帳號:guest(3.15.195.19)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:董品翰
作者(英文):Pin-Han Dung
論文名稱:電化學沉積銅基化合物應用於光電化學產氫之研究
論文名稱(英文):Electrochemical Deposition of Copper Based Films for Solar Water Splitting
指導教授:徐裕奎
指導教授(英文):Yu-Kuei Hsu
口試委員:蔡志宏
陳盈竹
徐裕奎
口試委員(英文):Chih-Hung Tsai
Ying-Chu Chen
Yu-Kuei Hsu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610925004
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:61
關鍵詞:N型氧化亞銅P型硒化銅硒化產氫光電化學
關鍵詞(英文):Cuprous OxideCopper SelenideSelenizationHydrogen GenerationPhotoelectrochemical
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
在這項研究中,我們成功的利用電鍍法將N型的氧化亞銅薄膜成長在經電化學改質的基板上,並且應用於光電化學分解水產氫。值得注意的是從光電化學反應的結果可以得知,成長在經-1.5 V電壓改質ITO上的氧化亞銅薄膜在0 V (vs Ag/AgCl)時有最高的光電流密度,光電流密度大小為2.1 mAcm-2。與成長在未改質ITO上的氧化亞銅相比,外部量子轉換效率有2倍的提升,推測主要原因來自於氧化亞銅薄膜與基板歐姆接觸獲得改善。

另一部分的研究則是在FTO上利用電化學沉積的方式成長硒化銅薄膜,然後將成長完的薄膜在硒氣氛的環境中熱處理30分鐘以改善結晶結構。利用硒化處理的方式成功的將硒化銅的光電流密度從0.8 mAcm-2提升至2.1 mAcm-2。為了近一步提升光電流,使用浸泡法將二氧化鈦沉積在硒化銅表面,在表面形成異質結構p-n接面。利用此方法成功將光電流密度從2.1 mAcm-2提升至3.0 mAcm-2。

從第一部分的研究結果可以知道基板與材料形成歐姆接觸是一件重要的事,而從第二部分的研究結果可以看出硒化的過程對於硒化物的結晶結構有顯著的影響,並且透過p-n異質接面中的空乏區能有效的提升光電化學反應之反應速率。

In this study, the electrodeposited Cu2O films with n-type conductivity were grown on the electrochemically reduced ITO substrate for photoelectrochemical (PEC) water splitting. Significantly, according to the PEC results, the Cu2O film on the modified ITO under electrochemical reduction of -1.5 V illustrated the highest photocurrent of 2.1 mAcm-2 at a potential of 0 V vs Ag/AgCl reference electrode. Compared to the Cu2O film on the pristine ITO, the biased photon-current efficiency of the Cu2O film on the modified ITO shows a two-fold increase.

On the other study, CuSe were proposed by means of electrochemical deposition route to de deposited on the fluorine-doped tin oxide (FTO) substrate. The as-grown CuSe films were then annealed in Se vapor environment at 100 oC for 30 min to enhance the film crystal structure. Significantly, the selenization process promotes photocurrent density from 0.8 mAcm-2 to 2.1 mAcm-2. In order to further improve photocurrent of CuSe, the n-type TiO2 layer was deposited on the CuSe surface by using the facile immersion method. This novel p-n CuSe/TiO2 hetero-structure shows remarkably increase of photocurrent density from 2.1 mAcm-2 to 3.0 mAcm-2.

From the results of the first part, it can be known that the formation of ohmic contact between the substrate and the photo-active material is important. From the results of the second part, it can be seen that the selenization process has a significant effect on the crystalline structure of copper selenide.
第一章 緒論    1
第二章 理論基礎與研究動機 5
第三章 實驗方法與步驟 12
第四章 實驗結果與討論 26
第五章 結果與未來展望 58
第六章 參考文獻    59
[1] 陳彥儒,“電化學沉積之鎳參雜與熱處理N型氧化亞銅薄膜應用於光電化學產氫之研究”,國立東華大學光電工程研究所碩士論文,2018。
[2] 太陽光。檢自
https://zh.wikipedia.org/wiki/%E5%A4%AA%E9%98%B3%E5%85%89(Jul. 17,2018)
[3] Rogalski, A., & Razeghi, M. (1996). Semiconductor ultraviolet photodetectors. Opto-Electronics Review, 1996(1-2), 13-30.
[4] Pivovar, B., Rustagi, N., & Satyapal, S. (2018). Hydrogen at scale (H2@ scale): key to a clean, economic, and sustainable energy system. The Electrochemical Society Interface, 27(1), 47.
[5] 科技大觀園,取之不盡的太陽能-光電化學反應
[6] Seo, D. K., & Hoffmann, R. (1999). Direct and indirect band gap types in one-dimensional conjugated or stacked organic materials. Theoretical Chemistry Accounts, 102(1), 23-32.
[7] Liu, L., Yellinek, S., Valdinger, I., Donval, A., & Mandler, D. (2015). Important implications of the electrochemical reduction of ITO. Electrochimica Acta, 176, 1374-1381.
[8] McShane, C. M., & Choi, K. S. (2009). Photocurrent enhancement of n-type Cu2O electrodes achieved by controlling dendritic branching growth. Journal of the American Chemical Society, 131(7), 2561-2569.
[9] Wei, H. M., Gong, H. B., Chen, L., Zi, M., & Cao, B. Q. (2012). Photovoltaic efficiency enhancement of Cu2O solar cells achieved by controlling homojunction orientation and surface microstructure. The Journal of Physical Chemistry C, 116(19), 10510-10515.
[10] Siegfried, M. J., & Choi, K. S. (2008). Elucidation of an Overpotential‐Limited Branching Phenomenon Observed During the Electrocrystallization of Cuprous Oxide. Angewandte Chemie International Edition, 47(2), 368-372.
[11] Zhang, Y., Qiao, Z. P., & Chen, X. M. (2002). Microwave-assisted elemental-direct-reaction route to nanocrystalline copper sulfides Cu9S8 and Cu7S4. Journal of Solid State Chemistry, 167(1), 249-253.
[12] Milman, V. (2002). Klockmannite, CuSe: structure, properties and phase stability from ab initio modeling. Acta Crystallographica Section B: Structural Science, 58(3), 437-447.
[13] Montes-Monsalve, J. I., Correa, R. B., & Mora, A. P. (2014, April). Optical and structural study of CuSe and CuSe/in thin films. In Journal of Physics: Conference Series (Vol. 480, No. 1, p. 012024). IOP Publishing.
[14] Lakshmikumar, S. T., & Rastogi, A. C. (1994). Selenization of Cu and In thin films for the preparation of selenide photo-absorber layers in solar cells using Se vapour source. Solar Energy Materials and Solar Cells, 32(1), 7-19.
[15] Fadel, M., Fayek, S. A., Abou-Helal, M. O., Ibrahim, M. M., & Shakra, A. M. (2009). Structural and optical properties of SeGe and SeGeX (X= In, Sb and Bi) amorphous films. Journal of Alloys and Compounds, 485(1-2), 604-609.
[16] Gurin, V. S., Alexeenko, A. A., Zolotovskaya, S. A., & Yumashev, K. V. (2006). Copper and copper selenide nanoparticles in the sol-gel matrices: Structural and optical. Materials Science and Engineering: C, 26(5-7), 952-955.
[17] Heske, C., Winkler, U., Neureiter, H., Sokolowski, M., Fink, R., Umbach, E., ... & Bressler, P. R. (1997). Preparation and termination of well-defined CdTe (100) and Cd (Zn) Te (100) surfaces. Applied physics letters, 70(8), 1022-1024.
[18] Hermann, A. M., & Fabick, L. (1983). Research on polycrystalline thin-film photovoltaic devices. Journal of Crystal Growth, 61(3), 658-664.
[19] Thanikaikarasan, S., Mahalingam, T., Kathalingam, A., Moon, H., & Kim, Y. D. (2010). Characterization of electrodeposited copper sulphide thin films. Journal of New Materials for Electrochemical Systems, 13(1), 29-33.
[20] Li, L., Gong, J., & Zhu, W. (2017, March). Electrodeposition of CuSe Nanosheets films and its growth mechanism. In IOP Conference Series: Earth and Environmental Science (Vol. 59, No. 1, p. 012060). IOP Publishing.
[21] 楊紫玲,“氧化亞銅應用於無偏壓光電化學分解水產氫之研究”,國立東華大學光電工程研究所碩士論文,2020。
[22] 羅聖全,科學基礎研究之重要利器-掃描式電子顯微鏡(SEM)
[23] 利用X-ray 看透材料原子排列結構世界
https://www.narlabs.org.tw/xcscience/cont?xsmsid=0I148638629329404252&sid=0K107352975420455604
[24] 俞姿宇,科學Oline X射線光子能譜學
https://highscope.ch.ntu.edu.tw/wordpress/?p=72999
[25] 國立台北科技大學奈米光電磁材料技術研發中心-紫外線/可見光分光光譜儀檢測使用及使用方法
https://myweb.ntut.edu.tw/~wwwemo/instrument_manual/ultraviolet.htm
[26] 黃仲凱,科學Oline 氣相層析
https://highscope.ch.ntu.edu.tw/wordpress/?p=71841
[27] Gelderman, K., Lee, L., & Donne, S. W. (2007). Flat-band potential of a semiconductor: using the Mott–Schottky equation. Journal of chemical education, 84(4), 685.

[28] Instrument, G. "Basics of Electrochemical Impedance Spectroscopy." Retrieved July 17,201, from https://www.gamry.com/application-notes/EIS/basics-of-electrochemical-impedance-spectroscopy/
[29] McShane, C. M., & Choi, K. S. (2012). Junction studies on electrochemically fabricated p–n Cu 2 O homojunction solar cells for efficiency enhancement. Physical Chemistry Chemical Physics, 14(17), 6112-6118.
[30] Li, L., Gong, J., Liu, C., Tian, Y., Han, M., Wang, Q., ... & Bao, J. (2017). Vertically oriented and interpenetrating CuSe nanosheet films with open channels for flexible all-solid-state supercapacitors. ACS omega, 2(3), 1089-1096.
[31] Arellano-Tanori, O., Acosta-Enriquez, M. C., Ochoa-Landin, R., Iniguez-Palomares, R., Mendivil-Reynoso, T., Flores-Acosta, M., & Castillo, S. J. (2014). Copper-selenide and copper-telluride composites powders sintetized by ionic exchange. Chalcogenide Lett, 11, 13-19.
(此全文20240715後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *