帳號:guest(18.224.44.249)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林裕翔
作者(英文):Yu-Siang Lin
論文名稱:奈米複合材料於染料敏化太陽能電池之製備與分析
論文名稱(英文):Fabrication and Analysis of Using Nanocomposite Materials for Dye-Sensitized Solar Cells
指導教授:蔡志宏
指導教授(英文):Chih-Hung Tsai
口試委員:莊沁融
游源祥
口試委員(英文):Ching-Jung Chuang
Yuan-Hsiang Yu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610925008
出版年(民國):110
畢業學年度:109
語文別:中文
論文頁數:111
關鍵詞:染料敏化太陽能電池對電極工作電極氧化鐵石墨烯二氧化鈦二氧化錫氧化石墨烯鈷金屬
關鍵詞(英文):dye-sensitized solar cellscounter electrodeworking electrodeFe2O3grapheneTiO2SnO2graphene oxidecobal
相關次數:
  • 推薦推薦:0
  • 點閱點閱:18
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
1991年,瑞士的 M. Grätzel團隊研發出了一種染料敏化太陽能電池結構,以白金對電極、二氧化鈦工作電極、染料和電解液組成,此種太陽能電池具有製程簡單、成本低廉、以及高效率的優點。由於白金電極的價格昂貴,使整體的成本上升,且元件內部存在著電子發生復合、進而使轉換效率降低的問題,因此需要尋找替代材料,以降低成本和提高轉換效率。
本研究以奈米複合材料製備染料敏化太陽能電池的工作電極和對電極,研究內容主要分為三個部分,首先第一部分以氧化鐵和石墨烯的複合材料,作為染料敏化太陽能電池的對電極材料,並分析其表面形貌、元素組成和電化學特性,並製成元件,量測元件之阻抗頻譜、轉換效率、和外部量子效率。實驗結果顯示,在Fe2O3/Gn 1:2的比例下,元件效率可達到7.58%。
第二部分以二氧化鈦和二氧化錫複合材料,作為染料敏化太陽能電池的工作電極,並分析其表面形貌、元素組成和吸光率,並製成元件,量測元件之阻抗頻譜、轉換效率、和外部量子效率。實驗結果顯示,在TiO2+SnO2 3wt%的比例下,元件效率由未做摻雜的6.97%提升至7.76%。
最後第三部分以氧化石墨烯和鈷金屬錯合物,作為染料敏化太陽能電池對電極材料,以鈷作為還原劑,將氧化石墨烯還原成石墨烯,並作為對電極的催化中心,接著分析其表面形貌、元素組成和電化學特性,並製成元件,量測元件之阻抗頻譜、轉換效率、和外部量子效率。實驗結果顯示,在GO/Co 1:3的比例下,元件效率可達到6.57%。
In 1991, the Swiss M. Grätzel team developed a dye-sensitized solar cell (DSSC), which consists of platinum counter electrode, titanium dioxide working electrode, dye, and electrolyte. Due to the high price of platinum counter electrodes, the overall cost is expensive, and there is a problem of recombination of electrons inside the device, which reduces the conversion efficiency. Therefore, it is necessary to find alternative materials to reduce costs and improve conversion efficiency.
In this study, nanocomposites were used to prepare the working electrodes and counter electrodes of the dye-sensitized solar cells. The research is mainly divided into three parts. First, the composite materials of iron oxide and graphene were used as the counter electrodes of the dye-sensitized solar cell. The surface morphology, element composition, and electrochemical characteristics of the nanocomposites were analyzed. The DSSCs were fabricated and the impedance spectrum, conversion efficiency, and external quantum efficiency of the devices were analyzed. The experimental results showed that when using the Fe2O3/Gn (1:2) as the counter electrode, the device efficiency achieved 7.58%.
Second, we used titanium dioxide and tin dioxide nanocomposites as the working electrodes of dye-sensitized solar cells. The surface morphology, element composition, and absorbance of the nanocomposites were analyzed. The DSSCs were fabricated and the impedance spectrum, conversion efficiency, and external quantum efficiency of the devices were analyzed. The experimental results showed that when using the TiO2/SnO2 (3wt%) as the working electrode, the device efficiency achieved 7.76%, which was higher than that of the TiO2 working electrode (6.97%).
Third, we used graphene oxide/cobalt complexes nanocomposites as counter electrode materials for dye-sensitized solar cells. Cobalt complexes were used as a reducing agent to reduce graphene oxide to graphene, and as the catalytic center of the counter electrode. The surface morphology, element composition, and electrochemical characteristics of the nanocomposites were analyzed. The DSSCs were fabricated and the impedance spectrum, conversion efficiency, and external quantum efficiency of the devices were analyzed. The experimental results showed that when using the GO/Co (1:3) as the counter electrode, the device efficiency achieved 6.57%.
第一章 序論 1
第二章 金屬氧化物氧化鐵與二維材料石墨烯於染料敏化太陽能電池對電極之研究  21
第三章 摻雜二氧化錫於染料敏化太陽能電池工作電極之研究           45
第四章 石墨烯/鈷金屬錯合物新穎複合材料於染料敏化太陽能電池對電極之研究  67
謝明鴻, "日本福島核電廠事故外洩輻射物對海洋生態的影響",國立臺灣海洋大學.(2015)
郭浩中, "太陽能光電技術",五南圖書出版.(2012)
劉晏誠, "以新穎奈米複合材料製備染料敏化太陽能電池對電極之研究",國立東華大學.(2020)
楊紘安, "應用奈米複合材料於染料敏化太陽能電池電極之研究",國立東華大學.(2020)
M.Grätzel, B.O’Regan, "A low-cost, high-efficiency solar cell based onDye-sensitized colloidal TiO2 films." Nature, (1991)737-740.
A.Yella, H.W.Lee, H.N.Tsao, C.Yi, A.K.Chandiran, M.K.Nazeeruddin, E.W.G.Diau, C.Y.Yeh, S.M.Zakeeruddin, M.Grätzel, "Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency."Science, (2011)629-634
J.Burschka, N.Pellet, S.J.Moon, R.H.Baker, P.Gao, M.K.Nazeeruddin, M.Grätzel, "Sequential deposition as a route to high-performance perovskite-sensitized solar cells." Nature, (2013)316-319.
M.Grätzel, "Photoelectrochemical cells."Nature, (2001)338-344
施純鈞, "石墨烯奈米複合材料於染料敏化太陽能電池對電極之研究",國立東華大學.(2017)
林家銘, "染料敏化與鈣鈦礦太陽能電池材料及元件特性分析",國立東華大學(2018)
費伯希, "應用新穎材料與結構於染料敏化太陽能電池",國立東華大學.(2015)
林建廷, "混合有機染料及奈米複合材料於染料敏化太陽能電池之研究",國立東華大學.(2018)
K.S.Novoselov, A.K.Geim, S.V.Morozov, D.Jiang, Y.Zhang, S.V.Dubonos, I.V.Grigorieva, A.A.Firsov, " Electric Field Effect in Atomically Thin Carbon Films."Science, (2004)666-669.
A.K.Geim, K.S.Novoselov, "The rise of graphene."Nature Materials,(2007)183-191
J.H.Chen, C.Jang, S.Xiao, M.Ishigami, M.S.Fuhrer, "Intrinsic and Extrinsic Performance Limits of Graphene Devices on SiO2". Nature Nanotechnology, (2008)206-209.
C.Lee, X.Wei, J.W.Kysar, J.Hone, "Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene." Science, (2008)385-388.
J.F.Lu, C.J.Tasi, "Hydrothermal phase transformation of hematite to Magnetite."Nanoscale Research Letters, (2014)230.
鄭仰清, "石墨烯於金屬光柵結構上之表面增強拉曼光譜特性之研究",國立中山大學.(2014)
林楹璋, "有機分子官能化的 Si(111)表面",國立交通大學.(2005)
S.A.Haque, E.Palomares, B.M.Cho, A.N.M.Green, N.Hirata, D.R.Klug, J.R.Durrant, "Charge Separation versus Recombination in Dye-Sensitized Nanocrystalline Solar Cells: the Minimization of Kinetic Redundancy. " (2005).
R.W.G.Wyckoff, "Crystal Structures. " (1951).
劉丙寅, "摻雜銻的二氧化錫奈米材料在電化學電容器之應用", 國立臺灣大學.(2001)
F.D.Hardcastle, "Raman Spectroscopy of Titania (TiO2) Nanotubular Water-Splitting Catalysts". Journal of the Arkansas Academy of Science,(2011)43-48.
(此全文20260613後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *