帳號:guest(52.14.45.84)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:劉邦毅
作者(英文):Bang-Yi Liu
論文名稱:氧化錳奈米結構應用於寬電位超級電容器與光電容之研究
論文名稱(英文):Application of Manganese Oxide Nanoelectrode in High-cell-voltage and Photo-charging Supercapacitor
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:蔡志宏
陳盈竹
口試委員(英文):Chih-Hung Tsai
Ying-Chu Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610925003
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:79
關鍵詞:氧化鋅磷酸鉬氧化錳超級電容可撓式電容照光充電
關鍵詞(英文):ZnOMoPOMnO2supercapacitorflexible capacitorphoto charge
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:10
  • 收藏收藏:0
在第一部分研究中,實驗上選擇了磷酸鉬/氧化鋅/碳布作為負極與氧化錳/碳布正極組合作為可繞性非對稱式電容器。首先在碳布上以水熱法成長氧化鋅奈米柱結構,目的為增加電容器之表面積,然後在定電流模式-1.5 mA/cm2、900秒將磷酸鉬薄膜沉積於氧化鋅奈米柱表面,以完成磷酸鉬/氧化鋅碳布負極材料。同時,一樣通過定電流模式,以3 mA/cm2、900秒將氧化錳薄膜沉積於碳布上,以完成氧化錳/碳布正極材料。磷酸鉬/氧化鋅/碳布//氧化錳/碳布水性非對稱超級電容器表現出了在0.5 mA/cm2的電流密度中有236 mF/cm2的比電容值,經過10000圈的充、放電循環穩定測試,仍有80%的循環壽命,在178.5 W/kg功率密度下擁有58.5 Wh/kg的能量密度且擁有2.5 V的寬操作電位。在彎曲測試中,於不同彎曲角度皆有相同的電容表現,且在點亮LED的過程,憑藉著寬電位的特性,先後點亮了紅色及綠色LED燈泡,可以說是擁有競爭力的超級電容。

第二部分探索了能夠自體照光充電的元件,研究中發現氧化錳與氧化鋅結合擁有光敏特性,在照光下開路電壓會往負電位移動。此外,不同的氧化錳薄膜厚度所引起的照光增益幅度也不同,根據這種情況進行電化學量測,找尋出沉積氧化錳的最佳參數,在浸泡0.15 M葡萄糖濃度參數下擁有40%的照光增益幅度。透過拉曼即時量測系統觀察氧化錳照光增益機制,發現照光會使氧化錳的氧化態發生還原反應,與開路電勢量測結果相符。將氧化錳/氧化鋅/FTO/做負極與氧化錳/FTO做正極,組合為對稱式電容,進行照光充電測試,實驗結果顯示儲能大小與光強度以及照光時間成正相關。
In the first part of this thesis, an asymmetric capacitor composed of MoPOx/ZnO/carbon cloth (CC) and MnO2/CC as negative and positive electrode, respectively, is systematically investigated. First, the ZnO nanowires (NWs) structure was grown on the CC by hydrothermal method in order to increase the surface area of the capacitor, and then the MoPOx film was electrodeposited on the ZnO NWs/CC in constant current of -1.5 mA/cm2 for 900 seconds to complete the MoPOx/ZnO/CC. Meanwhile, the MnO2 film was grown on the CC by electrochemical deposition at a constant current of 3 mA/cm2 for 900 seconds. According to electrochemical results, MoPOx/ZnO/CC//MnO2/CC exhibits a good aqueous supercapacitor characteristics: 236 mF/cm2 at 0.5 mA/cm2, long cycle life of 10,000 cycles with 20% capacitance decay, delivers a high energy density of 58.5 Wh/kg at the power density of 178.5 W/kg and a wide operating potential of 2.5 V. In the bending test, there is no attenuation of the capacitance at different bending angles. In the process of lighting the LED, the red and green LED bulbs are lit up successively due to the characteristics of wide potential.

The second part explores the electron-storage device that can be charged under illumination. In the study, it is found that the combination of MnO2 deposit on ZnO NWs has photo-sensitive characteristics, and the open circuit potential will shift to a negative potential under illumination. In addition, the different MnO2 film thicknesses have a significant impact on the gain of the photo-induced capacitance. According to this phenomenon, electrochemical measurement is carried out to find the best parameter for depositing MnO2. Under the parameter of immersing 0.15 M glucose concentration, a 40% photo-induced capacitance gain was achieved. By the in-situ Raman measurement, the results clearly illustrated the mechanism of photo-induced capacitance gain. Under illumination, the oxidation state of MnO2 was changed from Mn4+ to Mn3+, which is consistent with the open circuit potential measurement result. The MnO2/ZnO NWs/FTO as the negative electrode and the MnO2/FTO as the positive electrode were combined into a symmetrical capacitor, and the photo-charging test was carried out. The results show that the amount of energy storage is significantly correlated with the light intensity and the photo-charging time.
第一章 緒論 1
1.1能源概況 1
1.2太陽能 2
空氣質量 4
1.3 能量儲存 5
1.3.1 超級電容特點 5
1.3.2 超級電容應用 6
第二章 基礎理論與文獻回顧 7
2.1 電化學 7
2.1.1 簡介 7
2.1.2 電化學系統 7
2.1.3 氧化還原反應 8
2.2光電半導體 9
2.3電化學電容器 10
電雙層電容 10
擬電容器 11
2.4 研究動機 12
2.4.1 非對稱超級電容 12
2.4.2 光電容 12
第三章 實驗方法與步驟 13
3.1寬電位磷酸鉬負極與氧化錳正極可撓式非對稱超級電容器 13
3.1.1磷酸鉬/氧化鋅/碳布製備 13
水熱法氧化鋅/碳布流程 13
磷酸鉬/氧化鋅電化學沉積流程 14
3.1.2 氧化錳/碳布奈米薄膜製備 15
3.1.3 可撓非對稱電容器組裝方法 15
3.2氧化錳/氧化鋅核殼奈米線光電極應用於光電容之研究 16
3.2.1 氧化錳/氧化鋅/FTO製備 16
水熱法氧化鋅/FTO流程 16
熱處理葡萄糖 17
水熱法沉積氧化錳流程 18
3.2.2 氧化錳/ FTO製備 18
3.2.3光電容組裝 19
3.3 材料特性分析 20
3.3.1場發射掃描式電子顯微鏡 20
3.3.2 X-ray 繞射儀 21
3.3.3 X射線光電子能譜儀 23
3.3.4拉曼光譜 24
3.3.5吸收光譜 25
3.4電化學分析 26
3.4.1循環伏安法 26
3.4.2計時電位法 27
3.4.3 開路電位 28
3.4.4交流阻抗頻譜 28
3.4.5莫特-蕭特基分析 29
第四章 結果與討論 31
4.1寬電位磷酸鉬負極與氧化錳正極可撓式非對稱超級電容 31
4.1.1 SEM分析 31
4.1.2 XRD分析 33
4.1.3 Raman分析 34
4.1.4 EDS分析 36
4.1.5 XPS分析 37
4.1.6 電化學分析 39
氧化錳/碳布正極 39
磷酸鉬/氧化鋅/碳布負極 41
4.1.7交流阻抗分析 43
4.1.8 磷酸鉬/氧化鋅/碳布//氧化錳/碳布非對稱超級電容器 45
4.1.9 電化學穩定分析 47
4.1.10 Ragone Plot 48
4.1.11 固態式電容測試 49
4.1.12 結論 51
4.2 氧化錳/氧化鋅核殼奈米線光電極應用於光電容之研究 53
4.2.1 FE-SEM&EDS分析 53
4.2.2 Raman分析 55
4.2.3 XRD分析 57
4.2.4 XPS分析 58
4.2.5 光電化學分析 59
OCP分析 61
照光拉曼測試 62
單電極電容量測 64
4.2.6 吸收光譜分析 66
4.2.7 交流阻抗分析 67
4.2.8 莫特-蕭特基分析 70
4.2.9 氧化錳//氧化錳/氧化鋅 對稱式電容光電化學分析 71
4.2.10 結論 76
第五章 結論與未來展望 77
第六章 參考文獻 79
[1] 能源通識站, 全球能源現況 能源的消耗與未來需求.
[2] HiSoUR文化艺术历史人文, 太阳辐照度.
[3] 維基百科, 太陽光輻射頻譜.
[4] 光炎科技, 一下就懂!太陽光模擬基礎原理.
[5] Farag, M., Lithium-ion batteries: Modelling and state of charge estimation. 2013.
[6] 鄧明傑、陳錦明, 超級電池超級能耐. 2015(科學發展).
[7] 黃瑞雄、顏溪成, 漫談化學. 2002(科學發展).
[8] Bard, A.J. and L.R. Faulkner, Fundamentals and applications. Electrochemical Methods, 2001. 2(482): p. 580-632.
[9] TDKs, 電雙層電容器的原理和結構.
[10] Yu, G., et al., Hybrid nanostructured materials for high-performance electrochemical capacitors. Nano Energy, 2013. 2(2): p. 213-234.
[11] 吳致杰, 氧化鋅異質結構之合成及光電化學應用. 2018.
[12] Song, Y., et al., A polyanionic molybdenophosphate anode for a 2.7 V aqueous pseudocapacitor. Nano Energy, 2019. 65: p. 104010.
[13] Wang, G., et al., LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors. ACS nano, 2012. 6(11): p. 10296-10302.
[14] Yang, P., et al., Hydrogenated ZnO core–shell nanocables for flexible supercapacitors and self-powered systems. ACS nano, 2013. 7(3): p. 2617-2626.
[15] Huang, M., et al., Hierarchical ZnO@ MnO2 core-shell pillar arrays on Ni foam for binder-free supercapacitor electrodes. Electrochimica Acta, 2015. 152: p. 172-177.
[16] 郭瀚介, SEM的微觀世界.
[17] 張寶樹, 輻射物理.
[18] 分析測試百棵網, XPS基本原理及特點. 2018.
[19] Jimenez, J. and J.W. Tomm, Spectroscopic Analysis of optoelectronic semiconductors. Vol. 202. 2016: Springer.
[20] 研之成理, 電化學測試(三):循環伏安法詳解. 2018.
[21] Instruments, G., Basics of electrochemical impedance spectroscopy. G. Instruments, Complex impedance in Corrosion, 2007: p. 1-30.
[22] 禪譜科技, 基本交流阻抗.
[23] Gelderman, K., L. Lee, and S. Donne, Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 2007. 84(4): p. 685.
[24] Gao, T., H. Fjellvåg, and P. Norby, A comparison study on Raman scattering properties of α-and β-MnO2. Analytica chimica acta, 2009. 648(2): p. 235-239.
[25] Xie, G., et al., The evolution of α-MnO 2 from hollow cubes to hollow spheres and their electrochemical performance for supercapacitors. Journal of Materials Science, 2017. 52(18): p. 10915-10926.
[26] Cao, X., et al., Reduced graphene oxide‐wrapped MoO3 composites prepared by using metal–organic frameworks as precursor for all‐solid‐state flexible supercapacitors. Advanced materials, 2015. 27(32): p. 4695-4701.
[27] Elkholy, A.E., et al., Stable α-MoO3 Electrode with a Widened Electrochemical Potential Window for Aqueous Electrochemical Capacitors. ACS Applied Energy Materials, 2021. 4(4): p. 3210-3220.
[28] Zhou, C., et al., A facile route to synthesize Ag decorated MoO3 nanocomposite for symmetric supercapacitor. Ceramics International, 2020. 46(10): p. 15385-15391.
[29] Wu, Z.-S., et al., High-energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors. ACS nano, 2010. 4(10): p. 5835-5842.
[30] Lee, T.H., et al., High energy density and enhanced stability of asymmetric supercapacitors with mesoporous MnO2@ CNT and nanodot MoO3@ CNT free-standing films. Energy Storage Materials, 2018. 12: p. 223-231.
[31] Gong, Y., et al., Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green chemistry, 2017. 19(17): p. 4132-4140.
[32] Kaniyoor, A. and S. Ramaprabhu, A Raman spectroscopic investigation of graphite oxide derived graphene. Aip Advances, 2012. 2(3): p. 032183.
[33] Kushwaha, A. and M. Aslam, Hydrogen-incorporated ZnO nanowire films: stable and high electrical conductivity. Journal of Physics D: Applied Physics, 2013. 46(48): p. 485104.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *