帳號:guest(18.218.176.156)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Kevin Pranata Ginting
作者(英文):Kevin Pranata Ginting
論文名稱:西北太平洋區秋刀魚(Cololabis saira) 之海蝨(Caligus macarovi)寄生研究
論文名稱(英文):A study of Pacific saury (Cololabis saira) parasitized by sea lice (Caligus macarovi) in the Northwestern Pacific Ocean
指導教授:黃文彬
指導教授(英文):Wen-Bin Huang
口試委員:陳志炘
陳俊堯
口試委員(英文):Chih-Shin Chen
Chun-Yao Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:自然資源與環境學系
學號:610954036
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:90
關鍵詞:太平洋秋刀魚Caligus macarovi寄生西北太平洋
關鍵詞(英文):Pacific sauryCaligus macaroviParasitismNorhwestern Pacific Ocean
相關次數:
  • 推薦推薦:1
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
本論文研究海蝨Caligus macarrovi) 寄生太平洋秋刀魚Cololabis saira之感染指標(盛行率、平均強度和豐度)年度變化及此寄生對此魚之成長影響。秋刀魚為西北太平洋重要經濟物種之一。研究資料期間為2008-2021年,並且秋刀魚樣本數量為每年202至502尾。在2008年C. macarovi寄生秋刀魚之盛行率、平均強度和豐度分別為11.71%、1.07和0.12,至2021年則分別大幅增加至83.16%、2.25和1.87。與未被C. macarovi寄生之秋刀魚體重和肥滿度(124.46 ± 29.29 g, 0.471 ± 0.05)相比,被C. macarovi寄生之秋刀魚具有顯著較小的體重和較低的肥滿度(115.63 ± 0.57 g, 0.458 ± 0.05)(p < 0.001)。透過以海面溫度、秋刀魚體重、肥滿度和年齡為主要特徵之主成分分析法,可將研究期間之14年歸類為三個寄生年組,分別為第1年組、第2年組和第3年組。寄生蟲豐度在此三個寄生年組間存在顯著差異(p < 0.001),其中以第1年組最低(0.85 ± 0.03),第2年組(1.69 ± 0.06)次之,第3年組(1.89 ± 0.05)最高。秋刀魚體重和肥滿度在此三個寄生年組間均存在顯著差異(p < 0.001)。寄生年組之秋刀魚體重,以第2年組最小(102.59 ± 2.00g),第3年組次之(117.27 ± 1.42g),第1年組最大(126.99 ± 1.12g)。寄生年組之秋刀魚肥滿度,以第3年組(0.440 ± 0.002)最小且顯著低於第2年組(0.470 ± 0.002)與第1年組(0.473 ± 0.002)。寄生蟲豐度對秋刀魚體長和年齡間皆呈正相關。秋刀魚生物量與寄生蟲豐度間呈負相關,顯示秋刀魚族群量越小、寄生蟲數量越多。
This study examined the annual variation of Caligus macarovi infection metrics (prevalence, mean intensity, and abundance) and the effect of the parasite infection on the Pacific saury, Cololabis saira, one of the economically important species in the Northwestern Pacific Ocean. The saury samples caught from 2008-2021 with sample size ranged from 202 to 502 saury. The prevalence, mean intensity, and abundance were 11.71%, 1.07, and 0.12 in 2008, and increased largely to 83.16%, 2.25, and 1.87 in 2021, respectively. Saury infected by C. macarovi had a smaller body weight and condition factor (115.63 ± 0.57 g, 0.458 ± 0.05) compared to the non-infected saury (124.46 ± 29.29 g, 0.471 ± 0.05) (p < 0.001). Three infection year groups, namely group 1, group 2, and group 3, were identified from the 14 years and characterized majorly by sea surface temperature, saury body weight, condition factor (CF), and age using the principal component analysis. The three infection year groups had a significantly different C. macarovi abundance (p < 0.001) with group 1 being the lowest (0.85 ± 0.03), followed by group 2 (1.69 ± 0.06), and group 3 (1.89 ± 0.05). The body weight (p < 0.001) and CF (p < 0.001) was varied significantly among the infection year groups. The body weight in group 2 (102.59 ± 2.00 g) was significantly smaller than that in group 3 (117.27 ± 1.42 g), and group 1 had the largest body weight (126.99 ± 1.12 g). The saury CF in group 3 (0.440 ± 0.002) was significantly smaller than those in group 2 (0.470 ± 0.002) and group 1 (0.473 ± 0.002). The variables saury body length and saury age had a positive relationship with the parasite abundance. Saury biomass had a negative relationship with parasite abundance, implying smaller saury population would have more parasite number.
CHAPTER 1 INTRODUCTION 1
1.1. Parasitism 1
1.1.1. Definition 1
1.1.2. Parasite-host interaction 3
1.2. Pacific saury in the North Pacific Ocean. 4
1.2.1 Biology 5
1.2.2 Migration 5
1.2.3. Pacific saury fishery 6
1.2.4 Pacific saury research in Taiwan 7
1.3. Parasites on the Pacific saury 8
1.3.1. Caligus macarovi on Pacific saury 9
1.4 Objectives of this study 10
1.4.1 Research questions: 10
1.4.2 Hypothesis 10
CHAPTER 2 MATERIALS AND METHODS 13
2.1. Pacific saury samples and environmental data 13
2.2. Measurement of fish samples 13
2.3. Infection metrics of the parasite 14
2.3.1. Parasite identification 14
2.3.2. C. macarovi infection metrics 14
2.4. Data analysis 15
2.4.1. The effect of C. macarovi infection on Pacific saury 15
2.4.2. Yearly groups determination 16
2.4.3. Variation in saury body weight and CF 17
2.4.4. Variation of C. macarovi abundance 17
2.4.5. Diagnostic of model assumptions 18
CHAPTER 3 RESULTS 19
3.1 Annual variation of biological and environmental condition 19
3.1.1 Biological condition 19
3.1.2 Parasite number 19
3.1.3 C. macarovi infection metrics 20
3.1.4 Environmental condition 20
3.2. Variation of saury growth between infected and non-infected group 21
3.2.1 Saury growth in the infected and non-infected group 21
3.2.2 Length-weight relationship on the infected and non-infected group 21
3.3. Characteristics of the yearly group. 22
3.3.1. Biological conditions among the group 23
3.3.2. Environmental conditions 23
3.4 Variation of saury growth 24
3.4.1. Variation in saury body weight 24
3.4.2. Variation in saury CF 25
3.5. The effect of saury biological condition and environmental factors on the parasite number variation 27
3.5.1. Diagnostic of model assumptions 27
3.5.2. The effect of host’s biological condition and environmental factors on the parasite number variation 27
CHAPTER 4 DISCUSSIONS 29
4.1. C. macarovi identification 29
4.2. C.macarovi infection metrics variation 29
4.3. C.macarovi infection among the yearly group 30
4.4. Potential effect of C. macarovi infection on Pacific saury 32
4.5. The effect of host biological and environmental factors on the variation of parasite number 34
REFERENCES 37
APPENDICES Data obtained from other resources 69

Abecasis, D., Bentes, L., Coelho, R., Correia, C., Lino, P. G., Monteiro, P., Gonçalves, J. M. S., Ribeiro, J., & Erzini, K. (2008). Ageing seabreams: a comparative study between scales and otoliths. Fisheries Research, 89(1), 37-48. https://doi.org/10.1016/j.fishres.2007.08.013.
Bandilla, M., Valtonen, E.T., Suomalainen, L. R., Aphalo, P. J., & Hakalahti, T. (2006) . A link between ectoparasite infection and susceptibility to bacterial disease in rainbow trout. International Journal for Parasitology, 36 (9), 987–991. https://doi.org/10.1016/j.ijpara.2006.05.001
Barber, I., & Poulin, R. (2002). Interactions between fish, parasites and disease. In P. J. B. Hart, & J. D. Reynolds (Eds.), The handbook of fish and fisheries (pp. 359-389). Blackwell Science.
Barker, S. E., Bricknell, I. R., Covello, J., Purcell, S., Fast, M. D., Wolters, W., & Bouchard, D. A. (2019). Sea lice, Lepeophtheirus salmonis (Krøyer, 1837), infected Atlantic salmon (Salmo salar L.) are more susceptible to infectious salmon anemia virus. PloS One, 14(1), e0209178. https://doi.org/10.1371/journal.pone.0209178
Bateman, A. W., Peacock, S. J., Connors, B., Polk, Z., Berg, D., Krkosek, M., & Morton, A. (2016). Recent failure to control sea louse outbreaks on salmon in the Broughton Archipelago, British Columbia. Canadian Journal of Fisheries and Aquatic Sciences, 73(8), 1164–1172 (2016). https://doi.org/10.1139/cjfas-2016-0122
Begon, M., Harper, J. L., & Townsend, C. R. (1990). Ecology: individuals, populations and communities (2nd ed.). Blackwell Scientific.
Bergh, O., Nilsen, F., & Samuelsen, O. B. (2001). Diseases, prophylaxis and treatment of the Atlantic halibut Hippoglossus hippoglossus: a review. Diseases of Aquatic Organisms, 48(1), 57-74. https://doi.org/10.3354/dao048057
Boxshall, G. A. (1974). Infections with parasitic copepods in North Sea marine fishes. Journal of the Marine Biological Association of the United Kingdom, 54(2), 355-372. https://doi.org/10.1017/S0025315400058598
Boxshall, G. A. (2005). Copepoda (Copepods). In R. Kohler (Ed.), Marine parasitology (pp. 123–138). CSIRO Publishing.
Boxaspen, K. (1997). Geographical and temporal variation in abundance of salmon lice (Lepeophtheirus salmonis) on salmon (Salmo salar L.). ICES Journal of Marine Science, 54(6), 1144-1147. https://doi.org/10.1016/S1054-3139(97)80020-3
Brandal, P. O., & Egidius, E. (1979). Treatment of salmon lice (Lepeophtheirus salmonis Krøyer 1838) with Neguvon® - description of method and equipment. Aquaculture, 18(2), 183-188. https://doi.org/10.1016/0044-8486(79)90030-9
Bron, J. E., Sommerville, C., Jones, M., & Rae, G. H. (1991). The settlement and attachment of early stages of the salmon louse, Lepeophterius salmonis (Copepoda: Caligidae) on the salmon host Salmo salar. Journal of Zoology, 224(2), 201-212. https://doi.org/10.1111/j.1469-7998.1991.tb04799.x
Bush, A. O., Fernández, J. C., Esch, G. W., & Seed, J. R. (2001). Parasitism: the diversity and ecology of animal parasites. Cambridge University Press.
Campana, S. E. (2001). Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods. Journal of Fish Biology, 59(2), 197-242. https://doi.org/10.1111/j.1095-8649.2001.tb00127.x.
Carlander, J. M. (1987). A history of scale age and growth studies of North American fresh water fish. In R. C. Summerfelt, & G. E. Hall (Eds.), Age and growth of fish (pp.3-14). Iowa State University Press.
Casselman, J. M . (1987). Determination of age and growth. In A. H. Weatherley, & H. S. Gill (Eds.), The biology of fish growth (pp. 209-242). Academic Press.
Costello, M. J. (1993). Review of methods to control sea lice (Caligidae: Crustacea) infestations on salmon (Salmo salar) farms. In A. G. Geoffrey., & D. Danielle (Eds.), Pathogens of wild and farmed fish: sea lice (pp. 190-211). Ellis Horwood.
Costello, M. J., & Boxshall, G. A. (2000). Control of sea lice on salmon farm. Aquaculture Research, 31(11), 793–794. https://doi.org/10.1046/j.1365-2109.2000.00508.x
Costello, M. J. (2006). Ecology of sea lice parasitic on farmed and wild fish. Trends in Parasitology, 22(10), 475-483. https://doi.org/10.1016/j.pt.2006.08.006
Dobson, A. J. (2002). An introduction to generalized linear model (2nd ed.). Chapman and Hall.
Dobson, A. P., & May, R. M. (1987). The effects of parasites on fish populations: theoretical aspects. International Journal for Parasitology, 17(2), 363–370. https://doi.org/10.1016/0020-7519(87)90111-1
Dolgun, A., & Demirhan, H. (2017). Performance of nonparametric multiple comparison tests under heteroscedasticity, dependency, and skewed error distribution. Communications in Statistics - Simulation and Computation, 46(7), 5166-5183. https://doi.org/10.1080/03610918.2016.1146761
Dunn, P. K., & Smyth, K. G. (1996). Randomized quantile residuals. Journal of Computational and Graphical Statistics, 5(3), 236-244. https://doi.org/10.2307/1390802
FAO (Food and Agriculture Organization of the United Nations). (2006). Fisheries and aquaculture statistics. http://www.fao.org/fi/statist/statist.asp
Fast, M. D. (2014). Fish immune responses to parasitic copepod (namely sea lice) infection. Developmental and Comparative Immunology, 34(2), 300-312. https://doi.org/10.1016/j.dci.2013.08.019
Feng, C., Li, L., & Sadeghpour, A. (2020). A comparison of residual diagnosis tools for diagnosing regression models for count data. BMC medical research methodology, 20(1), 175. https://doi.org/10.1186/s12874-020-01055-2
Fulton, T. W. (1904). The rate of growth of fishes. Fisheries Board of Scotland.
Friendly, M., & Denis, D. (2005). The early origins and development of the scatterplot. Journal of the History of the Behavioral Sciences, 41(2), 103–130. https://doi.org/10.1002/jhbs.20078
Fukushima, S. (1979). Synoptic analysis of migration and fishing conditions of saury in Northwest Pacific Ocean. Bulletin of Tohoku Regional Fisheries Research Laboratory, 41, 1-70. (In Japanese with English abstract)
Gargan, P., Karlsbakk, E., Coyne, J., Davies, C., & Roche, W. (2016). Sea lice (Lepeophtheirus salmonis and Caligus elongatus) infestation levels on sea trout (Salmo trutta L.) around the Irish Sea, an area without salmon aquaculture. ICES Journal of Marine Science, 73(9), 2395-2407. https://doi.org/10.1093/icesjms/fsw044
Gonzales, L., & Carvajal, J. (2003). Life cycle of Caligus rogercresseyi, (Copepoda: Caligidae) parasite of Chilean reared salmonids. Aquaculture, 220(1), 101-117. https://doi.org/10.1016/S0044-8486(02)00512-4
Gordeev, I., Grigorov, I., & Afanasyev, P. (2017). Infection of the pacific saury Cololabis saira by acanthocephalans in the Kuril Islands area. Parazitologiya, 51, 51–56.
Gregori, M., Aznar, F., Abollo, E., Roura, Á., González, Á., & Pascual, S. (2012). Nyctiphanes couchii as intermediate host for the acanthocephalan Bolbosoma balaenae in temperate waters of the NE Atlantic. Diseases of Aquatic Organisms, 99(1), 37–47. https://doi.org/10.3354/dao02457
Gregori, M., Aznar, F., Abollo, E., Roura, A., González, Á., & Pascual, S. (2013). Nyctiphanes couchii as intermediate host for Rhadinorhynchus sp. (Acanthocephala, Echinorhynchidae) from NW Iberian Peninsula waters. Diseases of Aquatic Organisms, 105, 9–20. https://doi.org/10.3354/dao02611
Hamre, L. A., Bui, S., Oppedal, F., Skern, M. R., & Dalvin, S. Development of the salmon louse Lepeophtheirus salmonis parasitic stages in temperatures ranging from 3 to 24°C. Aquaculture Environment Interaction, 11, 429–443. https://doi.org/10.3354/aei00320
Hatanaka, M. (1955). Biological studies on the population of the saury, Cololabis saira (Brevoot). Tohoku Journal of Agricultural Research, 6, 227–268.
Hayward, C. J., Andrews, M., & Nowak, B. F. (2011) . Introduction: Lepeophtheirus salmonis - a remarkable success story. In S. R. M. Jones, & R. J. Beamish (Eds.), Salmon lice: an integrated approach to understanding parasite abundance and distribution (pp. 1-28). Wiley-Blackwell.
Heuch, P. A., Knutsen, J. A., Knutsen, H., & Schram, T. (2002). Salinity and temperature effects on sea lice over-wintering on sea trout (Salmo trutta) in coastal areas of the Skagerrak. Journal of the Marine Biological Association of the United Kingdom, 82(5), 887–892. https://doi.org/10.1017/s0025315402006306
Ho, J. S. (2000). The major problem of cage aquaculture in Asia relating to sea lice. In I. C. Liao, & C. K. Lin (Eds.), Cage aquaculture in Asia (pp. 13-19). Asian Fisheries Society and World Aquaculture Society.
Hotta, H. (1960). On the analysis of the population of the saury (Cololabis saira) based on the scales and the otolith characters, and their growth. Bulletin of Tohoku Regional Fisheries Research, 16, 41–64. (In Japanese with English abstract).
Hotta, H. (1962). The parasitic of saury (Cololabis saira) infected with parasitic copepoda, Caligus macarovi Gussev, during fishing season in 1961. Bulletin of Tohoku Regional Fisheries Research, 21, 50–56. (In Japanese with English abstract)
Huang, W. B. (2007). Body length, weight, and condition factor of Pacific saury, Cololabis saira, from the landed size-classes of Taiwanese catch in comparison with Japanese statistics. Journal of Fisheries Society of Taiwan, 34(4), 353-360. https://doi.org/10.29822/JFST.200712.0004
Huang, W. B., Lo, N., Chiu, T. S., & Chen, C. S. (2007). Geographical distribution and abundance of Pacific saury, Cololabis saira (Brevoort) (Scomberesocidae), fishing stocks in the Northwestern Pacific in relation to sea temperatures. Zoological Studies, 46(6), 705-716.
Huang, W. B. (2010). Comparisons of monthly and geographical variations in abundance and size composition of Pacific saury between the high-seas and coastal fishing grounds in the northwestern Pacific. Fisheries Science, 76, 21–31.
https://doi.org/10.1007/s12562-009-0196-8
Huang, W. B., & Huang, Y. C. (2011). Parasitic copepod Caligus macarovi infection on Pacific saury in the Northwestern Pacific Ocean. Taiwan Journal of Biodiversity, 13(2), 153-165. (In Chinese with English abstract)
Huang, W. B., Chang, Y. J., & Hsieh, C. H. (2017). Summary of CPUE standardization report from Chinese Taipei. North Pacific Fisheries Commision. https://www.npfc.int/system/files/2021-09/NPFC-2021-SSC%20PS07-WP14%20Pacific%20saury%20CPUE%20standardization_Chinese%20Taipei.pdf
Huang, W. B., Hsieh, C. H., Chiu, T. S., Hsu, W. T., & Chen, C. S. (2019). CPUE standardization for the Pacific saury, Cololabis saira, fishery in the Northwest Pacific. Journal of Marine Science and Technology, 27(5), 472-480. https://doi.org/10.6119/JMST.201910_27(5).0009
Hubbs, C. L., & Wisner, R. L. (1980). Revision of the sauries (Pisces, Scomberesocidae) with descriptions of two new genera and one new species. Fishery Bulletin, 77, 521–566. https://biostor.org/reference/59622
Huck, S. W. (2004). Reading statistics and research (4th ed.). Allyn and Bacon.
Inoue, M. S., & Hughes, S. E. (1971). Pacific saury (Cololabis saira): a review of stocks, harvesting techniques, processing methods and markets. Bulletin of Engineering Experiment Station, 43, 1–102. http://hdl.handle.net/1957/32343
Ito, S., Kishi, M., Kurita, Y., Oozeki, Y., Yamanaka, Y., Megrey, B., & Werner, F. (2004). Initial design for a fish bioenergetics model of Pacific saury coupled to a lower trophic ecosystem model. Fisheries Oceanography, 13(s1), 111–124.
https://doi.org/10.1111/j.1365-2419.2004.00307.x
Iwahashi, M., Isoda, Y., Ito, S. I., Oozeki, Y., & Suyama, S. (2006). Estimation of seasonal spawning ground locations and ambient sea surface temperatures for eggs and larvae of Pacific saury (Cololabis saira) in the Northwestern Pacific. Fisheries Oceanography, 15(2), 125–138. https://doi.org/10.1111/j.1365-2419.2005.00384.x
James, J., Bradley, H. A., Hillman, R., Elsmere, P., Reading, A. J, & Williams, C. F. (2021). Sea lice infections on wild Atlantic salmon and sea trout in the River Tamar, UK: a temporal study. Diseases of Aquatic Organisms 143, 119-127. https://doi.org/10.3354/dao03558
Johnson, S., & Albright, L. (1991). Development, growth, and survival of Lepeophtheirus salmonis (Copepoda: Caligidae) under laboratory conditions. Journal of the Marine Biological Association of the United Kingdom,71(2), 425–436. https://doi.org/10.1017/S0025315400051687
Johnson, S. C., & Albright, L. J. (1992). Comparative susceptibility and histopathology of the response of native Atlantic, Chinook and Coho salmon to experimental infection with Lepeophtheirus salmonis (Copepoda: Caligidae). Diseases of Aquatic Organisms, 14, 179-193. https://doi.org/10.3354/DAO014179
Johnson, S. C., Treasurer, J. W., Bravo, S., Nagasawa, K., & Kabata, Z. (2004). A review of the impact of parasitic copepods in marine aquaculture. Zoological Studies, 43(2), 229-243.
Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: a review and recent developments. Philosophical Transactions of Royal Society A: Mathematical, Physical, and Engineering Sciences, 374(2065), 1-16. http://doi.org/10.1098/rsta.2015.0202
Kabata, Z. (1970). Crustacea as enemies of fishes. In S. F. Snieszko, & H. R. Axelrod (Eds.), Diseases of fishes (pp. 1-171). T. F. H. Publications, Inc.
Khan, R. A. (1976). The life cycle of Trypanosoma murmanensis Nikitin. Canadian Journal of Zoology, 54(11), 1840-1849. https://doi.org/10.1139/z76-214
Khan, R. A. (1988). Experimental transmission, development, and effects of a parasitic copepod, Lernaeocera branchialis, on Atlantic cod, Gadus morhua. The Journal of Parasitology, 74(4), 586–599.
Khan, R. A. (2012). Host-parasite interactions in some fish species. Journal of Parasitology Research, 2012, 1-7. https://doi.org/10.1155/2012/237280
Kimura, K. (1956). The standard length of the Pacific saury, Cololabis saira (Brevoort). Bulletin of Tohoku Regional Fisheries Research Laboratory, 7, 1–11 (in Japanese with English abstract)
Klimpel, S., Kuhn, T., Münster, J., Dörge, D. D., Klapper, R., & Kochmann, J. (2019). Parasites of marine fish and cephalopods. Springer. https://doi.org/10.1007/978-3-030-16220-7_1

Kosaka, S. (2000). Life history of the Pacific saury Cololabis saira in the Northwest Pacific and consideration on resource fluctuations based on it. Bulletin of Tohoku National Fisheries Research Institute, 63, 1–96. https://ci.nii.ac.jp/naid/10022591414/en/ (In Japanese)
Kurita, Y., Nemoto, Y., Oozeki, Y., Hayashizaki, K. I., & Ida, H. (2004). Variations in patterns of daily changes in otolith increment widths of 0+ Pacific saury, Cololabis saira, off Japan by hatch date in relation to the northward feeding migration during spring and summer. Fisheries Oceanography, 13(s1), 54–62.
https://doi.org/10.1111/j.1365-2419.2004.00312.x
Laurs, R. M., & McCauley, J. E. (1964). A new acanthocephalan from the Pacific saury. The Journal of Parasitology, 50(4), 569-571. https://doi.org/10.2307/3275623
Le Cren, E. D. (1951). The length-weight relationship and seasonal cycle in gonad weight and condition in the perch (Perca fluviatilis). Journal of Animal Ecology, 20(2), 201-219. https://doi.org/10.2307/1540
Lê, S., Josse, J., & Husson, F. (2008). FactoMineR: an R package for multivariate analysis. Journal of Statistical Software, 25(1), 1–18. https://doi.org/10.18637/jss.v025.i01
Leech, N. L., Barrett, K. C., & Morgan, G. A. (2005). SPSS for intermediate statistics: use and interpretation (2nd ed.). Lawrence Erlbaum Associates.
Lin, C. L., Ho, J. S., & Chen, S. N. (1994). Two species of Caligus (Copepoda, Caligidae) parasitic on black sea bream (Acanthopagrus schlegeli) cultured in Taiwan. Fish Pathology, 29(4), 253-264. https://doi.org/10.3147/jsfp.29.253
Lin, C. L., Ho, J. S., & Chen, S. N. (1996). Developmental stages of Caligus epidemicus Hewitt, a copepod parasite of tilapia cultured in brackish water. Journal of Natural History, 30(5), 661-684. https://doi.org/10.1080/00222939600770371
Lin, C. L., & Ho, J. S. (2003). Two species of rare sea lice (Copepoda, Caligidae) on marine fishes of Taiwan. Journal of the Fisheries Society of Taiwan, 30(2), 147-158. https://doi.org/10.29822/JFST.200306.0004
Liu, S., Liu, Y., Li, J., Cao, C., Tian, H., Li, W., Tian, Y., Watanabe, Y., Lin, L., & Li, Y. (2022). Effects of oceanographic environment on the distribution and migration of Pacific saury Cololabis saira during main fishing season. Scientific Reports, 12, 13585. https://doi.org/10.1038/s41598-022-17786-9
Maran, B. A. V., Moon, S. Y., Ohtsuka, S., Oh, S. Y., Soh, H. Y., Myoung, J. G., Iglikowska, A., & Boxshall, A. G. (2013). The caligid life cycle: new evidence from Lepeophtheirus elegans reconciles the cycles of Caligus and Lepeophtheirus (Copepoda: Caligidae). Parasite, 20, 1-22. https://doi.org/10.1051/parasite/2013015
Margolis, L., Esch, G. W., Holmes, J. C., Kuris, A. M., & Schad, G. A. (1962). The use of ecological terms in parasitology (report of an ad hoc committee of the American society of parasitologist). Journal of Parasitology, 68(1), 131-133. https://doi.org/10.2307/3281335
Margolis, L., Kabata, Z., & Parker, R. (1975). Calatogue and synopsis of Caligus, a genus of Copepoda (Crustacea) parasitic on fishes. Bulletin of the Fisheries Research Board of Canada, 192, 1-117.
Marcogliese, D. J. (2004). Parasites: small players with crucial roles in the ecological theater. EcoHealth, 1(2), 151-164. https://doi.org/10.1007/s10393-004-0028-3
McKenzie, E., Gettinby, G., McCart, K., & Revie, C. W. (2004). Time-series models of sea lice Caligus elongatus (Nordmann) abundance on Atlantic salmon Salmo salar L. in Loch Sunart, Scotland. Aquaculture Research, 35(8), 764-772.
https://doi.org/10.1111/j.1365-2109.2004.01099.x
Midway, S., Robertson, M., Flinn, S., & Kaller, M. (2020). Comparing multiple comparisons: practical guidance for choosing the best multiple comparisons test. PeerJ, 8, e10387. https://doi.org/10.7717/peerj.10387
Moreira, M., Silva, A. C., Barata, M., Ferreira, P. P., & Soares, F. (2019). Influence of age on stress responses of white seabream to amyloodiniosis. Fishes, 4(2), 26. https://doi.org/10.3390/fishes4020026
Moser, B. K., & Stevens, G. R. (1992). Homogeneity of variance in two-sample means test. The American Statistician, 46(1), 19-21. https://doi.org/10.2307/2684403
Mukai, D., Kishi, M. J., Ito, S., & Kurita, Y. (2007). The importance of spawning season on the growth of Pacific saury: a model-based study using NEMURO.FISH. Ecological Modelling, 202(1), 165–173. https://doi.org/https://doi.org/10.1016/j.ecolmodel.2006.08.022
Muller, M. (2011). Generalized linear model. In J. E. Gentle, W. K. Hardle, & Y, Mori (Eds.), Handbook of computational statistics: concept and method (2nd ed.). Springer.
Mustafa, A., Speare, D. J., Daley, J., Conboy, G. A., & Burka, J. F. (2000). Enhanced susceptibility of seawater cultured rainbow trout, Oncorhynchus mykiss (Walbaum), to the microsporidian Loma salmonae during a primary infection with the sea louse, Lepeophtheirus salmonis. Journal of Fish Diseases, 23(5), 337-341. https://doi.org/10.1046/j.1365-2761.2000.00235.x
Mhyre, G. (2021, September). Temperature-dependent development of embryonic, planktonic, and parasitic stages of the sea lice Caligus elongatus. Master’s thesis, The university in Bergen.
https://bora.uib.no/bora-xmlui/bitstream/handle/11250/2827084/Thesis-GM.pdf?sequence=1&isAllowed=y
Nagasawa, K. (1984a). The finding of Pennella sp. (Copepoda: Pennellidae) on the saury (Cololabis saira) in the western and central North Pacific Ocean and the Okhotsk Sea. Fish Pathology, 18(4), 205-208.
Nagasawa, K. (1984b). Crustacean parasites of the saury, Cololabis saira: a review. Fish Pathology 19: 57-63. (In Japanese)
Nagasawa, K., Imai, Y., & Ishida, K. (1988). Long-term changes in the population size and geographical distribution of Pennella sp. (Copepoda) on the saury (Cololabis saira) in the western North Pacific Ocean and adjacent seas. Hydrobiologia, 167, 571-577. https://doi.org/10.1007/BF00026355
Natsume, M., Mori, Y., & Tuji, K. (2009). Migratory origin of Pacific saury (Cololabis saira), caught by drift net fishing in summer in the eastern waters off Hokkaido. Scientific Reports of the Hokkaide Fisheries Experimental Station, 74: 1-11. (In Japanese with English abstract)
Nelder, J. A., & Wedderburn, R. W. M. (1972). Generalized linear models. Journal of the Royal Statistical Society. Series A (General), 135(3), 370-384. https://doi.org/10.2307/2344614
NPFC (North Pacific Fisheries Commission). (2017, April). 2nd Meeting report. NPFC-2017-SC02-final report (pp. 1-97). www.npfc.int
NPFC (North Pacific Fisheries Commission). (2018, April). 3rd Meeting report. NPFC-2018-SC03-final report (pp. 1-44). www.npfc.int
NPFC (North Pacific Fisheries Commission). (2019, April). 4th Meeting report. NPFC-2019-SC04-final report (pp. 1-138). www.npfc.int
Nishimura, S. (1964). Preliminary note on the so-called "louse-bit" saury in the Japan Sea. Publications of the Seto Marine Biological Laboratory, 12(4), 295-305.
Odate, K. (1994). Zooplankton biomass and its long-term variation in the western North Pacific Ocean, Tohoku Sea area. Bulletin of Tohoku National Fisheries Research Institute, 56, 115-173. (In Japanese with English abstract).
Odate, K. (1977). On the feeding habits of the Pacific saury Cololabis saira, Brevoort. Bulletin of Tohoku Regional Fisheries Research Laboratory, 38, 75-88. (in Japanese, with English Abstract)
Oozeki, Y., Watanabe, Y., & Kitagawa, D. (2004). Environmental factors affecting larval growth of Pacific saury Cololabis saira in the Northwestern Pacific Ocean. Fisheries Oceanography, 13(s1), 44–53. https://doi.org/10.1111/j.1365-2419.2004.00317.x
Pike, A. W., & Wadsworth, S. L. (1999). Sealice on salmonids: their biology and control. Advances in Parasitology, 44, 233–337.
https://doi.org/10.1016/s0065-308x(08)60233-x
Poulin, R. (2011). Evolutionary ecology of parasites (2nd ed.). Princeton University Press.
Price, P. W. (1980). Evolutionary biology of parasites. Princeton University Press.
R Core Team. (2021). R: a language and environment for statistical computing. R Foundation for Statistical Computing. Available at: https://www.R-project.org/.
Rikardsen, A. H. (2004). Seasonal occurrence of sea lice (Lepeophtheirus salmonis) on sea trout in two north Norwegian fjords. Journal of Fish Biology, 65(3), 711-722. https://doi.org/10.1111/j.0022-1112.2004.00478.x
Rohde, K. (2005). Marine parasitology. CSIRO Publishing.
Roubal, F. R. (1994). Histopahtology caused by Caligus epidemicus Hewitt (Copepoda: Caligidae) on captive Acanthopagrus australis (Gunther) (Pisces: Sparidae). Journal of Fish Diseases, 17(6), 631-640. https://doi.org/10.1111/j.1365-2761.1994.tb00261.x
Samsing, F., Oppedal, F., Johansson, D., Bui, S., & Dempster, T. (2014). High host densities dilute sea lice Lepeophtheirus salmonis loads on individual Atlantic salmon, but do not reduce lice infection success. Aquaculture Environment Interactions, 6(1), 81-89. https://doi.org/10.3354/aei00118
Samsing, F., Oppedal, F., Dalvin, S., Johnsen, I., Vagseth, D., & Dempster, T. (2016). Salmon lice (Lepeophtheirus salmonis) development times, body size, and reproductive outputs follow universal models of temperature dependence. Canadian Journal of Fisheries and Aquatic Sciences, 73(12), 1841-1851. https://doi.org/10.1139/cjfas-2016-0050
Sandvik, A. D., Dalvin, S., Mauritzen, R. S., & Skogen, M. D. (2021). The effect of a warmer climate on the salmon lice infection pressure from Norwegian aquaculture. ICES Journal of Marine Science, 78(5), 1849-1859. https://doi.org/10.1093/icesjms/fsab069
Sawyer, F. S. (2013). Analysis of variance: the fundamental concepts. Journal of Manual and Manipulative Therapy, 17(2), 27E-38E. https://doi.org/10.1179/jmt.2009.17.2.27E
Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: appropriate use and interpretation. Anaesthesia and Analgesia, 126(5), 1763-1768. https://doi.org/10.1213/ane.0000000000002864
Schram, T. A., Knutsen, J. A., Heuch, P. A., & Mo, T. A. (1998). Seasonal occurrence of Lepeophtheirus salmonis and Caligus elongatus (Copepoda: Caligidae) on sea trout (Salmo trutta) off southern Norway. ICES Journal of Marine Science, 55(2), 163–175. https://doi.org/10.1006/jmsc.1997.0357
Shimizu Y., Takahashi K., Ito, S. I., Kakehi, S., Tatebe, H., Yasuda, I., Kusaka, A., & Nakayama, T. (2009). Transport of subarctic large copepods from the Oyashio area to the mixed water region by the coastal Oyashio intrusion. Fisheries Oceanography ,18(5), 312-327. https://doi.org/10.1111/j.1365-2419.2009.00513.x
Student. (1908). The probable error of a mean. Biometrika, 6(1), 1-25.
Stumbo, A. D., James, C. T., Goater, C. P., & Wisenden, B. D. (2012). Shoaling as an anti parasite defence in minnows (Pimephales promelas) exposed to trematode cercariae. Journal of Animal Ecology, 81(6), 1319-1326.
https://doi.org/10.1111/j.1365-2656.2012.02012.x
Sugama, K. (1957). Analysis of population of the saury (Cololabis saira Brevoort) on the basis of character of otolith-I. Bulletin of Hokkaido Regional Fisheries Research Laboratory, 16, 1–12. (In Japanese with English abstract)
Sugisaki, H., & Kurita, Y. (2004). Daily rhythm and seasonal variation of feeding habit of Pacific saury (Cololabis saira) in relation to their migration and oceanographic conditions off Japan. Fisheries Oceanography, 13(s1), 63-73. https://doi.org/10.1111/j.1365-2419.2004.00310.x
Suyama, S. (2002). Study on the age, growth, and maturation process of Pacific saury (Cololabis saira) in the North Pacific. Bulletin of Fisheries Research Agency, 5, 68-113. (In Japanese with English abstract)
Suyama, S., Kurita, Y., & Ueno, Y. (2006). Age structure of Pacific saury (Cololabis saira) based on observations of the hyaline zones in the otolith and length frequency distributions. Fisheries Science, 72(4), 742–749.
https://doi.org/10.1111/j.1444-2906.2006.01213.x
Suyama, S., Oshima, K., Nakagami, M., & Ueno, Y. (2009). Seasonal change in the relationship between otolith radius and body length in age-zero Pacific saury (Cololabis saira). Fisheries Science, 75(2), 325–333. https://doi.org/10.1007/s12562-008-0039-z
Suyama, S., Nakagami, M., Naya, M., & Ueno, Y. (2012). Comparison of the growth of age-1 Pacific saury (Cololabis saira) in the western and the central North Pacific. Fisheries Science, 78(2), 277-285. https://doi.org/10.1007/s12562-011-0459-z
Suyama, S., Ozawa, H., Shibata, Y., Fuji, T., Nakagami, M., & Shimizu, A. (2019). Geographical variation in spawning histories of age-1 Pacific saury (Cololabis saira) in the North Pacific Ocean during June and July. Fisheries Science, 85(3), 495-507. https://doi.org/10.1007/s12562-019-01308-0
Suyama, S., Miyamoto, H., & Fuji, T. (2021). Infection by the parasitic copepod Pennella sp. induces mortality in the Pacific saury (Cololabis saira). Fisheries Science, 87(2), 187–202. https://doi.org/10.1007/s12562-020-01490-6
Taki, K. (2011). Distribution and population structure of Thysanoessa inspinata and its dominance among euphausiids off northeastern Japan. Journal of Plankton Research, 33(6), 891-906. https://doi.org/10.1093/plankt/fbq162
Tesch, F. W. (1968). Age and growth. In W. E. Ricker (Ed.), Methods for assessment of fish production in fresh waters (pp. 93-123). Blackwell Scientific.
Tian, Y., Akamine, T., & Suda, M. (2003). Variations in the abundance of Pacific saury (Cololabis saira) from the northwestern Pacific in relation to oceanic-climate changes. Fisheries Research, 60(2), 439-454. https://doi.org/10.1016/S0165-7836(02)00143-1
Tingley, G. A., Ives, M. J., & Russell, I. C. (1997). The occurrence of lice on sea trout (Salmo trutta L.) captured in the sea off the East Anglian coast of England. ICES Journal of Marine Science, 54(6), 1120-1128. https://doi.org/10.1016/S1054-3139(97)80017-3
Tseng, C. T., Su, N. J., Sun, C. L., Punt, A. E., Yeh, S. Z., Liu, D. C., & Su, W. C. (2013). Spatial and temporal variability of the Pacific saury (Cololabis saira) distribution in the northwestern Pacific Ocean. ICES Journal of Marine Science, 70(5), 991–999. https://doi.org/10.1093/icesjms/fss205
Tseng, C. T., Sun, C. L., Belkin, I. M., Yeh, S. Z., Kuo, C. L., & Liu, D. C. (2014). Sea surface temperature fronts affect distribution of Pacific saury (Cololabis saira) in the Northwestern Pacific Ocean. Deep Sea Research Part II: Topical Studies in Oceanography,107, 15-21. https://doi.org/10.1016/j.dsr2.2014.06.001
Tully, O., & Nolan, D. T. (2002). A review of the population biology and host-parasite interactions of the sea louse Lepeophtheirus salmonis (Copepoda: Caligidae). Parasitology, 124(7), 165–182. https://doi.org/10.1017/s0031182002001889
Uchida, A., Kawakami, Y., Yuzu, S., Kishikawa, S., & Kuramochi, T. (1998). Prevalence of parasites and histopathology of parasitisation in minke whales from the Western North Pacific Ocean and Southern Sea of Okhotsk. Report of the International Whaling Commission, 48, 475-479.
Vasconcelos, H. M. C. G., & Marcos, T. D. (2016). Host parasite interaction between crustaceans of six fish species from the Brazilian Amazon. Acta Scientarum, 38(1), 113-123. https://doi.org/10.4025/actascibiolsci.v38i1.29601
Vogt, W. P. (1999). Dictionary of statistics and methodology: a nontechnical guide for the social sciences (2nd ed.). Sage Publishing.
Walter, T. C., & Boxshall, G. A. (2010). Caligidae. World copepods database. http://www.marinespecies.org/aphia.php?p=taxdetails&id=135513
Walvaren, N., Fjortoft, H. B., & Stene, A. (2021). Less is more: negative relationship between biomass density and sea lice infestation in marine salmon farming. Aquaculture, 539(2021), 736602. https://doi.org/10.1016/j.aquaculture.2021.736602
Watanabe, Y., & Lo, N. C. H. (1989). Larval production and mortality of Pacific saury (Cololabis saira) in the northwestern Pacific Ocean. Fishery Bulletin ,87, 601-613.
Watanabe, Y., Oozeki, Y., & Kitagawa, D. (1997). Larval parameters determining pre schooling juvenile production of Pacific saury (Cololabis saira) in the northwestern Pacific. Canadian Journal of Fisheries and Aquatic Sciences, 54(5), 1067–1076. https://doi.org/10.1139/f97-013
Watanabe, K., Tanaka, E., Yamada, S., & Kitakado, T. (2006). Spatial and temporal migration modeling for stock of Pacific saury Cololabis saira (Brevoort), incorporating effect of sea surface temperature. Fisheries Science, 72(6), 1153–1165. https://doi.org/10.1111/j.1444-2906.2006.01272.x.
West, R. M. (2021). Best practice in statistics: use the Welch t-test when testing the difference between two groups. Annals of Clinical Biochemistry,58(4), 267-269. https://doi.org/10.1177/0004563221992088
Williams, E. H., & Williams, L. B. (2019). Life cycle and life history strategies of parasitic crustacea. In N. J. Smit, N. L. Bruce, & K. A. Hadfield (Eds.), Parasitic crustacea state of knowledge and future trends (pp. 179-266). Springer.
Wood, C. L., & Lafferty, K. D. (2014). How have fisheries affected parasite communities?. Parasitology, 142(1), 134-144. https://doi.org/10.1017/s003118201400002x
Wootten, R., Smith, J., & Needham, E. (1982). Aspects of the biology of the parasitic copepods Lepeophtheirus salmonis and Caligus elongatus on farmed salmonids, and their treatment. Proceedings of the Royal Society of Edinburgh, Section B: Biological Sciences, 81(3), 185-197. https://doi.org/10.1017/s0269727000003389
Wootton, R. J. (1990). Ecology of teleost fishes. Chapman and Hall. https://doi.org/10.1007/978-94-009-0829-1_8
Yasuda, I., & Kitagawa, D. (1996). Locations of early fishing grounds of saury in the northwestern Pacific. Fisheries Oceanography, 5(1), 63-69. https://doi.org/10.1111/j.1365-2419.1996.tb00018.x
Zelmer, D. A. (1998). An evolutionary definition of parasitism. International Journal for Parasitology, 28(3), 531-533. https://doi.org/10.1016/S0020-7519(97)00199-9
(此全文限內部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *