帳號:guest(3.129.24.180)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:江棱茜
作者(英文):Lin-Chien Chiang
論文名稱:海洋葉形軟珊瑚萃取物之抗前列腺癌機制
論文名稱(英文):Anti-prostate cancer mechanism of marine coral extract from Lobophytum crassum
指導教授:呂美津
指導教授(英文):Mei-Chin Lu
口試委員:劉益昌
林鴻裕
呂美津
口試委員(英文):Yi-Chang Liu
Hung-Yu Lin
Mei-Chin Lu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610963006
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:74
關鍵詞:海洋天然物葉形軟珊瑚前列腺癌抗癌EMT
關鍵詞(英文):marine natural productsLobophytum crassumProstate canceranticancerEMT
相關次數:
  • 推薦推薦:0
  • 點閱點閱:21
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:4
  • 收藏收藏:0
LCE為從葉形軟珊瑚Lobophytum crassum之粗萃物,其中主要活性成分13-Acetoxysarcocrassolide (13-AC),在先前研究指出有抗腫瘤之功效。前列腺癌是男性中第二大最常見的癌症診斷,也是全球癌症相關第五大死亡原因,雖前列腺癌為早期治療痊癒率高之疾病,一旦癌細胞發展至後期轉移至其他骨盆淋巴或其他器官使癌症五年存活率降至30%。因此,本研究探討LCE對於前列腺癌之抗癌活性測試與抗腫瘤機制作用,且針對LCE前列腺癌轉移和上皮間質轉化 (EMT)之影響。使用MTT測定及細胞群落形成試驗測定LCE對三種前列腺癌細胞LNcap 、PC3和Du145之細胞毒殺活性並發現其對三種癌細胞皆有劑量依賴性地抑制細胞增生之作用。在體內異種移植腫瘤之動物實驗分別顯示LCE對前列腺癌細胞PC3和Du145具有有效的抗腫瘤作用,並顯著減少腫瘤體積43.9% (PC3)、49.2%(Du145)和抑制腫瘤重量48.8%(PC3)、7.8%(Du145)。接著通過流式細胞儀分析、DAPI螢光染色結果顯示LCE處理可促使增加細胞自噬及細胞凋亡之發生,並且增加自噬標記蛋白LC3α/β與細胞凋亡活化蛋白cleaved caspase-3的表現,代表LCE透過細胞自噬及凋亡以誘導癌細胞死亡。另外在癌細胞轉移的部分,EMT是上皮細胞轉化為間質細胞的生物過程,過去研究指出EMT除了調控胚胎發育也在癌症中促進腫瘤侵襲和癌細胞之轉移。利用傷口癒合分析、transwell細胞遷移及侵襲試驗之結果證實,LCE非常顯著地減少前列腺癌細胞轉移及侵襲的能力,且增加上皮表達蛋白E-cadherin的表達並抑制EMT相關蛋白,進而影響癌細胞EMT。接著使用TGF-β生長因子處理誘發PC3和Du145細胞高度表現EMT,並使用LCE粗萃物觀察其抑制效果,結果表示在LCE處理下依然能有效抑制TGF-β所誘導之細胞轉移作用。本研究在未來可作為抗腫瘤與抗癌轉移的藥物開發之應用。
LCE (Lobophytum crassum extract) is a crude extract obtained from the soft coral Lobophytum crassum. 13-acetoxysarcocrassolide (13-AC) is the major active component and potent anti-tumor effects in LCE. Prostate cancer is the second most common diagnosed cancers in men and the fifth leading cause of cancer-related deaths worldwide. Prostate cancer shows a high cure rate following early detection. However, if the cancer develops undetected, the cancer cells metastasize to pelvic lymph nodes or other organs dropping the five-year survival rate to 30%. The huge health burden of this disease encouraged us to investigate cytotoxic activity and antitumor mechanism of LCE in prostate cancer cells. The metastasis and epithelial-mesenchymal transition (EMT) of prostate cancer cells. The cytotoxic activity and growth inhibition of LCE on three prostate cancer cells lines (LNcap, PC3 and Du145 cells) were dose-dependently suppressed in all three cancer cells using MTT assay, cell colony formation assay. The in vivo animal model with tumor xenografts also showed the potent antitumor activity of LCE on prostate tumor from PC3. LCE administration significantly diminished the tumor volume 43.9% (PC3), 49.2% (Du145) and tumor weight 48.8% (PC3), 7.8% (Du145) in in vivo PC3 and Du145-xenograft animal model, respectively. The results of the flow cytometry analysis, DAPI fluorescence staining analysis suggested that LCE treatment induced cancer cell death through autophagy and apoptosis. The result of western blotting showed LCE treatment could significantly increase the expression of autophagy macker, LC3α/β and apoptosis-related protein, cleaved caspase-3. In addition, EMT is a biological process in which epithelial cells transform into mesenchymal cells. Previous studies indicated that EMT could be the regulatory factor in embryo development and promots tumor invasion and metastasis in the malignant progression. The results of wound healing assay, transwell cell migration and invasion assay confirmed that LCE significantly allevated metastasis and invasion of prostate cancer cells. Western blotting analysis showed that LCE increased the expression of epithelial marker protein, E-cadherin and inhibited the expression of EMT-related proteins in the cells. The co-treatment with TGF-β growth factor induced excessive EMT of PC3 and Du145 that was inhibited by the treatment of LCE. The results of this study indicated the potential applications of LCE as a source for drug leads to tackle prostate cancer.
摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XI
第一章、緒論 1
第二章、文獻回顧 3
2-1 海洋天然物 (Marine natural product) 3
2-1-1 海洋珊瑚 5
2-1-2 Lobophytum 屬所含抗癌活性成分之文獻回顧 5
2-2 癌症-前列腺癌 8
2-2-1 癌症 (cancer) 8
2-2-2 前列腺癌 (Prostate Cancer) 9
2-3 細胞凋亡 (Apoptosis) 11
2-4 細胞自噬 (Autophagy) 12
2-5 上皮間質轉化( EMT) 14
2-6 生長因子TGF-β 17
2-7 自噬對EMT的影響 18
第三章、材料方法 21
3-1 實驗材料 21
3-1-1 珊瑚 21
3-1-2 細胞株 (Cell lines) 22
3-2 實驗方法 22
3-2-1 細胞培養 (Cell culture) 22
3-2-2 細胞冷凍保存 (Cell cryopreservation) 22
3-2-3 冷凍細胞活化 (Cell thawing) 23
3-2-4 細胞存活率試驗(MTT assay) 23
3-2-5 細胞群落形成分析 (Colony formation assay) 23
3-2-6 傷口癒合分析 (Wound healing assay) 23
3-2-7 DAPI染色 (4, 6-diamidino-2-phenylindole stain) 24
3-2-8 檢測細胞內粒線體膜電位之變化 24
3-2-9 Annexin V/PI 雙重染色檢測細胞凋亡之程度 24
3-2-10 西方墨點法 24
3-2-11 transwell之細胞遷移及侵襲分析試驗 (migration and invasion assay) 25
3-2-12 二維電泳 26
3-2-13 人類前列腺癌細胞異植動物之抗癌試驗 (Human prostate cancer cells xenograft animal model) 26
3-2-14 數據統計 26
第四章、結果 27
4-1 LCE萃取物對人類前列腺癌細胞生長影響 27
4-2 LCE萃取物對人類前列腺癌細胞增生群落之影響 28
4-3 LCE萃取物處理是否誘導人類前列腺癌細胞自噬之發生 30
4-4 LCE萃取物處理是否誘導人類前列腺癌細胞凋亡之發生 32
4-5 LCE萃取物處理誘導癌細胞之自噬作用對於細胞凋亡和細胞存活之影響 36
4-6 LCE萃取物對人類前列腺癌細胞上皮間質轉化和細胞轉移侵襲之影響 39
4-7 LCE萃取物抑制TGF-β誘導癌細胞之轉移、侵襲活性之作用 44
4-8 利用蛋白質體學尋找LCE抗癌作用之標靶蛋白 47
4-9 利用動物異植試驗檢測LCE對PC3及Du145腫瘤生長之影響 50
第五章、結論與討論 55
5-1 由Lobophytum crassum萃取之粗萃物LCE具有抗人類前列腺癌活性與抑制腫瘤增長之效果 55
5-2 粗萃物LCE對人類前列腺癌作用機制探討 55
5-3 LCE萃取物抑制人類前列腺癌細胞上皮間質轉化和細胞轉移侵襲 56
5-4 LCE萃取物抑制TGF-β誘導之癌細胞轉移、侵襲活性和EMT 58
5-5 篩選LCE可能作用之標靶蛋白 59
參考文獻 61

1. Jimenez, P.C., et al., Enriching cancer pharmacology with drugs of marine origin. Br J Pharmacol, 2020. 177(1): p. 3-27.
2. Chao, C.H., et al., Cytotoxic and anti-inflammatory cembranoids from the soft coral Lobophytum crassum. J Nat Prod, 2008. 71(11): p. 1819-24.
3. Hong, J.Y., et al., (1S,2S,3E,7E,11E)-3,7,11,15-Cembratetraen-17,2-olide, a cembrenolide diterpene from soft coral Lobophytum sp., inhibits growth and induces apoptosis in human colon cancer cells through reactive oxygen species generation. Biol Pharm Bull, 2012. 35(7): p. 1054-63.
4. Kulbicki, M., et al., Global biogeography of reef fishes: a hierarchical quantitative delineation of regions. PLoS One, 2013. 8(12): p. e81847.
5. 107年國人死因統計結果. 台灣衛生福利部, 2019.
6. Zhang, K., C.H. Bangma, and M.J. Roobol, Prostate cancer screening in Europe and Asia. Asian J Urol, 2017. 4(2): p. 86-95.
7. Zustovich, F. and D. Pastorelli, Therapeutic management of bone metastasis in prostate cancer: an update. Expert Rev Anticancer Ther, 2016: p. 1-13.
8. Hotte, S.J. and F. Saad, Current management of castrate-resistant prostate cancer. Curr Oncol, 2010. 17 Suppl 2: p. S72-9.
9. Lamouille, S., J. Xu, and R. Derynck, Molecular mechanisms of epithelial-mesenchymal transition. Nat Rev Mol Cell Biol, 2014. 15(3): p. 178-96.
10. Liu, Y.C., et al., 13-Acetoxysarcocrassolide Exhibits Cytotoxic Activity Against Oral Cancer Cells Through the Interruption of the Keap1/Nrf2/p62/SQSTM1 Pathway: The Need to Move Beyond Classical Concepts. Mar Drugs, 2020. 18(8).
11. Dias, D.A., S. Urban, and U. Roessner, A historical overview of natural products in drug discovery. Metabolites, 2012. 2(2): p. 303-36.
12. Dewick, P.M., Medicinal Natural Products A Biosynthetic Approach. 2nd edition ed. 2002: John Wiley & Sons Ltd.
13. Maplestone, R.A., M.J. Stone, and D.H. Williams, The evolutionary role of secondary metabolites--a review. Gene, 1992. 115(1-2): p. 151-7.
14. Newman, D.J. and G.M. Cragg, Natural Products as Sources of New Drugs from 1981 to 2014. J Nat Prod, 2016. 79(3): p. 629-61.
15. A new dawn for marine biotechnology in Europe. Preface. Biotechnol Adv, 2011. 29(5): p. 453-6.
16. Lindequist, U., Marine-Derived Pharmaceuticals - Challenges and Opportunities. Biomol Ther (Seoul), 2016. 24(6): p. 561-571.
17. Gerwick, W.H. and B.S. Moore, Lessons from the past and charting the future of marine natural products drug discovery and chemical biology. Chem Biol, 2012. 19(1): p. 85-98.
18. Mayer, A.M., et al., The odyssey of marine pharmaceuticals: a current pipeline perspective. Trends Pharmacol Sci, 2010. 31(6): p. 255-65.
19. Malve, H., Exploring the ocean for new drug developments: Marine pharmacology. J Pharm Bioallied Sci, 2016. 8(2): p. 83-91.
20. Pereira, F. and J. Aires-de-Sousa, Computational Methodologies in the Exploration of Marine Natural Product Leads. Mar Drugs, 2018. 16(7).
21. Lowenberg, B., Sense and nonsense of high-dose cytarabine for acute myeloid leukemia. Blood, 2013. 121(1): p. 26-8.
22. Dyshlovoy, S.A. and F. Honecker, Marine Compounds and Cancer: The First Two Decades of XXI Century. Mar Drugs, 2019. 18(1).
23. Mayer, A.M., et al., Marine pharmacology in 2009-2011: marine compounds with antibacterial, antidiabetic, antifungal, anti-inflammatory, antiprotozoal, antituberculosis, and antiviral activities; affecting the immune and nervous systems, and other miscellaneous mechanisms of action. Mar Drugs, 2013. 11(7): p. 2510-73.
24. Wei, W.C., et al., Anti-inflammatory activities of natural products isolated from soft corals of Taiwan between 2008 and 2012. Mar Drugs, 2013. 11(10): p. 4083-126.
25. Quah, Y., et al., Purification and identification of novel cytotoxic oligopeptides from soft coral Sarcophyton glaucum. J Zhejiang Univ Sci B, 2019. 20(1): p. 59-70.
26. Reina, E., et al., Fuscoside E: a strong anti-inflammatory diterpene from Caribbean octocoral Eunicea fusca. Bioorg Med Chem Lett, 2011. 21(19): p. 5888-91.
27. Chen, W.F., et al., Neuroprotection by marine-derived compound, 11-dehydrosinulariolide, in an in vitro Parkinson's model: a promising candidate for the treatment of Parkinson's disease. Naunyn Schmiedebergs Arch Pharmacol, 2012. 385(3): p. 265-75.
28. Cooper, E.L., et al., Corals and their potential applications to integrative medicine. Evid Based Complement Alternat Med, 2014. 2014: p. 184959.
29. Shen, H., et al., Anti-Inflammatory Cembrane-Type Diterpenoids and Prostaglandins from Soft Coral Lobophytum sarcophytoides. Mar Drugs, 2019. 17(8).
30. Maehira, F., et al., Soluble silica and coral sand suppress high blood pressure and improve the related aortic gene expressions in spontaneously hypertensive rats. Nutr Res, 2011. 31(2): p. 147-56.
31. Wen, Z.H., et al., A neuroprotective sulfone of marine origin and the in vivo anti-inflammatory activity of an analogue. Eur J Med Chem, 2010. 45(12): p. 5998-6004.
32. Blunt, J.W., et al., Marine natural products. Nat Prod Rep, 2013. 30(2): p. 237-323.
33. Blunt, J.W., et al., Marine natural products. Nat Prod Rep, 2012. 29(2): p. 144-222.
34. Nurrachma, M.Y., et al., Cembranoids of Soft Corals: Recent Updates and Their Biological Activities. Nat Prod Bioprospect, 2021. 11(3): p. 243-306.
35. Lin, M.X., et al., Lobocrassin B Induces Apoptosis of Human Lung Cancer and Inhibits Tumor Xenograft Growth. Mar Drugs, 2017. 15(12).
36. Duh, C.Y., et al., Cytotoxic cembrenolides and steroids from the formosan soft coral Sarcophyton crassocaule. J Nat Prod, 2000. 63(12): p. 1634-7.
37. Su, C.C., et al., 13-acetoxysarcocrassolide induces apoptosis on human gastric carcinoma cells through mitochondria-related apoptotic pathways: p38/JNK activation and PI3K/AKT suppression. Mar Drugs, 2014. 12(10): p. 5295-315.
38. Rodriguez, A.D. and N. Martinez, Marine antitumor agents: 14-deoxycrassin and pseudoplexaurol, new cembranoid diterpenes from the Caribbean gorgonian Pseudoplexaura porosa. Experientia, 1993. 49(2): p. 179-81.
39. Hanahan, D. and R.A. Weinberg, Hallmarks of cancer: the next generation. Cell, 2011. 144(5): p. 646-74.
40. Siegel, R.L., et al., Cancer Statistics, 2021. CA Cancer J Clin, 2021. 71(1): p. 7-33.
41. Baskar, R., et al., Cancer and radiation therapy: current advances and future directions. Int J Med Sci, 2012. 9(3): p. 193-9.
42. Meyerhardt, J.A. and C.S. Fuchs, Chemotherapy options for gastric cancer. Semin Radiat Oncol, 2002. 12(2): p. 176-86.
43. Michaud, L.B. and A.U. Buzdar, Complete estrogen blockade for the treatment of metastatic and early stage breast cancer. Drugs Aging, 2000. 16(4): p. 261-71.
44. van den Bulk, J., E.M. Verdegaal, and N.F. de Miranda, Cancer immunotherapy: broadening the scope of targetable tumours. Open Biol, 2018. 8(6).
45. Rawla, P., Epidemiology of Prostate Cancer. World J Oncol, 2019. 10(2): p. 63-89.
46. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2020. CA Cancer J Clin, 2020. 70(1): p. 7-30.
47. 台灣衛生福利部國民健康署, 109 年死因結果統計分析. 2021: p. 5.
48. Klotz, L., Nomogram for predicting survival in men with clinically localized prostate cancer who do not undergo definitive therapy. Nat Clin Pract Urol, 2008. 5(7): p. 362-3.
49. Etzioni, R., et al., Quantifying the role of PSA screening in the US prostate cancer mortality decline. Cancer Causes Control, 2008. 19(2): p. 175-81.
50. Saraon, P., et al., Proteomic profiling of androgen-independent prostate cancer cell lines reveals a role for protein S during the development of high grade and castration-resistant prostate cancer. J Biol Chem, 2012. 287(41): p. 34019-31.
51. Sha, J., et al., PRKAR2B plays an oncogenic role in the castration-resistant prostate cancer. Oncotarget, 2017. 8(4): p. 6114-6129.
52. Thalmann, G.N., et al., Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res, 1994. 54(10): p. 2577-81.
53. Crawford, E.D. and D. Petrylak, Castration-resistant prostate cancer: descriptive yet pejorative? J Clin Oncol, 2010. 28(23): p. e408.
54. Tai, S., et al., PC3 is a cell line characteristic of prostatic small cell carcinoma. Prostate, 2011. 71(15): p. 1668-79.
55. Wu, X., et al., Current mouse and cell models in prostate cancer research. Endocr Relat Cancer, 2013. 20(4): p. R155-70.
56. Horoszewicz, J.S., et al., LNCaP model of human prostatic carcinoma. Cancer Res, 1983. 43(4): p. 1809-18.
57. Veldscholte, J., et al., A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens. Biochem Biophys Res Commun, 1990. 173(2): p. 534-40.
58. Lin, D.L., et al., Bone metastatic LNCaP-derivative C4-2B prostate cancer cell line mineralizes in vitro. Prostate, 2001. 47(3): p. 212-21.
59. Kaighn, M.E., et al., Establishment and characterization of a human prostatic carcinoma cell line (PC-3). Invest Urol, 1979. 17(1): p. 16-23.
60. Pulukuri, S.M., et al., Retraction: RNA interference-directed knockdown of urokinase plasminogen activator and urokinase plasminogen activator receptor inhibits prostate cancer cell invasion, survival, and tumorigenicity in vivo. J Biol Chem, 2020. 295(37): p. 13136.
61. Lee, A.R., et al., A novel mechanism of SRRM4 in promoting neuroendocrine prostate cancer development via a pluripotency gene network. EBioMedicine, 2018. 35: p. 167-177.
62. Stone, K.R., et al., Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer, 1978. 21(3): p. 274-81.
63. Alimirah, F., et al., DU-145 and PC-3 human prostate cancer cell lines express androgen receptor: implications for the androgen receptor functions and regulation. FEBS Lett, 2006. 580(9): p. 2294-300.
64. Ikediobi, O.N., et al., Mutation analysis of 24 known cancer genes in the NCI-60 cell line set. Mol Cancer Ther, 2006. 5(11): p. 2606-12.
65. Ameisen, J.C., On the origin, evolution, and nature of programmed cell death: a timeline of four billion years. Cell Death Differ, 2002. 9(4): p. 367-93.
66. Elmore, S., Apoptosis: a review of programmed cell death. Toxicol Pathol, 2007. 35(4): p. 495-516.
67. Caltabiano, R., et al., Apoptosis in temporomandibular joint disc with internal derangement involves mitochondrial-dependent pathways. An in vivo study. Acta Odontol Scand, 2013. 71(3-4): p. 577-83.
68. Guo, M., et al., Apoptosis detection: a purpose-dependent approach selection. Cell Cycle, 2021. 20(11): p. 1033-1040.
69. Grutter, M.G., Caspases: key players in programmed cell death. Curr Opin Struct Biol, 2000. 10(6): p. 649-55.
70. Hassan, M., et al., Apoptosis and molecular targeting therapy in cancer. Biomed Res Int, 2014. 2014: p. 150845.
71. Fulda, S. and K.M. Debatin, Extrinsic versus intrinsic apoptosis pathways in anticancer chemotherapy. Oncogene, 2006. 25(34): p. 4798-811.
72. Klionsky, D.J., Autophagy revisited: a conversation with Christian de Duve. Autophagy, 2008. 4(6): p. 740-3.
73. Mizushima, N., Autophagy: process and function. Genes Dev, 2007. 21(22): p. 2861-73.
74. Yun, C.W. and S.H. Lee, The Roles of Autophagy in Cancer. Int J Mol Sci, 2018. 19(11).
75. Parzych, K.R. and D.J. Klionsky, An overview of autophagy: morphology, mechanism, and regulation. Antioxid Redox Signal, 2014. 20(3): p. 460-73.
76. Lim, S.M., E.A. Mohamad Hanif, and S.F. Chin, Is targeting autophagy mechanism in cancer a good approach? The possible double-edge sword effect. Cell Biosci, 2021. 11(1): p. 56.
77. Kania, E., B. Pajak, and A. Orzechowski, Calcium homeostasis and ER stress in control of autophagy in cancer cells. Biomed Res Int, 2015. 2015: p. 352794.
78. Hamasaki, M., et al., Autophagosomes form at ER-mitochondria contact sites. Nature, 2013. 495(7441): p. 389-93.
79. Tooze, S.A. and T. Yoshimori, The origin of the autophagosomal membrane. Nat Cell Biol, 2010. 12(9): p. 831-5.
80. Avalos, Y., et al., Tumor suppression and promotion by autophagy. Biomed Res Int, 2014. 2014: p. 603980.
81. Mizushima, N., et al., A protein conjugation system essential for autophagy. Nature, 1998. 395(6700): p. 395-8.
82. Fujioka, Y., et al., Dimeric coiled-coil structure of Saccharomyces cerevisiae Atg16 and its functional significance in autophagy. J Biol Chem, 2010. 285(2): p. 1508-15.
83. Shibutani, S.T. and T. Yoshimori, A current perspective of autophagosome biogenesis. Cell Res, 2014. 24(1): p. 58-68.
84. Ichimura, Y., et al., A ubiquitin-like system mediates protein lipidation. Nature, 2000. 408(6811): p. 488-92.
85. Kabeya, Y., et al., LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J, 2000. 19(21): p. 5720-8.
86. Kabeya, Y., et al., LC3, GABARAP and GATE16 localize to autophagosomal membrane depending on form-II formation. J Cell Sci, 2004. 117(Pt 13): p. 2805-12.
87. Schaaf, M.B., et al., LC3/GABARAP family proteins: autophagy-(un)related functions. FASEB J, 2016. 30(12): p. 3961-3978.
88. Xie, Z., U. Nair, and D.J. Klionsky, Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell, 2008. 19(8): p. 3290-8.
89. Yang, Z. and D.J. Klionsky, Permeases recycle amino acids resulting from autophagy. Autophagy, 2007. 3(2): p. 149-50.
90. Puissant, A., N. Fenouille, and P. Auberger, When autophagy meets cancer through p62/SQSTM1. Am J Cancer Res, 2012. 2(4): p. 397-413.
91. Tong, X.P., et al., Key autophagic targets and relevant small-molecule compounds in cancer therapy. Cell Prolif, 2015. 48(1): p. 7-16.
92. Lorin, S., et al., Autophagy regulation and its role in cancer. Semin Cancer Biol, 2013. 23(5): p. 361-79.
93. Mathew, R., et al., Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev, 2007. 21(11): p. 1367-81.
94. Ren, X.S., et al., Activation of the PI3K/mTOR pathway is involved in cystic proliferation of cholangiocytes of the PCK rat. PLoS One, 2014. 9(1): p. e87660.
95. Qu, X., et al., Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest, 2003. 112(12): p. 1809-20.
96. Liang, X.H., et al., Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature, 1999. 402(6762): p. 672-6.
97. Valente, G., et al., Expression and clinical significance of the autophagy proteins BECLIN 1 and LC3 in ovarian cancer. Biomed Res Int, 2014. 2014: p. 462658.
98. Petrova, V., et al., The hypoxic tumour microenvironment. Oncogenesis, 2018. 7(1): p. 10.
99. Degenhardt, K., et al., Autophagy promotes tumor cell survival and restricts necrosis, inflammation, and tumorigenesis. Cancer Cell, 2006. 10(1): p. 51-64.
100. Morselli, E., et al., Anti- and pro-tumor functions of autophagy. Biochim Biophys Acta, 2009. 1793(9): p. 1524-32.
101. Cully, M., et al., Beyond PTEN mutations: the PI3K pathway as an integrator of multiple inputs during tumorigenesis. Nat Rev Cancer, 2006. 6(3): p. 184-92.
102. Shaw, R.J. and L.C. Cantley, Ras, PI(3)K and mTOR signalling controls tumour cell growth. Nature, 2006. 441(7092): p. 424-30.
103. Guo, J.Y., et al., Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev, 2011. 25(5): p. 460-70.
104. Rebecca, V.W. and R.K. Amaravadi, Emerging strategies to effectively target autophagy in cancer. Oncogene, 2016. 35(1): p. 1-11.
105. Amaravadi, R.K., A.C. Kimmelman, and J. Debnath, Targeting Autophagy in Cancer: Recent Advances and Future Directions. Cancer Discov, 2019. 9(9): p. 1167-1181.
106. Ribatti, D., R. Tamma, and T. Annese, Epithelial-Mesenchymal Transition in Cancer: A Historical Overview. Transl Oncol, 2020. 13(6): p. 100773.
107. Kalluri, R. and R.A. Weinberg, The basics of epithelial-mesenchymal transition. J Clin Invest, 2009. 119(6): p. 1420-8.
108. Li, M., et al., Biological role of metabolic reprogramming of cancer cells during epithelialmesenchymal transition (Review). Oncol Rep, 2019. 41(2): p. 727-741.
109. Thiery, J.P., et al., Epithelial-mesenchymal transitions in development and disease. Cell, 2009. 139(5): p. 871-90.
110. Duband, J.L. and J.P. Thiery, Appearance and distribution of fibronectin during chick embryo gastrulation and neurulation. Dev Biol, 1982. 94(2): p. 337-50.
111. Vicovac, L. and J.D. Aplin, Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel), 1996. 156(3): p. 202-16.
112. Okada, H., et al., Possible mechanisms of renal fibrosis. Contrib Nephrol, 1996. 118: p. 147-54.
113. Thiery, J.P., Epithelial-mesenchymal transitions in tumour progression. Nat Rev Cancer, 2002. 2(6): p. 442-54.
114. Lambert, A.W., D.R. Pattabiraman, and R.A. Weinberg, Emerging Biological Principles of Metastasis. Cell, 2017. 168(4): p. 670-691.
115. Mehlen, P. and A. Puisieux, Metastasis: a question of life or death. Nat Rev Cancer, 2006. 6(6): p. 449-58.
116. Gheldof, A. and G. Berx, Cadherins and epithelial-to-mesenchymal transition. Prog Mol Biol Transl Sci, 2013. 116: p. 317-36.
117. Tiwari, N., et al., EMT as the ultimate survival mechanism of cancer cells. Semin Cancer Biol, 2012. 22(3): p. 194-207.
118. Clark, A.G. and D.M. Vignjevic, Modes of cancer cell invasion and the role of the microenvironment. Curr Opin Cell Biol, 2015. 36: p. 13-22.
119. Etienne-Manneville, S., Neighborly relations during collective migration. Curr Opin Cell Biol, 2014. 30: p. 51-9.
120. De Pascalis, C. and S. Etienne-Manneville, Single and collective cell migration: the mechanics of adhesions. Mol Biol Cell, 2017. 28(14): p. 1833-1846.
121. Klymenko, Y., et al., Cadherin composition and multicellular aggregate invasion in organotypic models of epithelial ovarian cancer intraperitoneal metastasis. Oncogene, 2017. 36(42): p. 5840-5851.
122. Kuriyama, S., et al., LPP inhibits collective cell migration during lung cancer dissemination. Oncogene, 2016. 35(8): p. 952-64.
123. Shih, W. and S. Yamada, N-cadherin-mediated cell-cell adhesion promotes cell migration in a three-dimensional matrix. J Cell Sci, 2012. 125(Pt 15): p. 3661-70.
124. Takai, E., et al., Correlation of translocation of tight junction protein Zonula occludens-1 and activation of epidermal growth factor receptor in the regulation of invasion of pancreatic cancer cells. Int J Oncol, 2005. 27(3): p. 645-51.
125. Coulombe, P.A. and P. Wong, Cytoplasmic intermediate filaments revealed as dynamic and multipurpose scaffolds. Nat Cell Biol, 2004. 6(8): p. 699-706.
126. Thompson, E.W., D.F. Newgreen, and D. Tarin, Carcinoma invasion and metastasis: a role for epithelial-mesenchymal transition? Cancer Res, 2005. 65(14): p. 5991-5; discussion 5995.
127. Sommers, C.L., et al., Vimentin rather than keratin expression in some hormone-independent breast cancer cell lines and in oncogene-transformed mammary epithelial cells. Cancer Res, 1989. 49(15): p. 4258-63.
128. Janmey, P.A., et al., Viscoelastic properties of vimentin compared with other filamentous biopolymer networks. J Cell Biol, 1991. 113(1): p. 155-60.
129. Vuoriluoto, K., et al., Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene, 2011. 30(12): p. 1436-48.
130. Zhang, H., et al., TEAD transcription factors mediate the function of TAZ in cell growth and epithelial-mesenchymal transition. J Biol Chem, 2009. 284(20): p. 13355-13362.
131. Zheng, H. and Y. Kang, Multilayer control of the EMT master regulators. Oncogene, 2014. 33(14): p. 1755-63.
132. Grau, Y., C. Carteret, and P. Simpson, Mutations and Chromosomal Rearrangements Affecting the Expression of Snail, a Gene Involved in Embryonic Patterning in DROSOPHILA MELANOGASTER. Genetics, 1984. 108(2): p. 347-60.
133. Alves, C.C., et al., Role of the epithelial-mesenchymal transition regulator Slug in primary human cancers. Front Biosci (Landmark Ed), 2009. 14: p. 3035-50.
134. Wang, Y., et al., The Role of Snail in EMT and Tumorigenesis. Curr Cancer Drug Targets, 2013. 13(9): p. 963-972.
135. Zhou, W., K.M. Gross, and C. Kuperwasser, Molecular regulation of Snai2 in development and disease. J Cell Sci, 2019. 132(23).
136. Gavert, N. and A. Ben-Ze'ev, Epithelial-mesenchymal transition and the invasive potential of tumors. Trends Mol Med, 2008. 14(5): p. 199-209.
137. Lin, C.Y., et al., Matrix metalloproteinase-9 cooperates with transcription factor Snail to induce epithelial-mesenchymal transition. Cancer Sci, 2011. 102(4): p. 815-27.
138. Haraguchi, M., M. Sato, and M. Ozawa, CRISPR/Cas9n-Mediated Deletion of the Snail 1Gene (SNAI1) Reveals Its Role in Regulating Cell Morphology, Cell-Cell Interactions, and Gene Expression in Ovarian Cancer (RMG-1) Cells. PLoS One, 2015. 10(7): p. e0132260.
139. Tania, M., M.A. Khan, and J. Fu, Epithelial to mesenchymal transition inducing transcription factors and metastatic cancer. Tumour Biol, 2014. 35(8): p. 7335-42.
140. Gemmill, R.M., et al., ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett, 2011. 300(1): p. 66-78.
141. Massague, J., TGFbeta signalling in context. Nat Rev Mol Cell Biol, 2012. 13(10): p. 616-30.
142. Seoane, J. and R.R. Gomis, TGF-beta Family Signaling in Tumor Suppression and Cancer Progression. Cold Spring Harb Perspect Biol, 2017. 9(12).
143. Massague, J., How cells read TGF-beta signals. Nat Rev Mol Cell Biol, 2000. 1(3): p. 169-78.
144. Miettinen, P.J., et al., TGF-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type I receptors. J Cell Biol, 1994. 127(6 Pt 2): p. 2021-36.
145. Ji, H., et al., C-phycocyanin inhibits epithelial-to-mesenchymal transition in Caski cells. Cancer Cell Int, 2020. 20: p. 292.
146. Xu, C., et al., CDCA4 suppresses epithelial-mesenchymal transtion (EMT) and metastasis in Non-small cell lung cancer through modulating autophagy. Cancer Cell Int, 2021. 21(1): p. 48.
147. Fung, C., et al., Induction of autophagy during extracellular matrix detachment promotes cell survival. Mol Biol Cell, 2008. 19(3): p. 797-806.
148. Peng, Y.F., et al., Autophagy inhibition suppresses pulmonary metastasis of HCC in mice via impairing anoikis resistance and colonization of HCC cells. Autophagy, 2013. 9(12): p. 2056-68.
149. Akalay, I., et al., Epithelial-to-mesenchymal transition and autophagy induction in breast carcinoma promote escape from T-cell-mediated lysis. Cancer Res, 2013. 73(8): p. 2418-27.
150. Catalano, M., et al., Autophagy induction impairs migration and invasion by reversing EMT in glioblastoma cells. Mol Oncol, 2015. 9(8): p. 1612-25.
151. Qiang, L., et al., Regulation of cell proliferation and migration by p62 through stabilization of Twist1. Proc Natl Acad Sci U S A, 2014. 111(25): p. 9241-6.
152. Grassi, G., et al., Autophagy regulates hepatocyte identity and epithelial-to-mesenchymal and mesenchymal-to-epithelial transitions promoting Snail degradation. Cell Death Dis, 2015. 6: p. e1880.
153. Li, G., et al., Enhanced epithelial-to-mesenchymal transition associated with lysosome dysfunction in podocytes: role of p62/Sequestosome 1 as a signaling hub. Cell Physiol Biochem, 2015. 35(5): p. 1773-86.
154. Gugnoni, M., et al., Autophagy and epithelial-mesenchymal transition: an intricate interplay in cancer. Cell Death Dis, 2016. 7(12): p. e2520.
155. Dikic, I. and Z. Elazar, Mechanism and medical implications of mammalian autophagy. Nat Rev Mol Cell Biol, 2018. 19(6): p. 349-364.
156. Han, J. and K. Burgess, Fluorescent indicators for intracellular pH. Chem Rev, 2010. 110(5): p. 2709-28.
157. Murugan, S. and R.K. Amaravadi, Methods for Studying Autophagy Within the Tumor Microenvironment. Adv Exp Med Biol, 2016. 899: p. 145-66.
158. Taylor, R.C., S.P. Cullen, and S.J. Martin, Apoptosis: controlled demolition at the cellular level. Nat Rev Mol Cell Biol, 2008. 9(3): p. 231-41.
159. Rieger, A.M., et al., Modified annexin V/propidium iodide apoptosis assay for accurate assessment of cell death. J Vis Exp, 2011(50).
160. Degterev, A., M. Boyce, and J. Yuan, A decade of caspases. Oncogene, 2003. 22(53): p. 8543-67.
161. Porter, A.G., Flipping the safety catch of procaspase-3. Nat Chem Biol, 2006. 2(10): p. 509-10.
162. Wu, Y.T., et al., Dual role of 3-methyladenine in modulation of autophagy via different temporal patterns of inhibition on class I and III phosphoinositide 3-kinase. J Biol Chem, 2010. 285(14): p. 10850-61.
163. Huggins, C., Endocrine-induced regression of cancers. Cancer Res, 1967. 27(11): p. 1925-30.
164. Pienta, K.J. and D. Bradley, Mechanisms underlying the development of androgen-independent prostate cancer. Clin Cancer Res, 2006. 12(6): p. 1665-71.
165. Saitoh, H., et al., Metastatic patterns of prostatic cancer. Correlation between sites and number of organs involved. Cancer, 1984. 54(12): p. 3078-84.
166. Castellone, R.D., et al., Inhibition of tumor cell migration and metastasis by the proton-sensing GPR4 receptor. Cancer Lett, 2011. 312(2): p. 197-208.
167. Albini, A., Tumor and endothelial cell invasion of basement membranes. The matrigel chemoinvasion assay as a tool for dissecting molecular mechanisms. Pathol Oncol Res, 1998. 4(3): p. 230-41.
168. Justus, C.R., et al., In vitro cell migration and invasion assays. J Vis Exp, 2014(88).
169. Zhang, Y. and R.A. Weinberg, Epithelial-to-mesenchymal transition in cancer: complexity and opportunities. Front Med, 2018. 12(4): p. 361-373.
170. Serrano-Gomez, S.J., M. Maziveyi, and S.K. Alahari, Regulation of epithelial-mesenchymal transition through epigenetic and post-translational modifications. Mol Cancer, 2016. 15: p. 18.
171. Kim, B.N., et al., TGF-beta induced EMT and stemness characteristics are associated with epigenetic regulation in lung cancer. Sci Rep, 2020. 10(1): p. 10597.
172. Chen, Q., et al., TGF-beta1 promotes epithelial-to-mesenchymal transition and stemness of prostate cancer cells by inducing PCBP1 degradation and alternative splicing of CD44. Cell Mol Life Sci, 2021. 78(3): p. 949-962.
173. Azbazdar, Y., et al., Regulation of Wnt Signaling Pathways at the Plasma Membrane and Their Misregulation in Cancer. Front Cell Dev Biol, 2021. 9: p. 631623.
174. Su, Z., et al., Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol Cancer, 2015. 14: p. 48.
175. Boya, P., F. Reggiori, and P. Codogno, Emerging regulation and functions of autophagy. Nat Cell Biol, 2013. 15(7): p. 713-20.
176. Nagasaka, A., et al., Apaf-1-independent programmed cell death in mouse development. Cell Death Differ, 2010. 17(6): p. 931-41.
177. Marino, G., et al., Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol, 2014. 15(2): p. 81-94.
178. Mrozik, K.M., et al., N-cadherin in cancer metastasis, its emerging role in haematological malignancies and potential as a therapeutic target in cancer. BMC Cancer, 2018. 18(1): p. 939.
179. Zhu, G.J., et al., Role of epithelial-mesenchymal transition markers E-cadherin, N-cadherin, beta-catenin and ZEB2 in laryngeal squamous cell carcinoma. Oncol Lett, 2018. 15(3): p. 3472-3481.
180. Seyfried, T.N. and L.C. Huysentruyt, On the origin of cancer metastasis. Crit Rev Oncog, 2013. 18(1-2): p. 43-73.
181. Naderi, R., S. Gholizadeh-Ghaleh Aziz, and A.S. Haghigi-Asl, Evaluating the effect of Alantolactone on the expression of N-cadherin and Vimentin genes effective in epithelial-mesenchymal transition (EMT) in breast cancer cell line (MDA-MB-231). Ann Med Surg (Lond), 2022. 73: p. 103240.
182. Cui, Y. and S. Yamada, N-cadherin dependent collective cell invasion of prostate cancer cells is regulated by the N-terminus of alpha-catenin. PLoS One, 2013. 8(1): p. e55069.
183. Gravdal, K., et al., A switch from E-cadherin to N-cadherin expression indicates epithelial to mesenchymal transition and is of strong and independent importance for the progress of prostate cancer. Clin Cancer Res, 2007. 13(23): p. 7003-11.
184. Hay, E., et al., N-cadherin interacts with axin and LRP5 to negatively regulate Wnt/beta-catenin signaling, osteoblast function, and bone formation. Mol Cell Biol, 2009. 29(4): p. 953-64.
185. Leggett, S.E., et al., The epithelial-mesenchymal transition and the cytoskeleton in bioengineered systems. Cell Commun Signal, 2021. 19(1): p. 32.
186. Sisto, M., D. Ribatti, and S. Lisi, E-Cadherin Signaling in Salivary Gland Development and Autoimmunity. J Clin Med, 2022. 11(8).
187. Loh, C.Y., et al., The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells, 2019. 8(10).
188. Wyllie, F.S., et al., Correlated abnormalities of transforming growth factor-beta 1 response and p53 expression in thyroid epithelial cell transformation. Mol Cell Endocrinol, 1991. 76(1-3): p. 13-21.
189. Walker, L., et al., Expression of TGFbeta3 and its effects on migratory and invasive behavior of prostate cancer cells: involvement of PI3-kinase/AKT signaling pathway. Clin Exp Metastasis, 2013. 30(1): p. 13-23.
190. Kimbrough-Allah, M.N., A.C. Millena, and S.A. Khan, Differential role of PTEN in transforming growth factor beta (TGF-beta) effects on proliferation and migration in prostate cancer cells. Prostate, 2018. 78(5): p. 377-389.
191. Kou, B., et al., Thymoquinone inhibits epithelial-mesenchymal transition in prostate cancer cells by negatively regulating the TGF-beta/Smad2/3 signaling pathway. Oncol Rep, 2017. 38(6): p. 3592-3598.
192. Salmena, L., A. Carracedo, and P.P. Pandolfi, Tenets of PTEN tumor suppression. Cell, 2008. 133(3): p. 403-14.
193. Dubrovska, A., et al., The role of PTEN/Akt/PI3K signaling in the maintenance and viability of prostate cancer stem-like cell populations. Proc Natl Acad Sci U S A, 2009. 106(1): p. 268-73.
194. Cao, C., et al., Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res, 2006. 66(20): p. 10040-7.
195. Chu, P.G. and L.M. Weiss, Keratin expression in human tissues and neoplasms. Histopathology, 2002. 40(5): p. 403-39.
196. Hendrix, M.J., et al., Experimental co-expression of vimentin and keratin intermediate filaments in human breast cancer cells results in phenotypic interconversion and increased invasive behavior. Am J Pathol, 1997. 150(2): p. 483-95.
197. Aubert, M., et al., Restoration of alpha(1,2) fucosyltransferase activity decreases adhesive and metastatic properties of human pancreatic cancer cells. Cancer Res, 2000. 60(5): p. 1449-56.
198. Echeverri, C.J., et al., Molecular characterization of the 50-kD subunit of dynactin reveals function for the complex in chromosome alignment and spindle organization during mitosis. J Cell Biol, 1996. 132(4): p. 617-33.
199. Su, X., et al., Study on the Prognostic Values of Dynactin Genes in Low-Grade Glioma. Technol Cancer Res Treat, 2021. 20: p. 15330338211010143.
200. Bransfield, K.L., et al., Phenotypic changes associated with DYNACTIN-2 (DCTN2) over expression characterise SJSA-1 osteosarcoma cells. Mol Carcinog, 2006. 45(3): p. 157-63.
201. Ogunnigbagbe, O., C.G. Bunick, and K. Kaur, Keratin 1 as a cell-surface receptor in cancer. Biochim Biophys Acta Rev Cancer, 2022. 1877(1): p. 188664.

(此全文20250814後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *