帳號:guest(18.118.142.35)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:徐晟烜
作者(英文):Sheng-Hsuan Hsu
論文名稱:光學活性血糖濃度探測-葡萄糖旋光性探討
論文名稱(英文):Optically active blood glucose concentration detection-research of the optical activity of glucose
指導教授:莊沁融
指導教授(英文):Ching-Jung Chuang
口試委員:蔡志宏
馬仕信
口試委員(英文):Chih-Hung Tsai
Shih-Hsin Ma
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610925006
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:52
關鍵詞:無創式偏振光旋光性溫度血糖連續監測變旋
關鍵詞(英文):non-invasivepolarized lightoptical rotationtemperatureblood glucosecontinuous monitoringvariable rotation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:14
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
本次研究是基於線偏振光通過手性結構後,偏振平面會旋轉的旋光理論進行無創式血糖測量系統設計。為了確保系統測量的穩定性及可靠性,考量溫度的變化對於測量結果的影響,進行葡萄糖溶液在不同溫度變化下的旋光度測量實驗。因為葡萄糖溶液配置完成後需要靜置等待變旋反應平衡,所以也將葡萄糖變旋機制與溫度、濃度之間的關係,進行實驗測量及分析。而在變旋實驗中,我們對於旋光測量技術的即時性及連續監測也有很好的證實。

根據測量的結果顯示,葡萄糖溶液的溫度變化並不會改變旋光度測量結果,這對於本次研究是個好消息,證明這項系統的測量方法是足夠穩定的。葡萄糖變旋測量結果分析,將變旋過程中旋光度的改變數據化的記錄下來,讓配置完溶液後所需的靜置時間有更明確的依據;果糖變旋實驗的測量結果顯示,系統能夠連續檢測出旋光度的改變。這次研究的成果表明無創式血糖測量的實際應用有很大的潛力。
This study is based on the design of a non-invasive blood glucose measurement system based on the rotation theory that the polarized plane rotates after the linear polarized light passes through the chiral structure. In order to ensure the stability and reliability of the system measurement, consider the influence of temperature changes on the measurement results, the optical rotation measurement experiment of glucose solution under different temperature changes is carried out. Because the glucose solution needs to be left to wait for the mutarotation reaction to be balanced after the configuration is completed, the relationship between the glucose spin mechanism and temperature and concentration is also measured and analyzed experimentally. In the mutarotation experiment, we also have a good confirmation of the real-time and continuous monitoring of the optical rotation measurement technology.

According to the measurement results, the temperature change of the glucose solution does not change the optical rotation measurement. That's good news for this study. It is proved that the measurement method of this system is stable enough. The optical rotation changes during the mutarotation of glucose were recorded. Provides a clearer rationale for the required rest period after solution preparation.The measurement results of the fructose mutarotation experiment show that the system is able to continuously detect changes in optical rotation. The results of this study show the potential of non-invasive blood glucose measurement in practical applications.
摘要 I
Abstract III
目錄 V
圖目錄 VII
表目錄 IX
第1章 序論 1
1-1 前言 1
1-2 侵入式血糖測量 2
1-3 微創式血糖測量 4
1-4 無創式血糖測量 5
1-4-1 電化學測量法 5
1-4-2 光學測量 6
1-5 研究動機 11
第2章 實驗原理 13
2-1 偏振光 13
2-1-1 瓊斯矩陣 14
2-2 葡萄糖-手性結構 15
2-3 旋光 17
2-4 手性結構-變旋 19
2-5 多波長角度判別 20
第3章 實驗方法與步驟 23
3-1 實驗架構-旋光測量 23
3-1-1 系統校準 23
3-1-2 葡萄糖濃度與旋光度測量 24
3-2 葡萄糖旋光度與溫度 25
3-2-1 穩定加熱 25
3-2-2 極端溫差 27
3-3 系統穩定性測試與可靠性檢測-變旋 28
3-3-1 變旋速率與濃度 28
3-3-2 變旋與溫度 29
第4章 結果與討論 31
4-1 旋光度與濃度 31
4-2 旋光度與溫度 32
4-2-1 穩定加熱與降溫實驗 34
4-2-2 系統穩定性測試 39
4-3 變旋 40
4-3-1 濃度對變旋速率的影響 41
4-3-2 溫度對變旋速率的影響 44
4-4差異性分析 45
第五章 結論與未來展望 47
參考文獻 49
[1]Ministry of Health and Welfare. (2022).[https://dep.mohw.gov.tw/DOS/lp-5069-113.html].
[2]World Health Organization (WHO). (2022). Diabetes [https://www.who.int/health-topics/diabetes#tab=tab_1].
[3]Y. Ito et al., "Application of dissolving microneedles to glucose monitoring through dermal interstitial fluid," Biological and Pharmaceutical Bulletin, vol. 37, no. 11, pp. 1776-1781, 2014.
[4]Dexcom Continuous Glucose Monitoring. (2022). Better manage your Type 1 or Type 2 diabetes with the Dexcom G6 CGM System. [https://www.dexcom.com/g6-cgm-system#].
[5]W. Villena Gonzales, A. T. Mobashsher, and A. Abbosh, "The progress of glucose monitoring—A review of invasive to minimally and non-invasive techniques, devices and sensors," Sensors, vol. 19, no. 4, p. 800, 2019.
[6]Y. Xue, A. S. Thalmayer, S. Zeising, G. Fischer, and M. Lübke, "Commercial and Scientific Solutions for Blood Glucose Monitoring—A Review," Sensors, vol. 22, no. 2, p. 425, 2022.
[7]Y. Zhang, J. Sun, L. Liu, and H. Qiao, "A review of biosensor technology and algorithms for glucose monitoring," Journal of Diabetes and its Complications, vol. 35, no. 8, p. 107929, 2021.
[8]T. Arakawa et al., "A wearable cellulose acetate-coated mouthguard biosensor for in vivo salivary glucose measurement," Analytical Chemistry, vol. 92, no. 18, pp. 12201-12207, 2020.
[9]B. Gayathri, K. Sruthi, and K. U. Menon, "Non-invasive blood glucose monitoring using near infrared spectroscopy," in 2017 International Conference on Communication and Signal Processing (ICCSP), 2017, pp. 1139-1142: IEEE.
[10]J. Yadav, A. Rani, V. Singh, and B. M. Murari, "Prospects and limitations of non-invasive blood glucose monitoring using near-infrared spectroscopy," Biomedical signal processing and control, vol. 18, pp. 214-227, 2015.
[11]Y. S. Park, S. Ahn, H. Chang, W. Lee, and S. H. Nam, "Influence of Raman Spectrometer Collection Efficiency on Performance of noninvasive Blood Glucose Detection for Device Miniaturization," in 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), 2020, pp. 6139-6142: IEEE.
[12]T.-L. Chen, Y.-L. Lo, C.-C. Liao, and Q.-H. Phan, "Noninvasive measurement of glucose concentration on human fingertip by optical coherence tomography," Journal of biomedical optics, vol. 23, no. 4, p. 047001, 2018.
[13]E. Hecht, Optics Third Edition. 1998, pp. 355-360.
[14]B. Rabinovitch, W. March, and R. L. Adams, "Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations," Diabetes Care, vol. 5, no. 3, pp. 254-258, 1982.
[15]R. L. Stamper, Aqueous humor: secretion and dynamics. Harper & Row, New York, 1979.
[16]R. Rawer, W. Stork, and C. F. Kreiner, "Non-invasive polarimetric measurement of glucose concentration in the anterior chamber of the eye," Graefe's Archive for Clinical and Experimental Ophthalmology, vol. 242, no. 12, pp. 1017-1023, 2004.
[17]T. Li, D. Bai, T. Prioleau, N. Bui, T. Vu, and X. Zhou, "Noninvasive glucose monitoring using polarized light," in Proceedings of the 18th Conference on Embedded Networked Sensor Systems, 2020, pp. 544-557.
[18]劉志祥. (2013). 非侵入光學式血糖量測技術.
[19]A. S. Bolla and R. Priefer, "Blood glucose monitoring-an overview of current and future non-invasive devices," Diabetes & Metabolic Syndrome: Clinical Research & Reviews, vol. 14, no. 5, pp. 739-751, 2020.
[20]B. J. Van Enter and E. Von Hauff, "Challenges and perspectives in continuous glucose monitoring," Chemical Communications, vol. 54, no. 40, pp. 5032-5045, 2018.
[21]F. L. Pedrotti, L. M. Pedrotti, and L. S. Pedrotti, Introduction to optics. Cambridge University Press, 2017.
[22]A. Ghatak, Optics. Tata McGraw-Hill Education, 2005.
[23]Edmund Optics. (2022). Introduction to Polarization [https://www.edmundoptics.com.tw/knowledge-center/application-notes/optics/introduction-to-polarization].
[24]S. O. Kasap, Optoelectronics and photonics. Pearson Education UK, 2013.
[25]L. G. Wade, Organic Chemistry Fourth Edition. Pearson Education UK, 1998.
[26]A. M. Silva, E. C. da Silva, and C. O. da Silva, "A theoretical study of glucose mutarotation in aqueous solution," Carbohydrate research, vol. 341, no. 8, pp. 1029-1040, 2006.
[27]A. Lakhtakia, "Dilute random distribution of small chiral ellipsoids in a chiral fluid: Optical properties," Berichte der Bunsengesellschaft für physikalische Chemie, vol. 94, no. 12, pp. 1504-1507, 1990.
[28]J.-Y. Lin, K.-H. Chen, and D.-C. Su, "Improved method for measuring small optical rotation angle of chiral medium," Optics communications, vol. 238, no. 1-3, pp. 113-118, 2004.
[29]C. O. da Silva, B. Mennucci, and T. Vreven, "Density functional study of the optical rotation of glucose in aqueous solution," The Journal of Organic Chemistry, vol. 69, no. 23, pp. 8161-8164, 2004.
[30]L. D. Barron, Molecular light scattering and optical activity. Cambridge University Press, 2009.
[31]J. Anderson, C. Gillen, J. Wright, C. S. Adams, and I. G. Hughes, "Optical rotation of white light," American Journal of Physics, vol. 88, no. 3, pp. 247-251, 2020.
[32]S. Huard, Polarization of light. 1997.
[33]W. Pigman and H. S. Isbell, "Mutarotation of sugars in solution: Part I: History, basic kinetics, and composition of sugar solutions," Advances in carbohydrate chemistry, vol. 23, pp. 11-57, 1968.
[34]P. Yeh and C. Gu, Optics of liquid crystal displays. John Wiley & Sons, 2009.
[35]B. Capon, "Mechanism in carbohydrate chemistry," Chemical reviews, vol. 69, no. 4, pp. 407-498, 1969.
[36]F. Worley and J. Andrews, "Mutarotation. IV. Consecutive Reactions in the Mutarotation of Glucose and Galactose," The Journal of Physical Chemistry, vol. 32, no. 2, pp. 307-315, 2002.
[37]J. Nelson and F. M. Beegle, "MUTAROTATION OF GLUCOSE AND FRUCTOSE," Journal of the American Chemical Society, vol. 41, no. 4, pp. 559-575, 1919.
[38]藍嘉彥, "無創式多波長旋光血糖檢測方法與應用," 碩士論文, 國立東華大學光電工程學系, 2019.
[39]J. S. Baba, A. Meledeo, B. D. Cameron, and G. L. Cote, "Investigation of pH and temperature on optical rotatory dispersion for noninvasive glucose monitoring," in Optical Diagnostics and Sensing of Biological Fluids and Glucose and Cholesterol Monitoring, 2001, vol. 4263, pp. 25-33: SPIE.
[40]P. Rysä and J. Sarvaranta, "CORNEAL TEMPERATURE IN MAN AND RABBIT: Observations made using an infra‐red camera and a cold chamber," Acta ophthalmologica, vol. 52, no. 6, pp. 810-816, 1974.
[41]L. HyvÖNen, P. VARO, and P. KOIVISTOINEN, "TAUTOMERIC EQUILIBRIA OF D‐GLUCOSE AND D‐FRUCTOSE: GAS‐LIQUID CHROMATOGRAPHIC MEASUREMENTS," Journal of Food Science, vol. 42, no. 3, pp. 654-656, 1977.
[42]E.-H. Ooi and E. Y.-K. Ng, "Simulation of aqueous humor hydrodynamics in human eye heat transfer," Computers in biology and medicine, vol. 38, no. 2, pp. 252-262, 2008.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *