different systems by visual perception. Instead, using data to explain. Here, we use the gray level difference statistics and the gray-level co-occurrence matrix to analyze image contrast, with thermometer to get the sensitivity of the system, and finally the gray-level co-occurrence matrix is relatively accurate.
Experiment using the RGB color light to analysis, the green light has higher sensitivity than other color . The inference is mainly affected by the sensitivity of the camera, so if the sensitivity of the RGB color light can be analyzed, and the sensitivity of different lights can be obtained according to the color mixing ratio.
In order to improve the sensitivity of the system, we imitate the predecessors to improve the schlieren imaging system. Add a concave mirror to the system, and then the schlieren image is projected directly beside the observation object, although the results show that the sensitivity doesn’t improve, but it can measure the change from 20℃ to 40℃, which is suitable for experiments with little temperature change. It also has good results in the measurement of wind speed which the error is only 11%. Beside, the improved system reduce the damage by laser to the camera photosensitive elements, which is helpful to researchers who use lasers to observe schlieren image for a long time, and also makes it convenient for researchers to observe the experimental process.
摘要 i
Abstract iii
誌謝 v
目錄 vii
圖目錄 xi
表目錄 xv
第1章 序論 1
1.1 前言 1
1.2 研究動機 2
第2章 文獻回顧與基本理論 3
2.1 紋影成像的原理 3
2.1.1 氣體密度 3
2.1.2 光的折射 4
2.1.3 遮光的影響 5
2.1.4 紋影成像幾何理論 6
2.1.5 靈敏度 8
2.1.6 凹面鏡的反射性質 9
2.2 紋影系統的演進 10
2.2.1 背景紋影系統 11
2.2.2 August Toepler紋影系統 12
2.2.3 雙凹面鏡紋影系統 13
2.2.4 單凹面鏡紋影系統 14
2.3 人眼與相機視覺 15
2.3.1 人眼視覺 15
2.3.2 相機視覺 16
2.4 影像特徵分析 17
2.4.1 灰階差分統計法 17
2.4.2 灰階共生矩陣 18
2.5 速度分析 20
2.5.1 PIVlab 20
2.5.2 Tracker 20
2.6 影像處理 21
2.6.1 對比度受限的直方圖均衡化(CLAHE) 21
2.6.2 二維自適應去噪濾波(Wiener2 Denoise) 22
2.6.3 強度上限(Intensity Capping) 24
第3章 實驗架構 25
3.1 光學系統 25
3.1.1 單凹面鏡紋影成像系統 25
3.1.2 改良後的紋影成像系統 25
3.2 實驗設備介紹 26
第4章 實驗測試與系統調整 29
4.1 定量靈敏度 29
4.2 相機參數設定 29
4.2.1 幀率 29
4.2.2 快門速度 29
4.2.3 感光度ISO 29
4.2.4 相機光圈 30
4.3 影像分析程式測試 31
4.3.1 灰階差分統計法與灰階共生矩陣程式測試 31
4.3.2 分析法選擇 32
4.4 PIVlab作業流程 34
4.4.1 分析前處理 34
4.4.2 分析 36
4.4.3 分析後處理 36
4.4.4 數據分析 37
4.5 PIVlab分析誤差與調整 38
4.5.1 PIVlab軟體誤差 38
4.5.2 設定偵詢區 40
4.5.3 實驗數據誤差 41
第5章 實驗結果與討論 43
5.1 三原色光的影響 43
5.2 不同架構的影響 48
5.3 風速分析 53
第6章 結論與未來方向 55
參考文獻 57
[1] J. T. Heineck, D. W. Banks, N. T. Smith, E. T. Schairer, P. S. Bean, and T. Robillos, "Background-oriented schlieren imaging of supersonic aircraft in flight," AIAA Journal, vol. 59, no. 1, pp. 11-21, 2021.
[2] A. W. Gena, C. Voelker, and G. S. Settles, "Qualitative and quantitative schlieren optical measurement of the human thermal plume," Indoor Air, vol. 30, no. 4, pp. 757-766, 2020.
[3] C. Xu, P. V. Nielsen, L. Liu, R. L. Jensen, and G. Gong, "Human exhalation characterization with the aid of schlieren imaging technique," Building and environment, vol. 112, pp. 190-199, 2017.
[4] X. Xu, J. Wu, W. Weng, and M. Fu, "Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations," Biomechanics and Modeling in Mechanobiology, vol. 19, no. 5, pp. 1679-1695, 2020. [Online]. Available: https://link.springer.com/article/10.1007/s10237-020-01299-3.
[5] M. Staymates, "Flow visualization of an N95 respirator with and without an exhalation valve using schlieren imaging and light scattering," Physics of Fluids, vol. 32, no. 11, p. 111703, 2020, doi: 10.1063/5.0031996.
[6] S. Hu et al., "Fabrication of a High-Performance and Reusable Planar Face Mask in Response to the COVID-19 Pandemic," Engineering, vol. 9, pp. 101-110, 2022.
[7] G. Busco, S. R. Yang, J. Seo, and Y. A. Hassan, "Sneezing and asymptomatic virus transmission," (in eng), Phys Fluids (1994), vol. 32, no. 7, p. 073309, Jul 1 2020, doi: 10.1063/5.0019090.
[8] C. Crawford et al., "Modeling of aerosol transmission of airborne pathogens in ICU rooms of COVID-19 patients with acute respiratory failure," Scientific reports, vol. 11, no. 1, pp. 1-12, 2021.
[9] S. Shao et al., "Risk assessment of airborne transmission of COVID-19 by asymptomatic individuals under different practical settings," Journal of aerosol science, vol. 151, p. 105661, 2021.
[10] R. K. Bhagat, M. D. Wykes, S. B. Dalziel, and P. Linden, "Effects of ventilation on the indoor spread of COVID-19," Journal of Fluid Mechanics, vol. 903, 2020.
[11] D. Dellweg, J. Kerl, A. W. Gena, H. Alsaad, and C. Voelker, "Exhalation Spreading During Nasal High-Flow Therapy at Different Flow Rates," (in eng), Crit Care Med, vol. 49, no. 7, pp. e693-e700, Jul 1 2021, doi: 10.1097/ccm.0000000000005009.
[12] C. Alvarez-Herrera, D. Moreno-Hernández, and B. Barrientos-García, "Temperature measurement of an axisymmetric flame by using a schlieren system," Journal of Optics A: Pure and Applied Optics, vol. 10, no. 10, p. 104014, 2008.
[13] C. Alvarez-Herrera, D. Moreno-Hernández, B. Barrientos-García, and J. Guerrero-Viramontes, "Temperature measurement of air convection using a Schlieren system," Optics & Laser Technology, vol. 41, no. 3, pp. 233-240, 2009.
[14] E. Goldhahn and J. Seume, "The background oriented schlieren technique: sensitivity, accuracy, resolution and application to a three-dimensional density field," Experiments in fluids, vol. 43, no. 2, pp. 241-249, 2007.
[15] D. R. Jonassen, G. S. Settles, and M. D. Tronosky, "Schlieren “PIV” for turbulent flows," Optics and Lasers in Engineering, vol. 44, no. 3-4, pp. 190-207, 2006.
[16] R. A. Serway and J. W. Jewett, Physics for scientists and engineers. Cengage learning, 2018.
[17] D. Bunjong, N. Pussadee, and P. Wattanakasiwich, "Optimized conditions of Schlieren photography," in Journal of Physics: Conference Series, 2018, vol. 1144, no. 1: IOP Publishing, p. 012097.
[18] G. S. Settles, Schlieren and shadowgraph techniques: visualizing phenomena in transparent media. Springer Science & Business Media, 2001.
[19] H. Kleine, "CHAPTER 5.1 - Flow Visualization," in Handbook of Shock Waves, G. Ben-Dor, O. Igra, and T. O. V. Elperin Eds. Burlington: Academic Press, 2001, pp. 683-IV.
[20] A. Crockett and W. Rueckner, "Visualizing sound waves with schlieren optics," American Journal of Physics, vol. 86, no. 11, pp. 870-876, 2018.
[21] Z. Zeng et al., "Visualization of Vortices Generated by Flapping Wing Device by Schlieren Method," in Journal of Physics: Conference Series, 2021, vol. 1985, no. 1: IOP Publishing, p. 012023.
[22] L. Kean, "A CONTRIBUTION TO THE THEORY OF SCHLIEREN SENSITIVITY AND QUANTIATIVE EVALUATION," DIRECTORATE OF ENGINEER DEVELOPMENT OTTAWA (ONTARIO), 1962.
[23] M. Raffel, "Background-oriented schlieren (BOS) techniques," Experiments in Fluids, vol. 56, no. 3, pp. 1-17, 2015.
[24] S. Kook, M. Le, S. Padala, and E. Hawkes, "Z-type Schlieren Setup and its Application to High-Speed Imaging of Gasoline Sprays," SAE Technical Papers, 08/30 2011, doi: 10.4271/2011-01-1981.
[25] B. Gearhart and D. MacIsaac, "A Practical Classroom iPad Shadowgraph System," The Physics Teacher, vol. 58, no. 1, pp. 8-11, 2020.
[26] W. H. Swanson and J. M. Cohen, "Color vision," Ophthalmology Clinics of North America, vol. 16, no. 2, pp. 179-203, 2003.
[27] K. R. Gegenfurtner and D. C. Kiper, "Color vision," Annual review of neuroscience, vol. 26, no. 1, pp. 181-206, 2003.
[28] K. R. Gegenfurtner and L. T. Sharpe, Color vision. Cambridge University Press Cambridge, 1999.
[29] D. J. Ramsey and G. Arden, "Hypoxia and dark adaptation in diabetic retinopathy: interactions, consequences, and therapy," Current diabetes reports, vol. 15, no. 12, pp. 1-13, 2015.
[30] A. Stockman, D. I. MacLeod, and N. E. Johnson, "Spectral sensitivities of the human cones," JOSA A, vol. 10, no. 12, pp. 2491-2521, 1993.
[31] X. Quintana, M. Geday, M. Caño-Garcia, E. Otón, and J. Otón, "Image sensors for digital photography: a short course for undergraduates. I: Optics," Optica Pura y Aplicada, vol. 53, pp. 1-23, 03/24 2020, doi: 10.7149/OPA.53.1.51040.
[32] P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, "Digital color cameras—2—Spectral response," ed, 1997.
[33] W. Gómez, W. C. A. Pereira, and A. F. C. Infantosi, "Analysis of co-occurrence texture statistics as a function of gray-level quantization for classifying breast ultrasound," IEEE transactions on medical imaging, vol. 31, no. 10, pp. 1889-1899, 2012.
[34] M. Pratiwi, J. Harefa, and S. Nanda, "Mammograms classification using gray-level co-occurrence matrix and radial basis function neural network," Procedia Computer Science, vol. 59, pp. 83-91, 2015.
[35] N. Zulpe and V. Pawar, "GLCM textural features for brain tumor classification," International Journal of Computer Science Issues (IJCSI), vol. 9, no. 3, p. 354, 2012.
[36] P. Kupidura, "The comparison of different methods of texture analysis for their efficacy for land use classification in satellite imagery," Remote Sensing, vol. 11, no. 10, p. 1233, 2019.
[37] M. Umaselvi, S. S. Kumar, and M. Athithya, "Color based urban and agricultural land classification by GLCM texture features," 2012.
[38] L. Moya, H. Zakeri, F. Yamazaki, W. Liu, E. Mas, and S. Koshimura, "3D gray level co-occurrence matrix and its application to identifying collapsed buildings," ISPRS journal of photogrammetry and remote sensing, vol. 149, pp. 14-28, 2019.
[39] 楊杰, 數字圖像處理及MATLAB實現. 電子工業出版社, 2010.
[40] R. M. Haralick, K. Shanmugam, and I. H. Dinstein, "Textural features for image classification," IEEE Transactions on systems, man, and cybernetics, no. 6, pp. 610-621, 1973.
[41] S. H. Wady, R. Z. Yousif, and H. R. Hasan, "A Novel Intelligent System for Brain Tumor Diagnosis Based on a Composite Neutrosophic-Slantlet Transform Domain for Statistical Texture Feature Extraction," BioMed Research International, vol. 2020, p. 8125392, 2020/07/11 2020, doi: 10.1155/2020/8125392.
[42] W. G. Ryerson and K. Schwenk, "A simple, inexpensive system for digital particle image velocimetry (dpiv) in biomechanics," Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, vol. 317, no. 2, pp. 127-140, 2012.
[43] R. H. D. Brown, and W. Christian. " Computer Program TRACKER VIDEO ANALYSIS AND MODELING TOOL." https://physlets.org/tracker/ (accessed 2022).
[44] T. Rahman et al., "Exploring the effect of image enhancement techniques on COVID-19 detection using chest X-ray images," Computers in Biology and Medicine, vol. 132, p. 104319, 2021/05/01/ 2021, doi: https://doi.org/10.1016/j.compbiomed.2021.104319.
[45] J. S. Lim, "Two-dimensional signal and image processing," Englewood Cliffs, 1990.
[46] U. Shavit, R. J. Lowe, and J. V. Steinbuck, "Intensity capping: a simple method to improve cross-correlation PIV results," Experiments in Fluids, vol. 42, no. 2, pp. 225-240, 2007.
[47] T. Wong and A. K. Agrawal, "Quantitative measurements in an unsteady flame using high-speed rainbow schlieren deflectometry," Measurement Science and Technology, vol. 17, no. 6, p. 1503, 2006.
[48] W. Thielicke and R. Sonntag, "Particle Image Velocimetry for MATLAB: Accuracy and enhanced algorithms in PIVlab," Journal of Open Research Software, vol. 9, no. 1, 2021.
[49] M. Raffel, C. E. Willert, and J. Kompenhans, Particle image velocimetry: a practical guide. Springer, 1998.
[50] W. D. P. Fonsecaa, R. F. L. de Cerqueirab, and E. de Moraes Franklina, "A STUDY ON IMAGE PRE-PROCESSING AND PIV PROCESSING TECHNIQUES FOR FLUID FLOWS," Associação Brasileira de Engenharia e Ciências Mecânicas, pp. 22-26, 2021.
[51] W. Thielicke and E. Stamhuis, "PIVlab–towards user-friendly, affordable and accurate digital particle image velocimetry in MATLAB," Journal of open research software, vol. 2, no. 1, 2014.

 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *