帳號:guest(3.144.45.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:賴柏佑
作者(英文):Po-Yu Lai
論文名稱:列印參數對液晶彈性體配向影響之研究
論文名稱(英文):Study of the influence of the printing parameters on the alignment of liquid crystal elastomers
指導教授:林嘉德
指導教授(英文):Jia-De Lin
口試委員:李佳榮
莊沁融
口試委員(英文):Chia-Rong Lee
Ching-Jung Chuang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:光電工程學系
學號:610925010
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:103
關鍵詞:3D 列印技術液晶彈性體列印參數液晶配向軟式機器人
關鍵詞(英文):3D printingliquid crystals elastomersprinting parametersliquid crystal alignmentssoft robots
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
液晶彈性體(liquid crystal elastomers, LCEs)為聚合液晶物網絡(liquid crystal networks, LCNs)的一種,其形狀可以通過光或熱等刺激產生靈活改變。液晶彈性體優越的形狀變化能力在發展人造肌肉、微型機器人,以及軟式電子產品等領域具有巨大的應用潛力。近幾年3D列印技術的迅速發展與普及,使得結合液晶彈性體與3D列印技術這件事成為可能,進而衍生出新型的4D列印技術,也就是讓列印出的三維液晶彈性體結構隨著受刺激的時間產生整體形狀變化。由於液晶彈性體的變形方式與聚合物網絡中液晶分子的配向方向有顯著相關,因此了解液晶彈性體中液晶分子在列印過程中的排列狀況,並進一步加以控制,對於3D列印液晶彈性體來說就顯得特別重要。先前的文獻曾報導,可利用列印的噴頭所提供的拉力在彈性體內部產生剪切應力來排列液晶分子,排列方向將平行於列印噴頭的移動方向。


在本論文中,我們設計並構建了一台專用於列印液晶彈性體的自製3D列印機,測試了兩種文獻常見的液晶彈性體配方,並討論了不同列印參數對所印出之液晶彈性體配向整齊度的影響,所探討的因素包括噴頭和基板之間的距離、噴頭溫度、列印速度,以及光聚合條件。通過調整上述因素,成功列印出了具有不同配向整齊程度和紋理的液晶彈性體,並從中找出最適合用於3D列印液晶彈性體的參數,優化了製程的良率。此外也可利用不同的列印參數來設計液晶彈性體的整體形變程度與方向,拓寬設計空間並推動4D列印的發展。期盼本論文可以提供列印液晶彈性體相關研究做為製程調整上的參考,並且有助於軟機器人和柔性電子產品的研發與製造。
Liquid crystal elastomers (LCEs) are polymeric liquid crystal networks whose shape can be flexibly changed by stimuli such as light or heat. The superior shape-changing capability of LCEs has great potential in the development of artificial muscles, micro-robots, and soft electronics. With the rapid development and popularization of 3D printing technology in recent years, the combination of LCEs and 3D printing technology can be realized and results in a new type of printing technology, 4D printing, which allows the printed 3D structure based on LCEs to change its shape with the stimulation time. Since the deformation of LCEs is significantly related to the orientational direction of the liquid crystal mesogens within the polymer networks, it is important to realize how the mesogens are aligned during the printing process of the elastomers and to further propose a method for the control of the mesogens orientations within the LCEs during the printing process. According to the previous literature, the pulling force provided by the nozzle can induce shear stress inside the elastomer to align the liquid crystal mesogens, and the alignment direction will be parallel to the moving direction of the nozzle.


In this thesis, we demonstrate a home-made 3D printer designed for printing LCEs and test two LCE recipes commonly reported in related works. Moreover, the influence of various factors, including the distance between nozzle and substrate, nozzle temperature, printing speed, and photopolymerization conditions, on the orientation of the printed LCEs are discussed. By adjusting the above factors, LCEs with various degrees of homogeneous alignment and textures can be obtained. The optimal parameters for 3D printing LCEs can be further found out to improve the yield. In addition, by adopting different printing parameters, the overall deformation degree and direction of the LCEs can be controlled, which is expected to broaden the design possibility and promotes the development of 4D printing. We expect that this work can be a reference or guide for researches or adjustment for the fabrication process of printing LCEs and helpful for the development and manufacture of soft robots and flexible electronic products.
致謝 I
摘要 III
Abstract IV
目錄 VI
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究背景 2
1.3 研究動機 3
第二章 原理 5
2.1 液晶基本介紹 5
2.1.1 液晶介紹 5
2.1.2 液晶的相態與結構 7
2.1.3 液晶的光學異向性 13
2.1.4 液晶的介電異向性 14
2.1.5 連續彈性體形變理論 15
2.2 液晶聚合物簡介 16
2.2.1 液晶聚合物分子結構 16
2.2.2 液晶聚合物之熱機械響應原理 19
2.2.3 液晶聚合物之光機械響應原理 21
第三章 3D列印液晶彈性體 25
3.1 3D列印技術 25
3.1.1 主流3D列印技術簡介 25
3.2 3D列印液晶彈性體與其配向原理 31
3.2.1 形狀記憶高分子(Shape memory polymers, SMPS) 32
3.2.2 黏彈性(Viscoelasticity) 38
3.2.3 剪切作用與噴頭配向原理 43
第四章 實驗架構與材料製備 47
4.1 自製三維液晶彈性體列印設備架設 47
4.1.1 溫控設備選擇 49
4.2 液晶彈性體材料混合物製備 54
4.2.1 材料介紹 54
4.2.2 製備方式 56
第五章 結果與討論 57
5.1 RM105+257墨水列印討論 57
5.1.1 溫度對列印RM105+257墨水的影響 57
5.1.2 聚合光強度對列印RM105+257墨水的影響 66
5.1.3 列印線寬與材料的缺陷 68
5.2 RM82墨水列印討論 73
5.2.1 噴頭溫度對配向效果之影響 73
5.2.2 噴頭移動速度對配向效果之影響 85
5.2.3 噴頭高度對配向效果之影響 88
5.2.4 噴頭移動速度與線寬之關係 89
第六章 結論與未來展望 95
6.1 結論 95
6.2 未來展望 96
參考文獻 98
[1] K. Bhattacharya and R. D. James, “The Material Is the Machine,” Science 307, 53−54 (2005).
[2] K.-J. Cho, J.-S. Koh, S. Kim, W.-S. Chu, Y. Hong, and S.-H. Ahn, “Review of Manufacturing Processes for Soft Biomimetic Robots,” International Journal of Precision Engineering and Manufacturing 10, 171−181 (2009).
[3] Y. Cheng, K. H. Chan, X.-Q. Wang, T. Ding, T. Li, X. Lu, and G. W. Ho, “Direct-Ink-Write 3D Printing of Hydrogels into Biomimetic Soft Robots,” ACS Nano 13, 13176−13184 (2019).
[4] C. Lee, M. Kim, Y. J. Kim, N. Hong, S. Ryu, H. J. Kim, and S. Kim, “Soft Robot Review,” International Journal of Control, Automation and Systems 15, 3–15 (2017).
[5] M. Calisti, M. Giorelli, G. Levy, B. Mazzolai, B. Hochner, C. Laschi, and P. Dario, “An Octopus-Bioinspired Solution to Movement and Manipulation for Soft Robots,” Bioinspiration & Biomimetics 6, 036002 (2011).
[6] M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner, M. Karpelson, R. J. Wood, and G. M. Whitesides, “A Resilient, Untethered Soft Robot,” Soft Robotics 1, 213–223 (2014).
[7] C. Laschi, M. Cianchetti, B. Mazzolai, L. Margheri, M. Follador, and P. Dario, “Soft Robot Arm Inspired by the Octopus,” Advanced Robotics 26, 709–727 (2012).
[8] M. P. da Cunha, M. G. Debije, and A. P. H. J. Schenning, “Bioinspired Light-Driven Soft Robots Based on Liquid Crystal Polymers,” Chemical Society Review 49, 6568 (2020).
[9] A. Miriyev, K. Stack, and H. Lipson, “Soft Material for Soft Actuators,” Nature Communications 8, 596 (2017).
[10] A. D. Marchese, C. D. Onal, and D. Rus, “Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators,” Soft Robotics 1, 75–87 (2014).
[11] M. Bahram, N. Mohseni, and M. Moghtader, “Emerging Concepts in Analysis and Applications of Hydrogels,” IntechOpen, Chap. 2 (2016).
[12] K. Mehta, A. R. Peeketi, L. Liu, D. Broer, P. Onck, and R. K. Annabattula, “Design and Applications of Light Responsive Liquid Crystal Polymer Thin Films,” Applied Physics Reviews 7, 041306 (2020).
[13] T. J. White and D. J. Broer, “Programmable and Adaptive Mechanics with Liquid Crystal Polymer Networks and Elastomers,” Nature Materials 14, 1087–1098 (2015).
[14] C. Ohm, M. Brehmer, and R. Zentel, “Liquid Crystalline Elastomers as Actuators and Sensors,” Advanced Materials 22, 3366–3387 (2010).
[15] L. Ceamanos, Z. Kahveci, M. López-Valdeolivas, D. Liu, D. J. Broer, and C. Sánchez-Somolinos, “Four-Dimensional Printed Liquid Crystalline Elastomer Actuators with Fast Photoinduced Mechanical Response toward Light-Driven Robotic Functions,” ACS Applied Materials & Interfaces 12, 44195−44204 (2020).
[16] M. del Pozo, J. A. H. P. Sol, S. H. P. van Uden, A. R. Peeketi, S. J. D. Lugger, R. K. Annabattula, A. P. H. J. Schenning, and M. G. Debije, “Patterned Actuators via Direct Ink Writing of Liquid Crystals,” ACS Applied Materials & Interfaces 13, 59381–59391 (2021).
[17] M. del Pozo, L. Liu, M. P. da Cunha, D. J. Broer, and A. P. H. J. Schenning, “Direct Ink Writing of a Light-Responsive Underwater Liquid Crystal Actuator with Atypical Temperature-Dependent Shape Changes,” Advanced Functional Materials 30, 2005560 (2020).
[18] Y. Kamiya and H. Asanuma, “Light-Driven DNA Nanomachine with a Photoresponsive Molecular Engine,” Accounts of Chemical Research 47, 1663–1672 (2014).
[19] M. Yamada, M. Kondo, J. Mamiya, Y. Yu, M. Kinoshita, C. J. Barrett, and T. Ikeda, “Photomobile Polymer Materials: Towards Light-Driven Plastic Motors,” Angewandte Chemie International Edition 47, 4986–4988 (2008).
[20] A. Sánchez-Ferrer, A. Merekalov, and H. Finkelmann, “Opto-Mechanical Effect in Photoactive Nematic Side-Chain Liquid-Crystalline Elastomers,” Macromolecular Rapid Communications 32, 671–678 (2011).
[21] Y. Yu, M. Nakano, and T. Ikeda, “Directed Bending of a Polymer Film by Light,” Nature 425, 145 (2003).
[22] Y.-C. Cheng, H.-C. Lu, X. Lee, H. Zeng, and A. Priimagi, “Kirigami-Based Light-Induced Shape-Morphing and Locomotion,” Advanced Materials 32, 1906233 (2020).
[23] C. J. Camargo, H. Campanella, J. E. Marshall, N. Torras, K. Zinoviev, E. M. Terentjev, and J. Esteve, “Batch Fabrication of Optical Actuators Using Nanotube–Elastomer Composites Towards Refreshable Braille Displays,” Journal of Micromechanics and Microengineering 22, 075009 (2012).
[24] M. Camacho-Lopez, H. Finkelmann, P. Palffy-Muhoray, and M. Shelley, “Fast Liquid-Crystal Elastomer Swims into the Dark,” Nature Materials 3, 307–310 (2004).
[25] L. Yang, L. Chang, Y. Hu, M. Huang, Q. Ji, P. Lu, J. Liu, W. Chen, and Y. Wu, “An Autonomous Soft Actuator with Light-Driven Self-Sustained Wavelike Oscillation for Phototactic Self-Locomotion and Power Generation,” Advanced Functional Materials 30, 1908842 (2020).
[26] O. M. Wani, H. Zeng, and A. Priimagi, “A Light-Driven Artificial Flytrap,” Nature. Communications 8, 15546 (2017).
[27] H. Zeng, O. M. Wani, P. Wasylczyk, R. Kaczmarek, and A. Priimagi, “Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer,” Advanced Materials 29, 1701814 (2017).
[28] T. H. Ware, M. E. McConney, J. J. Wie, V. P. Tondiglia, and T. J. White, “Voxelated Liquid Crystal Elastomers,” Science 347, 982–984 (2015).
[29] T. Guin, M. J. Settle, B. A. Kowalski, A. D. Auguste, R. V. Beblo, G. W. Reich, and T. J. White, “Layered Liquid Crystal Elastomer Actuators,” Nature. Communications 9, 2531 (2018).
[30] D. Liu and D. J. Broer, “Self-Assembled Dynamic 3D Fingerprints in Liquid-Crystal Coatings Towards Controllable Friction and Adhesion,” Angewandte Chemie International Edition 53, 4542–4546 (2014).
[31] F. Momeni and J. Ni, “4D Printing as a New Paradigm for Manufacturing with Minimum Energy Consumption,” arXiv:1811.12609 (2018).
[32] M. del Pozo, J. A. H. P. Sol, A. P. H. J. Schenning, and M. G. Debije, “4D Printing of Liquid Crystals: What’s Right for Me?” Advanced Materials 34, 2104390 (2021).
[33] Y. Wang, H. Cui, T. Esworthy, D. Mei, Y. Wang, and L. G. Zhang, “Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices,” Advanced Materials 34, 2109198 (2022).
[34] C. Zhang, X. Lu, G. Fei, Z. Wang, H. Xia, and Y. Zhao, “4D Printing of a Liquid Crystal Elastomer with a Controllable Orientation Gradient,” ACS Applied Materials & Interfaces. 11, 44774–44782 (2019).
[35] C. P. Ambulo, J. J. Burroughs, J. M. Boothby, H. Kim, M. R. Shankar, and T. H. Ware, “Four-Dimensional Printing of Liquid Crystal Elastomers,” ACS Applied Materials & Interfaces. 9, 37332–37339 (2017).
[36] E. C. Davidson, A. Kotikian, S. Li, J. Aizenberg, and J. A. Lewis, “3D Printable and Reconfigurable Liquid Crystal Elastomers with Light-Induced Shape Memory via Dynamic Bond Exchange,” Advanced Materials 32, 1905682 (2019).
[37] A. Kotikian, R. L. Truby, J. W. Boley, T. J. White, and J. A. Lewis, “3D Printing of Liquid Crystal Elastomeric Actuators with Spatially Programed Nematic Order,” Advanced Materials 30, 1706164 (2018).
[38] L. Ren, B. Li, Y. He, Z. Song, X. Zhou, Q. Liu, and L. Ren, “Programming Shape-Morphing Behavior of Liquid Crystal Elastomers via Parameter-Encoded 4D Printing,” ACS Applied Materials & Interfaces. 12, 15562–15572 (2020).
[39] H. Yuk and X. Zhao, “A New 3D Printing Strategy by Harnessing Deformation, Instability, and Fracture of Viscoelastic Inks,” Advanced Materials 30, 1704028 (2018).
[40] P. G. de Gennes and J. Prost, “The Physics of Liquid Crystals,” Clarendon Press, (1993).
[41] M. Kleman and O. D. Lavrentovich, “Soft Matter Physics: An Introduction,” Springer-Verlag New York, Chap. 2.2 (2003).
[42] M. Mitov, “Cholesteric Liquid Crystals with a Broad Light Reflection Band,” Advanced Materials 24, 6260–6276 (2012).
[43] H.-S. Kitzerow and C. Bahr, “Chirality in Liquid Crystals,” Springer-Verlag New York, Chap. 3.3 (2001).
[44] P. Yeh and C. Gu, “Optics of Liquid Crystal Displays, 2nd Edition,” Wiley (2009).
[45] D. Liu and D. J. Broer, “Liquid Crystal Polymer Networks: Preparation, Properties, and Applications of Films with Patterned Molecular Alignment,” Langmuir 30, 13499–13509 (2014).
[46] S. Mayer and R. Zentel, “Liquid Crystalline Polymers and Elastomers,” Current Opinion in Solid State and Materials Science 6, 545–551 (2002).
[47] T. Ohzono, Y. Norikane, M. O. Saed, and E. M. Terentjev, “Light-Driven Dynamic Adhesion on Photosensitized Nematic Liquid Crystalline Elastomers,” ACS Applied Materials & Interfaces 12, 31992–31997 (2020).
[48] L. Yang, K. Setyowati, A. Li, S. Gong, and J. Chen, “Reversible Infrared Actuation of Carbon Nanotube–Liquid Crystalline Elastomer Nanocomposites,” Advanced Materials 20, 2271–2275 (2008).
[49] C. Li, Y. Liu, C. Lob, and H. Jiang, “Reversible White-Light Actuation of Carbon Nanotube Incorporated Liquid Crystalline Elastomer Nanocomposites,” Soft Matter 7, 7511 (2011).
[50] X. Lu, C. P. Ambulo, S. Wang, L. K. Rivera-Tarazona, H. Kim, K. Searles, and T. H. Ware, “4D-Printing of Photoswitchable Actuators,” Angewandte Chemie International Edition 60, 5536–5543 (2020).
[51] H. Y. Jeong, S.-C. An, and Y. C. Jun, “Light Activation of 3D-Printed Structures: From Millimeter to Sub-Micrometer Scale,” Nanophotonics 11, 461–486 (2022).
[52] J. Chen, X. Liu, Y. Tian, W. Zhu, C. Yan, Y. Shi, L. B. Kong, H. J. Qi, and K. Zhou, “3D-Printed Anisotropic Polymer Materials for Functional Applications,” Advanced Materials 34, 2102877 (2022).
[53] Z. Wang, Y. Guo, S. Cai, and J. Yang, “Three-Dimensional Printing of Liquid Crystal Elastomers and Their Applications,” ACS Applied Polymer Materials 4, 3153–3168 (2022).
[54] H. Liu, H. Zhang, W. Han, H. Lin, R. Li, J. Zhu, and W. Huang, “3D Printed Flexible Strain Sensors: From Printing to Devices and Signals,” Advanced Materials 33, 2004782 (2021).
[55] Y. Wang, H. Cui, T. Esworthy, D. Mei, Y. Wang, and L. G. Zhang, “Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices,” Advanced Materials 34, 2109198 (2022).
[56] J. Zhang, Z. Yin, L. Ren, Q. Liu, L. Ren, X. Yang, and X. Zhou, “Advances in 4D Printed Shape Memory Polymers: From 3D Printing, Smart Excitation, and Response to Applications,” Advanced Materials 34, 2101568 (2022).
[57] N. Washington S. Pinargote, A. Smirnov, N. Peretyagin, A. Seleznev, and P. Peretyagin, “Direct Ink Writing Technology (3D Printing) of Graphene-Based Ceramic Nanocomposites: A Review,” Nanomaterials 10, 1300 (2020).
[58] S.-U Bae and B.-J. Kim, “Effects of Cellulose Nanocrystal and Inorganic Nanofillers on The Morphological and Mechanical Properties of Digital Light Processing (DLP) 3D-Printed Photopolymer Composites,” Applied Sciences 11, 6835 (2021).
[59] Y. A. Gueche, N. M. Sanchez-Ballester, B. Bataille, A. Aubert, L. Leclercq, J.-C. Rossi, and I. Soulairol, “Selective Laser Sintering of Solid Oral Dosage Forms with Copovidone and Paracetamol Using a CO2 Laser,” Pharmaceutics 13, 160 (2021).
[60] J. A. Lewis, “Direct Ink Writing of 3D Functional Materials,” Advanced Functional Materials 16, 2193–2204 (2006).
[61] M. A. S. R. Saadi, A. Maguire, N. T. Pottackal, M. S. H. Thakur, M. M. Ikram, A. J. Hart, P. M. Ajayan, and M. M. Rahman, “Direct Ink Writing: A 3D Printing Technology for Diverse Materials”, Advanced Materials 34, 2108855 (2022).
[62] P. T. Mather, X. Luo, and I. A. Rousseau, “Shape Memory Polymer Research,” Annual Review of Materials Research 39, 445–471 (2009).
[63] Y. Xia, Y. He, F. Zhang, Y. Liu, and J. Leng, “A Review of Shape Memory Polymers and Composites: Mechanisms, Materials, and Applications,” Advanced Materials 33, 2000713 (2021).
[64] J. Zhang, Z. Yin, L. Ren, Q. Liu, L. Ren, X. Yang, and X. Zhou, “Advances in 4D Printed Shape Memory Polymers: From 3D Printing, Smart Excitation, and Response to Applications,” Advanced Materials Technologies, 2101568 (2022).
[65] M. Behl and A. Lendlein, “Shape-Memory Polymers,” Materials Today 10, 20–28 (2007).
[66] S. A. Bhawani, A. Khan, and M. Jawaid, “Smart Polymer Nanocomposites- Biomedical and Environmental Applications,” Woodhead Publishing, Chap. 4.3 (2021).
[67] J. J. Sheng, “Modern Chemical Enhanced Oil Recovery-Theory and Practice,” Gulf Professional Publishing, Chap. 6 (2011).
[68] T. Dawson, V. Johnson, P. Miller, M. Morabito, M. Schultz, and G. W. Swain, “EN380 Naval Materials Science and Engineering Course Notes, U.S. Naval Academy”, United States Naval Academy.
[69] R. P. Chhabra and J. F. Richardson, “Non-Newtonian Flow and Applied Rheology: Engineering Applications,” Butterworth-Heinemann, Chap. 1 (2011).
[70] B. C. Chakraborty and D. Ratna, “Polymers for Vibration Damping Applications,” Elsevier, Chap. 3 (2020).
[71] S. Čopar, Ž. Kos, T. Emeršič, and U. Tkalec, “Microfluidic Control over Topological States in Channel-Confined Nematic Flows,” Nature Communications 11, 59 (2020).
[72] J. D. Vicente, “Viscoelasticity-From Theory to Biological Applications,” IntechOpen, Chap. 4 (2012).
[73] D. I. Bower, “An Introduction to Polymer Physics,” Cambridge University Press, Chap. 6. (2002).
[74] D. Rogez, S. Krause, and P. Martinoty, “Main-Chain Liquid-Crystal Elastomers Versus Side-Chain Liquid-Crystal Elastomers: Similarities and Differences in Their Mechanical Properties,” Soft Matter 14, 6449 (2018).
(此全文20250817後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top

相關論文

無相關論文
 
* *