帳號:guest(3.147.140.18)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:羅昀暄
作者(英文):Yun-Hsuan Lo
論文名稱:不同風化條件的醫療口罩之微塑膠釋出及其對中南美白對蝦(Litopenaeus vannamei)之行為影響
論文名稱(英文):Microplastics released from surgical masks with different weathering conditions and their behavioral effects to whiteleg shrimp (Litopenaeus vannamei)
指導教授:陳德豪
指導教授(英文):Te-Hao Chen
口試委員:陳德豪
柯風溪
林嘉瑋
口試委員(英文):Te-Hao Chen
Fung-Chi Ko
Chia-Wei Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610963002
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:82
關鍵詞:嚴重特殊傳染性肺炎醫療口罩微纖維中南美白對蝦行為
關鍵詞(英文):COVID-19surgical maskmicrofiberswhiteleg shrimpbehavior
相關次數:
  • 推薦推薦:0
  • 點閱點閱:4
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
醫療口罩(Surgical masks)是常見的個人防護用品,在嚴重特殊傳染性肺炎(COVID-19)大流行期間,全球對口罩的需求急遽增加。口罩的結構通常有內、中、外三層,材質主要為聚丙烯(PP),是一種常見的塑膠材質。隨著口罩的大量生產與使用,已有研究顯示,口罩會釋放出大量的微塑膠,可能成為海洋中新的塑膠汙染來源。當陸地上被拋棄的口罩進到海洋時,首當其衝的就是河口沿岸地區。廢棄的口罩在海洋中經過長時間的風化及微生物附著,將沉降在海底,影響底棲的海洋生物,例如甲殼類等。中南美白對蝦(Litopenaeus vannamei),簡稱白蝦,原棲地是沿海的沙底質,屬於雜食性生物,且是現有養殖蝦類排名第一的蝦種,因此選用白蝦作為實驗生物。本實驗室之前的研究顯示白蝦會攝入微纖維,本研究想進一步了解廢棄醫療口罩釋出的微纖維對白蝦的影響,以全新的口罩、陽光照射兩個月的口罩及浸泡在戶外海水池兩個月的口罩為實驗材料,探討(1)不同風化條件下口罩的物理變化與釋放出的微塑膠、(2)白蝦對不同風化條件的口罩之行為反應(3)白蝦長期暴露於口罩的生長與行為影響(4)口罩釋放的微塑膠在白蝦組織內的生物累積。我們假設口罩在戶外日曬或浸泡在戶外海水池中一段時間後,會釋放更多微塑膠。而白蝦長期暴露於有不同風化條件的口罩本體的水體中,可能影響白蝦的生長與行為,且導致微塑膠透過生物累積出現在蝦子的組織中。結果顯示,日曬組口罩的表面結構較鬆散,釋出的微纖維量最多。白蝦在第一次接觸到醫療口罩時,海水組白蝦的總移動時間顯著較低,總移動距離則有降低的趨勢,可能跟海水組口罩上附著生物所散發出的氣味有關。長期暴露於不同風化條件的口罩4週後,日曬組白蝦的總移動距離及總移動時間皆顯著低於新口罩組,可能因為日曬組釋出的微纖維較多,長期暴露之下影響了白蝦的運動行為;海水組白蝦的攝食行為則較為遲緩,推測為長期受口罩上附著的氣味所影響。而在生物累積上,不論是鰓、消化道或是肌肉組織,各組別都沒有顯著的差異。生長方面,各組間也無顯著差異。顯示在暴露於廢棄醫療口罩時,白蝦的行為改變比生理反應敏感。
Surgical masks (SMs) are common personal protective equipment. Since the outbreak of the pandemic of COVID-19, the global demand for masks has been increasing. The structure of the mask usually consists of inner, middle, and outer layers, and the material is mainly polypropylene (PP), which is a common plastic material. With the mass production and use of masks, studies have shown that masks can release a large number of microplastics, which may become a new source of plastic pollution in the ocean. When the masks discarded on land enter the ocean, it is the estuary and coastal areas that bear the brunt. After a long time of weathering and microbial attachment in the ocean, the discarded masks will settle on the seabed and affect benthic marine life, such as crustaceans. Whiteleg shrimp (Litopenaeus vannamei), are widely farmed worldwide. Their original habitats are coastal areas, which are prone to plastic pollution. Therefore, whiteleg shrimp was selected as the experimental organism in this study. Previous studies in our laboratory have shown that whiteleg shrimp would ingest microfibers, so this study aims to further address the impact of microfibers released from discarded masks on whiteleg shrimp. The shrimp were exposed to brand new SMs, SMs chronically exposed to sunlight, and SMs chronically immersed in an outdoor seawater pond. We specifically aim to characterize (1) physical alteration and microplastic release from SMs of different weathering conditions, (2) behavioral interaction between shrimp and SMs, (3) growth and behavioral effects of chronic exposure to SMs, and (4) bioaccumulation of microplastics released from SMs in shrimp tissues. We hypothesize that SMs exposed to sunlight or soaked in an outdoor seawater pool would release more microplastics. Also, chronic exposure to SMs may affect shrimp growth and behavior, and cause microplastic bioaccumulation in tissues. The results showed that the surface structure of the masks in the sun-exposed group was relatively loose, and released more microfibers. When the shrimp contact with the surgical mask for the first time, the active time of the white shrimp in the seawater group was significantly lower. The total distance moved tended to decrease, which may be related to the attached organisms on the masks in the seawater group. After long-term exposure to masks under different weathering conditions for four weeks, the total moving distance and total moving time of the shrimp in the sun-exposed group were significantly lower than those in the new mask group. The feeding behavior of the shrimp in the seawater group was slower. The behavioral effects observed after the long-term exposure may be related to higher release levels of microplastics from SMs of sun-exposed group. In terms of bioaccumulation in the gill, digestive tract, or muscle tissues, there was no significant difference among the groups. There was also no significant difference among the groups for growth. Our results suggest that the behavioral changes of whiteleg shrimps were more sensitive than the physiological responses when exposed to discarded surgical masks.
第一章 前言 1
1.1 微纖維汙染 1
1.2 COVID-19大流行產生醫療口罩汙染問題 3
1.2.1 野外醫療口罩數量及分布 3
1.2.2 目前實驗室對醫療口罩之相關研究 5
1.3 微纖維對甲殼類的生態毒理研究 8
1.4 行為生態毒理學 9
1.5 實驗物種 10
1.6 實驗目標 11
第二章 研究材料與方法 13
2.1 實驗動物飼養與照顧 13
2.2 實驗設計 14
2.3 實驗用口罩製備 15
2.3.1 品牌選擇與材質鑑定 15
2.3.2 不同風化條件的口罩 15
2.4 口罩表面結構與釋出微塑膠 17
2.5 白蝦第一次接觸不同風化條件口罩的行為反應 18
2.5.1 實驗動物準備 18
2.5.2 實驗設置與前處理 19
2.5.3 白蝦與醫療口罩交互作用及泳動行為拍攝 19
2.6 長期暴露實驗 21
2.6.1 暴露實驗設計 21
2.6.2 拍攝攝食行為使用之食物凍製作 22
2.6.3 攝食及泳動行為拍攝 22
2.6.4 生長參數測量 23
2.7 行為分析 24
2.8 生物累積 26
2.8.1 實驗動物解剖 26
2.8.2 器官組織消化、過濾 27
2.9 微塑膠染色 27
2.10 微塑膠計數 28
2.11 汙染物控制 29
2.12 統計分析 30
第三章 結果 31
3.1 實驗動物 31
3.2 口罩材質 31
3.3 不同風化條件下的醫療口罩 33
3.3.1 風化條件 33
3.3.2 表面結構 35
3.3.3 微纖維釋出量 37
3.4 白蝦第一次接觸到不同風化條件醫療口罩的行為 40
3.5 長期暴露下不同風化條件醫療口罩對白蝦的亞致死效應 43
3.5.1 行為分析 43
3.5.2 生長 46
3.5.3 各部位微纖維累積量 48
第四章 討論 51
4.1 醫療口罩在不同風化條件下釋出的微塑膠 51
4.1.1 不同方法使醫療口罩產生微塑膠的量不同 51
4.1.2 經日曬後的醫療口罩釋出較多塑膠 54
4.2 白蝦第一次接觸不同風化條件口罩之行為表現 55
4.2.1 探索行為 55
4.2.2 泳動行為 56
4.3 長期暴露微塑膠對甲殼類的影響 57
4.3.1 攝食行為 57
4.3.2 活動力 58
4.3.3 生長 59
4.4 微塑膠在生物體的累積 60
4.5 白蝦與甲殼類動物如何因應微塑膠汙染 61
第五章 結論與未來展望 63
參考文獻 65
附錄 75
附錄一、白蝦第一次接觸不同風化口罩之行為表現 75
附錄二、長期暴露於不同風化條件口罩4週後白蝦之行為表現 79
Al-Oufi, H., McLean, E., Kumar, A., Claereboudt, M., Al-Habsi, M., 2004. The effects of solar radiation upon breaking strength and elongation of fishing nets. Fisheries Research 66, 115-119.
Aljaibachi, R., Callaghan, A., 2018. Impact of polystyrene microplastics on Daphnia magna mortality and reproduction in relation to food availability. PeerJ 6, e4601.
Amaral-Zettler, L.A., Zettler, E.R., Mincer, T.J., 2020. Ecology of the plastisphere. Nature Reviews Microbiology 18, 139-151.
Andrady, A.L., 2011. Microplastics in the marine environment. Marine Pollution Bulletin 62, 1596-1605.
Andrady, A.L., 2015. Persistence of plastic litter in the oceans. Marine anthropogenic litter, pp. 57-72.
Andrady, A.L., 2017. The plastic in microplastics: A review. Marine Pollution Bulletin 119, 12-22.
Aragaw, T.A., 2020. Surgical face masks as a potential source for microplastic pollution in the COVID-19 scenario. Marine Pollution Bulletin 159.
Ardusso, M., Forero-López, A., Buzzi, N., Spetter, C., Fernández-Severini, M., 2021. COVID-19 pandemic repercussions on plastic and antiviral polymeric textile causing pollution on beaches and coasts of South America. Science of The Total Environment 763, 144365.
Artham, T., Sudhakar, M., Venkatesan, R., Nair, C.M., Murty, K., Doble, M., 2009. Biofouling and stability of synthetic polymers in sea water. International Biodeterioration & Biodegradation 63, 884-890.
Atema, J., 1995. Chemical signals in the marine environment: dispersal, detection, and temporal signal analysis. Proceedings of the National Academy of Sciences 92, 62-66.
Athey, S.N., Erdle, L.M., 2021. Are we underestimating anthropogenic microfiber pollution? A critical review of occurrence, methods, and reporting. Environmental Toxicology and Chemistry 41, 822-837.
Bardera, G., Owen, M.A.G., Façanha, F.N., Alcaraz-Calero, J.M., Sloman, K.A., Alexander, M.E., 2020. Assessing feed attractability in pacific white shrimp (Litopenaeus vannamei) using an automated tracking software. Aquaculture 529.
Bardera, G., Usman, N., Owen, M., Pountney, D., Sloman, K.A., Alexander, M.E., 2019. The importance of behaviour in improving the production of shrimp in aquaculture. Reviews in Aquaculture 11, 1104-1132.
Barnes, D.K., Galgani, F., Thompson, R.C., Barlaz, M., 2009. Accumulation and fragmentation of plastic debris in global environments. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1985-1998.
Barrows, A., Cathey, S.E., Petersen, C.W., 2018. Marine environment microfiber contamination: Global patterns and the diversity of microparticle origins. Environmental Pollution 237, 275-284.
Bauer, R.T., 1981. Grooming behavior and morphology in the decapod crustacea. Journal of Crustacean Biology 1, 153-173.
Briggs, M., Funge-Smith, S., Subasinghe, R., Phillips, M., 2004. Introductions and movement of Penaeus vannamei and Penaeus stylirostris in Asia and the Pacific. RAP publication 10, 92.
Browne, M.A., Crump, P., Niven, S.J., Teuten, E., Tonkin, A., Galloway, T., Thompson, R., 2011. Accumulation of microplastic on shorelines woldwide: sources and sinks. Environmental Science & Technology 45, 9175-9179.
Carney Almroth, B.M., Åström, L., Roslund, S., Petersson, H., Johansson, M., Persson, N.-K., 2018. Quantifying shedding of synthetic fibers from textiles; a source of microplastics released into the environment. Environmental Science and Pollution Research 25, 1191-1199.
Chapron, L., Peru, E., Engler, A., Ghiglione, J.F., Meistertzheim, A.L., Pruski, A.M., Purser, A., Vetion, G., Galand, P.E., Lartaud, F., 2018. Macro- and microplastics affect cold-water corals growth, feeding and behaviour. Scientific Reports 8, 15299.
Chen, K.-J., Chen, M.-C., Chen, T.-H., 2021a. Plastic ingestion by fish in the coastal waters of the Hengchun Peninsula, Taiwan: Associated with human activity but no evidence of biomagnification. Ecotoxicology and Environmental Safety 213, 112056.
Chen, M.-C., Chen, T.-H., 2020. Spatial and seasonal distribution of microplastics on sandy beaches along the coast of the Hengchun Peninsula, Taiwan. Marine Pollution Bulletin 151, 110861.
Chen, T.-H., Hsieh, C.-Y., 2017. Fighting nemo: Effect of 17α-ethinylestradiol (EE2) on aggressive behavior and social hierarchy of the false clown anemonefish Amphiprion ocellaris. Marine Pollution Bulletin 124, 760-766.
Chen, T.-H., Hsieh, C.-Y., Ko, F.-C., Cheng, J.-O., 2018. Effect of the UV-filter benzophenone-3 on intra-colonial social behaviors of the false clown anemonefish (Amphiprion ocellaris). Science of The Total Environment 644, 1625-1629.
Chen, X., Chen, X., Liu, Q., Zhao, Q., Xiong, X., Wu, C., 2021b. Used disposable face masks are significant sources of microplastics to environment. Environmental Pollution 285.
Chin, A.W., Chu, J.T., Perera, M.R., Hui, K.P., Yen, H.-L., Chan, M.C., Peiris, M., Poon, L.L., 2020. Stability of SARS-CoV-2 in different environmental conditions. The Lancet Microbe 1, e10.
Chowdhury, H., Chowdhury, T., Sait, S.M., 2021. Estimating marine plastic pollution from COVID-19 face masks in coastal regions. Marine Pollution Bulletin 168, 112419.
Claessens, M., De Meester, S., Van Landuyt, L., De Clerck, K., Janssen, C.R., 2011. Occurrence and distribution of microplastics in marine sediments along the Belgian coast. Marine Pollution Bulletin 62, 2199-2204.
Cole, M., Lindeque, P., Halsband, C., Galloway, T.S., 2011. Microplastics as contaminants in the marine environment: A review. Marine Pollution Bulletin 62, 2588-2597.
Cooper, D.A., Corcoran, P.L., 2010. Effects of mechanical and chemical processes on the degradation of plastic beach debris on the island of Kauai, Hawaii. Marine Pollution Bulletin 60, 650-654.
Crisafi, F., Smedile, F., Yakimov, M., Aulenta, F., Fazi, S., La Cono, V., Martinelli, A., Di Lisio, V., Denaro, R., 2022. Bacterial biofilms on medical masks disposed in the marine environment: a hotspot of biological and functional diversity. Science of The Total Environment 837, 155731.
D'Costa, A.H., 2022. Microplastics in decapod crustaceans: Accumulation, toxicity and impacts, a review. Science of The Total Environment, 154963.
Dar, M.A., Dhole, N.P., Pawar, K.D., Xie, R., Shahnawaz, M., Pandit, R.S., Sun, J., 2022. Ecotoxic effects of the plastic waste on marine fauna: An overview. Impact of plastic waste on the marine biota, pp. 287-300.
De Falco, F., Gullo, M.P., Gentile, G., Di Pace, E., Cocca, M., Gelabert, L., Brouta-Agnésa, M., Rovira, A., Escudero, R., Villalba, R., 2018. Evaluation of microplastic release caused by textile washing processes of synthetic fabrics. Environmental Pollution 236, 916-925.
Delaeter, C., Spilmont, N., Delleuze, M., Seuront, L., 2023. Lack of behavioral effect of surgical mask leachate on the Asian shore crab Hemigrapsus sanguineus: Implications for invasion success in polluted coastal waters. Available at SSRN 4351042.
Dharmaraj, S., Ashokkumar, V., Hariharan, S., Manibharathi, A., Show, P.L., Chong, C.T., Ngamcharussrivichai, C., 2021. The COVID-19 pandemic face mask waste: A blooming threat to the marine environment. Chemosphere 272.
Dickson, J.S., Dillaman, R.M., Roer, R.D., Roye, D.B., 1991. Distribution and characterization of ion transporting and respiratory filaments in the gills of Procambarus clarkii. The Biological Bulletin 180, 154-166.
Duan, Y., Xiong, D., Wang, Y., Zhang, Z., Li, H., Dong, H., Zhang, J., 2021. Toxicological effects of microplastics in Litopenaeus vannamei as indicated by an integrated microbiome, proteomic and metabolomic approach. Science of The Total Environment 761, 143311.
Dugassa, H., Gaetan, D.G., 2018. Biology of white leg shrimp, Penaeus vannamei: Review. World Journal of Fish and Marine Sciences 10, 5-17.
Dybas, C.L., 2021. Surgical masks on the beach. Oceanography 34, 12-14.
Eap, D., Correa, S., Ngo-Vu, H., Derby, C.D., 2020. Chemosensory basis of feeding behavior in Pacific white shrimp, Litopenaeus vannamei. The Biological Bulletin 239, 115-131.
Fadare, O.O., Okoffo, E.D., 2020. Covid-19 face masks: A potential source of microplastic fibers in the environment. Science of The Total Environment 737, 140279.
Faimali, M., Gambardella, C., Costa, E., Piazza, V., Morgana, S., Estévez-Calvar, N., Garaventa, F., 2017. Old model organisms and new behavioral end-points: Swimming alteration as an ecotoxicological response. Marine Environmental Research 128, 36-45.
Fendall, L.S., Sewell, M.A., 2009. Contributing to marine pollution by washing your face: Microplastics in facial cleansers. Marine Pollution Bulletin 58, 1225-1228.
Fotopoulou, K.N., Karapanagioti, H.K., 2017. Degradation of various plastics in the environment. Hazardous chemicals associated with plastics in the marine environment, pp. 71-92.
Frias, J.P., Nash, R., 2019. Microplastics: Finding a consensus on the definition. Marine Pollution Bulletin 138, 145-147.
Gago, J., Carretero, O., Filgueiras, A.V., Viñas, L., 2018. Synthetic microfibers in the marine environment: A review on their occurrence in seawater and sediments. Marine Pollution Bulletin 127, 365-376.
Galloway, T.S., Lewis, C.N., 2016. Marine microplastics spell big problems for future generations. Proceedings of the National Academy of Sciences 113, 2331-2333.
García-de la Parra, L.M., Bautista-Covarrubias, J., Rivera-de la Rosa, N., Betancourt-Lozano, M., Guilhermino, L., 2006. Effects of methamidophos on acetylcholinesterase activity, behavior, and feeding rate of the white shrimp (Litopenaeus vannamei). Ecotoxicology and Environmental Safety 65, 372-380.
González-Ortegón, E., Blasco, J., Le Vay, L., Giménez, L., 2013. A multiple stressor approach to study the toxicity and sub-lethal effects of pharmaceutical compounds on the larval development of a marine invertebrate. Journal of Hazardous Materials 263, 233-238.
Gopanna, A., Mandapati, R.N., Thomas, S.P., Rajan, K., Chavali, M., 2019. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and wide-angle X-ray scattering (WAXS) of polypropylene (PP)/cyclic olefin copolymer (COC) blends for qualitative and quantitative analysis. Polymer Bulletin 76, 4259-4274.
Graham, E.R., Thompson, J.T., 2009. Deposit-and suspension-feeding sea cucumbers (Echinodermata) ingest plastic fragments. Journal of Experimental Marine Bbiology and Ecology 368, 22-29.
Gregory, M.R., 1996. Plastic ‘scrubbers’ in hand cleansers: A further (and minor) source for marine pollution identified. Marine Pollution Bulletin 32, 867-871.
Haond, C., Flik, G., Charmantier, G., 1998. Confocal laser scanning and electron microscopical studies on osmoregulatory epithelia in the branchial cavity of the lobster Homarus gammarus. The Journal of Experimental Biology 201, 1817-1833.
Hara, J., Frias, J., Nash, R., 2020. Quantification of microplastic ingestion by the decapod crustacean Nephrops norvegicus from Irish waters. Marine Pollution Bulletin 152, 110905.
Heinen, J.M., 1980. Chemoreception in decapod crustacea and chemical feeding stimulants as potential feed additives. The World Mariculture Society 11, 317-334.
Hellou, J., 2011. Behavioural ecotoxicology, an “early warning” signal to assess environmental quality. Environmental Science and Pollution Research 18, 1-11.
Hu, T., Shen, M., Tang, W., 2022. Wet wipes and disposable surgical masks are becoming new sources of fiber microplastic pollution during global COVID-19. Environmental Science and Pollution Research 29, 284-292.
Hutten, I.M., 2007. Handbook of nonwoven filter media. Elsevier.
Janssens, V., 2022. Plastics – the facts 2022.
Jung, M.R., Horgen, F.D., Orski, S.V., Rodriguez, C.V., Beers, K.L., Balazs, G.H., Jones, T.T., Work, T.M., Brignac, K.C., Royer, S.J., Hyrenbach, K.D., Jensen, B.A., Lynch, J.M., 2018. Validation of ATR FT-IR to identify polymers of plastic marine debris, including those ingested by marine organisms. Marine Pollution Bulletin 127, 704-716.
Kannan, G., Mghili, B., De-la-Torre, G.E., Kolandhasamy, P., Machendiranathan, M., Rajeswari, M.V., Saravanakumar, A., 2023. Personal protective equipment (PPE) pollution driven by COVID-19 pandemic in Marina Beach, the longest urban beach in Asia: Abundance, distribution, and analytical characterization. Marine Pollution Bulletin 186, 114476.
Keshavarzifard, M., Vazirzadeh, A., Sharifinia, M., 2021. Occurrence and characterization of microplastics in white shrimp, Metapenaeus affinis, living in a habitat highly affected by anthropogenic pressures, northwest Persian Gulf. Marine Pollution Bulletin 169, 112581.
Kim, L., Kim, S.A., Kim, T.H., Kim, J., An, Y.-J., 2021. Synthetic and natural microfibers induce gut damage in the brine shrimp Artemia franciscana. Aquatic Toxicology 232, 105748.
Kokalj, A.J., Kunej, U., Skalar, T., 2018. Screening study of four environmentally relevant microplastic pollutants: Uptake and effects on Daphnia magna and Artemia franciscana. Chemosphere 208, 522-529.
Leads, R.R., Burnett, K.G., Weinstein, J.E., 2019. The effect of microplastic ingestion on survival of the grass shrimp Palaemonetes pugio (Holthuis, 1949) challenged with Vibrio campbellii. Environmental Toxicology and Chemistry 38, 2233-2242.
Lee, P., Meyers, S., 1996. Chemoattraction and feeding stimulation in crustaceans. Aquaculture Nutrition 2, 157-164.
Li, J., Zhang, T., Shan, X., Zheng, W., Zhang, Z., Ouyang, Z., Liu, P., Guo, X., 2023. Abandoned disposable masks become hot substrates for plastisphere, whether in soil, atmosphere or water. Journal of Hazardous Materials 452, 131321.
Li, L., Zhao, X., Li, Z., Song, K., 2021. COVID-19: Performance study of microplastic inhalation risk posed by wearing masks. Journal of Hazardous Materials 411, 124955.
Liang, H., Ji, Y., Ge, W., Wu, J., Song, N., Yin, Z., Chai, C., 2021. Release kinetics of microplastics from disposable face masks into the aqueous environment. Science of The Total Environment 810, 151650.
Liao, I.C., Chien, Y.-H., 2011. The Pacific white shrimp, Litopenaeus vannamei, in Asia: The world’s most widely cultured alien crustacean. In the wrong place-alien marine crustaceans: Distribution, biology and impacts, pp. 489-519.
Lobelle, D., Cunliffe, M., 2011. Early microbial biofilm formation on marine plastic debris. Marine Pollution Bulletin 62, 197-200.
Ma, J., Chen, F., Xu, H., Jiang, H., Liu, J., Li, P., Chen, C.C., Pan, K., 2021. Face masks as a source of nanoplastics and microplastics in the environment: Quantification, characterization, and potential for bioaccumulation. Environmental Pollution 288, 117748.
Mohamadi, S., Madadi, R., Rakib, M.R.J., De-la-Torre, G.E., Idris, A.M., 2023. Abundance and characterization of personal protective equipment (PPE) polluting Kish Island, Persian Gulf. Science of The Total Environment 854, 158678.
Murray, O., Bisset, J., Gilligan, P., Hannan, M., Murray, J., 2020. Respirators and surgical facemasks for COVID-19: Implications for MRI. Clinical Radiology 75, 405-407.
Napper, I.E., Thompson, R.C., 2016. Release of synthetic microplastic plastic fibres from domestic washing machines: Effects of fabric type and washing conditions. Marine Pollution Bulletin 112, 39-45.
New, M.B., 1976. A review of dietary studies with shrimp and prawns. Aquaculture 9, 101-144.
Newman, M., 2016. Fundamentals of ecotoxicology: The science of pollution. 4th. CRC Press Taylor & Francis Group.
O’Dowd, K., Nair, K.M., Forouzandeh, P., Mathew, S., Grant, J., Moran, R., Bartlett, J., Bird, J., Pillai, S.C., 2020. Face masks and respirators in the fight against the COVID-19 pandemic: A review of current materials, advances and future perspectives. Materials 13, 3363.
Patel, A., D'Alessandro, M.M., Ireland, K.J., Burel, W.G., Wencil, E.B., Rasmussen, S.A., 2017. Personal protective equipment supply chain: Lessons learned from recent public health emergency responses. Health Security 15, 244-252.
Patricio Silva, A.L., Prata, J.C., Mouneyrac, C., Barcelo, D., Duarte, A.C., Rocha-Santos, T., 2021. Risks of COVID-19 face masks to wildlife: Present and future research needs. Science of The Total Environment 792, 148505.
Perez Farfante, I., Kensley, B., 1997. Penaeoid and sergestoid shrimps and prawns of the world. Keys and diagnoses for the families and genera. Editions du Museum national d'Histoire naturelle, pp. 489-519.
Pontes, C.S., Arruda, M.d.F., Augusto de Lara Menezes, A., Pereira de Lima, P., 2006. Daily activity pattern of the marine shrimp Litopenaeus vannamei (Boone 1931) juveniles under laboratory conditions. Aquaculture Research 37, 1001-1006.
Prata, J.C., Silva, A.L.P., Walker, T.R., Duarte, A.C., Rocha-Santos, T., 2020. COVID-19 pandemic repercussions on the use and management of plastics. Environmental Science & Technology 54, 7760-7765.
Rathinamoorthy, R., Balasaraswathi, S.R., 2022. Mitigation of microfibers release from disposable masks–an analysis of structural properties. Environmental Research 214, 114106.
Ray, S.S., Lee, H.K., Huyen, D.T.T., Chen, S.-S., Kwon, Y.-N., 2022. Microplastics waste in environment: A perspective on recycling issues from PPE kits and face masks during the COVID-19 pandemic. Environmental Technology & Innovation 26, 102290.
Ryan, P.G., Moore, C.J., Van Franeker, J.A., Moloney, C.L., 2009. Monitoring the abundance of plastic debris in the marine environment. Philosophical Transactions of the Royal Society B: Biological Sciences 364, 1999-2012.
Saborowski, R., Paulischkis, E., Gutow, L., 2019. How to get rid of ingested microplastic fibers? A straightforward approach of the Atlantic ditch shrimp Palaemon varians. Environmental Pollution 254, 113068.
Sajorne, R.E., Cayabo, G.D.B., Madarcos, J.R.V., Madarcos, K.G., Omar Jr, D.M., Ardines, L.B., Sabtal, S.A., Mabuhay-Omar, J.A., Cheung, V., Creencia, L.A., 2022. Occurrence of COVID-19 personal protective equipment (PPE) litters along the eastern coast of Palawan Island, Philippines. Marine Pollution Bulletin 182, 113934.
Saliu, F., Veronelli, M., Raguso, C., Barana, D., Galli, P., Lasagni, M., 2021. The release process of microfibers: From surgical face masks into the marine environment. Environmental Advances 4, 100042.
Savoca, M.S., Wohlfeil, M.E., Ebeler, S.E., Nevitt, G.A., 2016. Marine plastic debris emits a keystone infochemical for olfactory foraging seabirds. Science Advances 2, e1600395.
Schmidt, M., Mellon, D., 2011. Neuronal processing of chemical information in crustaceans. Chemical Communication in Crustaceans, 123-147.
Sendra, M., Rodriguez-Romero, A., Yeste, M.P., Blasco, J., Tovar-Sánchez, A., 2022. Products released from surgical face masks can provoke cytotoxicity in the marine diatom Phaeodactylum tricornutum. Science of The Total Environment 841, 156611.
Shashoua, Y., 2012. Conservation of plastics. Routledge.
Shen, M., Zeng, Z., Song, B., Yi, H., Hu, T., Zhang, Y., Zeng, G., Xiao, R., 2021. Neglected microplastics pollution in global COVID-19: Disposable surgical masks. Science of The Total Environment 790, 148130.
Siddiqui, S., Dickens, J., Cunningham, B., Hutton, S., Pedersen, E., Harper, B., Harper, S., Brander, S., 2022. Internalization, reduced growth, and behavioral effects following exposure to micro and nano tire particles in two estuarine indicator species. Chemosphere 296, 133934.
Solé, M., Shaw, J.P., Frickers, P.E., Readman, J.W., Hutchinson, T.H., 2010. Effects on feeding rate and biomarker responses of marine mussels experimentally exposed to propranolol and acetaminophen. Analytical and Bioanalytical Chemistry 396, 649-656.
Steiner, J.E., Harpaz, S., 1987. Behavior stereotypes of food acceptance and of the rejection of ‘bitter’food in the freshwater prawn Macrobrachium rosenbergii. Chemical Senses 12, 89-97.
Suaria, G., Achtypi, A., Perold, V., Lee, J.R., Pierucci, A., Bornman, T.G., Aliani, S., Ryan, P.G., 2020. Microfibers in oceanic surface waters: A global characterization. Science Advances 6, eaay8493.
Sullivan, G.L., Delgado-Gallardo, J., Watson, T., Sarp, S., 2021. An investigation into the leaching of micro and nano particles and chemical pollutants from disposable face masks-linked to the COVID-19 pandemic. Water Research 196, 117033.
Sun, J., Yang, S., Zhou, G.-J., Zhang, K., Lu, Y., Jin, Q., Lam, P.K.S., Leung, K.M.Y., He, Y., 2021. Release of microplastics from discarded surgical masks and their adverse impacts on the marine copepod Tigriopus japonicus. Environmental Science & Technology Letters 8, 1065-1070.
Tahedl, H., Hader, D.P., 2001. Automated biomonitoring using real time movement analysis of Euglena gracilis. Ecotoxicology and Environmental Safety 48, 161-169.
Taylor, H.R., West, S.K., Rosenthal, F.S., Muñoz, B., Newland, H.S., Abbey, H., Emmett, E.A., 1988. Effect of ultraviolet radiation on cataract formation. New England Journal of Medicine 319, 1429-1433.
Tesfaldet, Y.T., Ndeh, N.T., 2022. Assessing face masks in the environment by means of the DPSIR framework. Science of The Total Environment 814, 152859.
Verschoor, A.J., 2015. Towards a definition of microplastics: Considerations for the specification of physico-chemical properties. Rijksinstituut voor Volksgezondheid en Milieu.
Wang, M., Zhou, M., Ji, G., Ye, L., Cheng, Y., Feng, Z., Chen, J., 2020. Mask crisis during the COVID-19 outbreak. European Review for Medical and Pharmacological Sciences 24, 3397-3399.
Wang, Y., Mao, Z., Zhang, M., Ding, G., Sun, J., Du, M., Liu, Q., Cong, Y., Jin, F., Zhang, W., 2019. The uptake and elimination of polystyrene microplastics by the brine shrimp, Artemia parthenogenetica, and its impact on its feeding behavior and intestinal histology. Chemosphere 234, 123-131.
Wang, Z., An, C., Chen, X., Lee, K., Zhang, B., Feng, Q., 2021a. Disposable masks release microplastics to the aqueous environment with exacerbation by natural weathering. Journal of Hazardous Materials 417, 126036.
Wang, Z., Fan, L., Wang, J., Xie, S., Zhang, C., Zhou, J., Zhang, L., Xu, G., Zou, J., 2021b. Insight into the immune and microbial response of the white-leg shrimp Litopenaeus vannamei to microplastics. Marine Environmental Research 169, 105377.
Watts, A.J., Urbina, M.A., Corr, S., Lewis, C., Galloway, T.S., 2015. Ingestion of plastic microfibers by the crab Carcinus maenas and its effect on food consumption and energy balance. Environmental Science & Technology 49, 14597-14604.
Welden, N.A., Cowie, P.R., 2016. Long-term microplastic retention causes reduced body condition in the langoustine, Nephrops norvegicus. Environmental Pollution 218, 895-900.
Woods, M.N., Hong, T.J., Baughman, D., Andrews, G., Fields, D.M., Matrai, P.A., 2020. Accumulation and effects of microplastic fibers in american lobster larvae (Homarus americanus). Marine Pollution Bulletin 157, 111280.
Woods, M.N., Stack, M.E., Fields, D.M., Shaw, S.D., Matrai, P.A., 2018. Microplastic fiber uptake, ingestion, and egestion rates in the blue mussel (Mytilus edulis). Marine Pollution Bulletin 137, 638-645.
Wu, F., Wang, Y., Leung, J.Y., Huang, W., Zeng, J., Tang, Y., Chen, J., Shi, A., Yu, X., Xu, X., 2020. Accumulation of microplastics in typical commercial aquatic species: A case study at a productive aquaculture site in China. Science of The Total Environment 708, 135432.
Xu, E.G., Ren, Z.J., 2021. Preventing masks from becoming the next plastic problem. Frontiers of Environmental Science & Engineering 15, 125.
You, K., Yang, H., Liu, Y., Liu, S., Zhou, Y., Zhang, T., 2006. Effects of different light sources and illumination methods on growth and body color of shrimp Litopenaeus vannamei. Aquaculture 252, 557-565.
Zardus, J.D., Nedved, B.T., Huang, Y., Tran, C., Hadfield, M.G., 2008. Microbial biofilms facilitate adhesion in biofouling invertebrates. Biological Bulletin 214, 91-98.
Zhang, P., Zhang, X., Li, J., Huang, G., 2006. Swimming ability and physiological response to swimming fatigue in whiteleg shrimp, Litopenaeus vannamei. Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 145, 26-32.
吳芷吟, 2022. 比較塑膠微纖維及天然微纖維攝入在中南美白對蝦之累積及對行為影響. 國立東華大學海洋生物研究所碩士論文.
童一軒, 2021. 聚丙烯微塑膠纖維於中南美白對蝦(Penaeus vannamei)攝入後之宿命及對行為影響. 國立東華大學海洋生物研究所碩士論文.
臺灣海洋保育與漁業永續基金會, 2023. 臺灣海鮮選擇指南 第六版.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *