帳號:guest(18.119.167.248)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:鄭勝文
作者(英文):Sheng-Wen Cheng
論文名稱:台灣西部沿岸野生牡蠣體內持久性有機污染物之生物累積
論文名稱(英文):Bioaccumulation of persistent organic pollutants in wild oyster in western coastline of Taiwan
指導教授:柯風溪
指導教授(英文):Fung-Chi Ko
口試委員:柯風溪
陳德豪
謝季吟
口試委員(英文):Fung-Chi Ko
Te-Hao Chen
Chi-Ying Hsieh
學位類別:碩士
校院名稱:國立東華大學
系所名稱:海洋生物研究所
學號:610963008
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:120
關鍵詞:持久性有機污染物牡蠣生物累積毒性當量健康風險評估
關鍵詞(英文):Persistent organic pollutantsoystersbioaccumulationtoxic equivalentshealth risk assessment
相關次數:
  • 推薦推薦:0
  • 點閱點閱:8
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏收藏:0
持久性有機污染物(Persistent organic pollutants, POPs)其結構穩定,在環境中不容易分解,經常存留於環境中。由於POPs具有親脂性、生物累積性及毒性,污染物進入海洋環境中會吸附在水中顆粒的有機碳中,當生物濾食水中顆粒時,污染物將經由食物鏈累積在海洋生物體中,造成海洋生物之危害,更威脅海洋生態環境及人類健康。牡蠣生長於潮間帶及淺海的岩礁,濾食海水中有機顆粒,蓄積污染物的能力強,直接累積記錄當地環境污染物,為常用之環境指標生物。本研究針對台灣西部沿岸野生牡蠣進行POPs(PAHs、PCBs、OCPs及PBDEs)檢測,探討POPs在沿岸地區牡蠣累積的含量,物種之間的差異,及POPs對脂肪含量及環境的相關性,並且評估消費者食用牡蠣的健康風險。分析結果顯示,在西部沿岸野生牡蠣皆檢測到此四種POPs,平均濃度大小依序為PAHs(102.42±79.64 ng/g dw)>PBDEs(5.81±9.66 ng/g dw)>PCBs(5.12±6.13 ng/g dw)>OCPs(1.24±1.02 ng/g dw),其變異受到各測站污染狀況不同及物種不同而有所差異,整體而言與其他國家比較,台灣西部沿岸屬於較低污染地區。屏東山海-港口(303.29±66.98 ng/g dw)的牡蠣PAHs濃度最高,可能由於該測站為港口,直接受到船隻排放廢氣及油污染;PCBs濃度則以台南安平(19.41±0.34 ng/g dw)較高,可能與當地工廠排放廢水有關;PBDEs濃度以嘉義東石(34.39±2.41 ng/g dw)最高,推測是受到上游污水處理廠排放廢水造成。PAHs及OCPs累積在牡蠣之濃度與在體內脂肪含量呈正相關,而PCBs及PBDEs累積在牡蠣之濃度主要是受到當地沉積物影響。主成分分析結果發現,牡蠣與環境因子之PAHs組成相似,主要以3環的PAHs組成為主;牡蠣體內PCBs組成以親脂性較強的6氯為主,而水中顆粒及沉積物以3、4氯為主;在PBDEs的組成大都以BDE209為主;在DDTs的組成最主要以DDE為主,表示環境中未有新的DDT污染。牡蠣PAHs及PCBs的BAF值大多大於1,且PCBs累積能力比PAHs高25倍,說明PCBs雖然已被禁止使用,在環境中濃度低,而生物體能從環境中長期累積PCBs。毒性當量方面,PAHs及PCBs的TEQ值並未超出食品污染物衛生標準;健康風險評估顯示,食用當地環境野生牡蠣風險是屬於安全範圍內。
Persistent organic pollutants (POPs) are structurally stable, not easily decomposed in the environment, and often remain in the environment. Due to the lipophilicity, bioaccumulation and toxicity of POPs, pollutants entering the marine environment will be adsorbed in the organic carbon of water particles. The harm to living things also threatens the marine ecological environment and human health. Oysters grow on intertidal and shallow reefs, filter organic particles in seawater, and have a strong ability to accumulate pollutants. They directly accumulate and record local environmental pollutants and are commonly used environmental indicators. In this study, POPs (PAHs, PCBs, OCPs and PBDEs) were detected in wild oysters along the western coast of Taiwan, to explore the accumulation of POPs in oysters in coastal areas, the differences between species, and the correlation of POPs to fat content and the environment, and to evaluate Health risks of oyster consumption by consumers. The analysis results showed that these four POPs were detected in wild oysters along the western coast, and the average concentrations were PAHs (102.42±79.64 ng/g dw)>PBDEs (5.81±9.66 ng/g dw)>PCBs (5.12±6.13 ng/g dw)>OCPs (1.24±1.02 ng/g dw), and its variation is affected by the pollution status of each station and the species. Generally speaking, compared with other countries, the western coast of Taiwan belongs to the lower pollution area. The PAHs concentration of oyster in Pingtung Shanhai-Port (303.29±66.98 ng/g dw) was the highest, probably because the station was a port and was directly polluted by ship exhaust gas and oil; dw), which may be related to the discharge of wastewater from local factories; the concentration of PBDEs in Chiayi Dongshi (34.39±2.41 ng/g dw) was the highest, presumably caused by the discharge of wastewater from the upstream sewage treatment plant. The concentrations of PAHs and OCPs accumulated in oysters were positively correlated with body fat content, while the concentrations of PCBs and PBDEs accumulated in oysters were mainly affected by local sediments. The results of principal component analysis showed that the composition of PAHs in oysters and environmental factors was similar, mainly composed of 3-ring PAHs; the composition of PCBs in oysters was mainly composed of 6-chlorine with strong lipophilicity, while the particles in water and sediments were composed of 3 and 4. Chlorine is the main component; BDE209 is the main component in the PBDEs; DDE is the main component in the DDTs, indicating that there is no new DDT pollution in the environment. The BAF values of oyster PAHs and PCBs are mostly greater than 1, and the accumulation capacity of PCBs is 25 times higher than that of PAHs, indicating that although PCBs have been banned from use, the concentration in the environment is low, and organisms can accumulate PCBs from the environment for a long time. In terms of toxic equivalents, the TEQ values of PAHs and PCBs did not exceed the hygienic standards for food contaminants; the health risk assessment showed that the risk of eating wild oysters in the local environment was within a safe range.
謝辭 i
摘要 iii
Abstract v
目錄 vii
表目錄 xi
圖目錄 xiii
附錄 xv
第一章 前言 1
1.1研究緣起 1
1.2研究目的 2
第二章 文獻回顧 3
2.1持久性有機污染物(POPs) 3
2.2多環芳香烴(PAHs) 5
2.3多氯聯苯(PCBs) 8
2.4有機氯農藥(OCPs) 11
2.5多溴聯苯醚(PBDEs) 15
2.6牡蠣 17
第三章 、材料與方法 19
3.1材料與儀器 19
3.1.1材料 19
3.1.2儀器 22
3.2試藥及器材前處理 23
3.3採樣及樣品前處理 25
3.4樣品處理及分析流程 29
3.4.1生物樣品分析流程 29
3.4.2水中顆粒樣品分析流程 34
3.4.3沉積物樣品分析流程 37
3.4.4矽酸鎂淨化(Florisil) 40
3.4.5水中懸浮顆粒含量及有機碳含量分析 41
3.5儀器分析 43
3.6定量方法 46
3.7品保及品管(QA/QC) 47
3.7.1方法回收率 47
3.7.2方法偵測極限 48
3.8生物累積因子(Bioaccumulation factor, BAF) 49
3.9毒性當量及健康風險評估 50
3.9.1毒性當量(Toxic equivalent quantity, TEQ) 50
3.9.2健康風險評估 51
3.10資料處理與統計分析 52
第四章 、結果與討論 53
4.1台灣西部沿岸牡蠣生物資料 53
4.2台灣西部沿岸牡蠣POPs含量分析 54
4.2.1台灣西部沿岸牡蠣、水中顆粒及沉積物POPs濃度 54
4.2.2牡蠣POPs濃度與其他文獻比較 56
4.2.3各測站牡蠣POPs含量分析 57
4.2.4不同物種牡蠣POPs濃度比較 60
4.2.5牡蠣POPs含量與脂肪含量比較 63
4.2.6牡蠣POPs含量與環境POPs含量相關性 65
4.3台灣西部沿岸牡蠣與環境POPs組成分析 70
4.3.1 PAHs主成分分析 70
4.3.2 PCBs主成分分析 71
4.3.3 DDTs之組成 72
4.3.4 PBDEs之組成 73
4.4牡蠣POPs濃度與環境中水中顆粒生物累積因子分析 74
4.5毒性當量及健康風險評估 76
4.5.1 PAHs及PCBs之毒性當量 76
4.5.2健康風險評估 78
第五章 、結論 79
參考文獻 81
附錄 95
Abdi, H., Williams, L.J., 2010. Principal component analysis. Wiley interdisciplinary reviews: computational statistics 2, 433-459.
Aguirre-Rubí, J.R., Luna-Acosta, A., Etxebarría, N., Soto, M., Espinoza, F., Ahrens, M.J., Marigómez, I., 2018. Chemical contamination assessment in mangrove-lined Caribbean coastal systems using the oyster Crassostrea rhizophorae as biomonitor species. Environmental Science and Pollution Research 25, 13396-13415.
Aktar, M.W., Sengupta, D., Chowdhury, A., 2009. Impact of pesticides use in agriculture: their benefits and hazards. Interdisciplinary toxicology 2, 1.
Alford-Stevens, A.L., Budde, W.L., Bellar, T.A., 1985. Interlaboratory study on determination of polychlorinated biphenyls in environmentally contaminated sediments. Analytical Chemistry 57, 2452-2457.
Almeda, R., Wambaugh, Z., Wang, Z., Hyatt, C., Liu, Z., Buskey, E.J., 2013. Interactions between zooplankton and crude oil: toxic effects and bioaccumulation of polycyclic aromatic hydrocarbons. PloS one 8, e67212.
Arias, P., 1992. Brominated diphenyloxides as flame retardants: bromine based chemicals. Consultant report to the Organisation for Economic Co-operation and Development, Paris, France.
Ashraf, M.A., 2017. Persistent organic pollutants (POPs): a global issue, a global challenge. Environmental Science and Pollution Research 24, 4223-4227.
Atsdr, U., 1997. Agency for toxic substances and disease registry. Case Studies in environmental medicine. http://www.atsdr.cdc.gov/HEC/CSEM/csem.html.
Aznar-Alemany, Ò., Aminot, Y., Vilà-Cano, J., Köck-Schulmeyer, M., Readman, J.W., Marques, A., Godinho, L., Botteon, E., Ferrari, F., Boti, V., Albanis, T., Eljarrat, E., Barceló, D., 2018. Halogenated and organophosphorus flame retardants in European aquaculture samples. Science of The Total Environment 612, 492-500.
Ballschmiter, K., Zell, M., 1980. Analysis of polychlorinated biphenyls (PCB) by glass capillary gas chromatography. Fresenius' Zeitschrift für analytische Chemie 302, 20-31.
Bano, M., Bhatt, D.K., 2010. Ameliorative effect of a combination of vitamin E, vitamin C, alpha-lipoic acid and stilbene resveratrol on lindane induced toxicity in mice olfactory lobe and cerebrum. Indian Journal of Experimental Biology 48, 150-158.
Bayat, N., Saeb, K., Bakhtiyari, A.R., 2020. Biomonitoring of hydrocarbons using seabirds’ eggs and bivalves in Nakhiloo Island, Persian Gulf, Iran. International Journal of Environmental Science and Technology 17, 1511-1528.
Boehm, P.D., Douglas, G.S., Burns, W.A., Mankiewicz, P.J., Page, D.S., Bence, A.E., 1997. Application of petroleum hydrocarbon chemical fingerprinting and allocation techniques after the Exxon Valdez oil spill. Marine Pollution Bulletin 34, 599-613.
Borgå, K., 2013. Ecotoxicology: Bioaccumulation☆. Reference Module in Earth Systems and Environmental Sciences. Elsevier, pp. 346-348.
Brandt-Rauf, P.W., Niman, H.L., 1988. Serum screening for oncogene proteins in workers exposed to PCBs. British Journal of Industrial Medicine 45, 689-693.
Carro, N., García, I., Ignacio, M., Mouteira, A., 2016. Levels of PCBs in Oysters Coming from Galicia Coast: Comparison to Mussels from the Same Region. Bulletin of Environmental Contamination and Toxicology 96, 608-615.
Cerniglia, C.E., 1993. Biodegradation of polycyclic aromatic hydrocarbons. Current Opinion in Biotechnology 4, 331-338.
Chen, P.H.S., Luo, M.L., Wong, C.K., Chen, C.J., 1984. Polychlorinated biphenyls, dibenzofurans, and quaterphenyls in the toxic rice‐bran oil and PCBs in the blood of patients with PCB poisoning in Taiwan. American Journal of Industrial Medicine 5, 133-145.
Chen, Y., Zhao, R., Xue, J., Li, J., 2013. Generation and distribution of PAHs in the process of medical waste incineration. Waste Management 33, 1165-1173.
Cheng, J.O., Liu, K.K., Ko, F.C., 2020. Environmental assessment of persistent organic pollutants in surface sediments of the Danshui River basin, Taipei, Taiwan. Environ Sci Pollut Res Int 27, 44165-44176.
Covaci, A., Harrad, S., Abdallah, M.A.E., Ali, N., Law, R.J., Herzke, D., de Wit, C.A., 2011. Novel brominated flame retardants: A review of their analysis, environmental fate and behaviour. Environment International 37, 532-556.
Darnerud, P.O., Eriksen, G.S., Jóhannesson, T., Larsen, P.B., Viluksela, M., 2001. Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology. Environmental Health Perspectives 109, 49-68.
Demirtepe, H., Imamoglu, I., 2019. Levels of polybrominated diphenyl ethers and hexabromocyclododecane in treatment plant sludge: Implications on sludge management. Chemosphere 221, 606-615.
Dodoo, D.K., Essumang, D.K., Jonathan, J.W.A., 2013. Accumulation profile and seasonal variations of polychlorinated biphenyls (PCBs) in bivalves Crassostrea tulipa (oysters) and Anadara senilis (mussels) at three different aquatic habitats in two seasons in Ghana. Ecotoxicology and Environmental Safety 88, 26-34.
Fang, M., Fang, H.-T., Lee, C.-L., Ko, F.-C., Baker, J., 2006. Concentrations of polychlorinated biphenyl congeners in cultivated oysters (Crassostrea gigas) in western Taiwan. Archives of Environmental Contamination and Toxicology 51, 223-231.
Feng, H., Cheng, Y., Ruan, Y., Tsui, M.M.P., Wang, Q., Jin, J., Wu, R., Zhang, H., Lam, P.K.S., 2021. Occurrence and spatial distribution of legacy and novel brominated flame retardants in seawater and sediment of the South China sea. Environmental Pollution 271, 116324.
Gadelha, J.R., Rocha, A.C., Camacho, C., Eljarrat, E., Peris, A., Aminot, Y., Readman, J.W., Boti, V., Nannou, C., Kapsi, M., Albanis, T., Rocha, F., Machado, A., Bordalo, A., Valente, L.M.P., Nunes, M.L., Marques, A., Almeida, C.M.R., 2019. Persistent and emerging pollutants assessment on aquaculture oysters (Crassostrea gigas) from NW Portuguese coast (Ria De Aveiro). Science of The Total Environment 666, 731-742.
Galarneau, E., 2008. Source specificity and atmospheric processing of airborne PAHs: Implications for source apportionment. Atmospheric Environment 42, 8139-8149.
Gaspare, L., Machiwa, J.F., Mdachi, S.J.M., Streck, G., Brack, W., 2009. Polycyclic aromatic hydrocarbon (PAH) contamination of surface sediments and oysters from the inter-tidal areas of Dar es Salaam, Tanzania. Environmental Pollution 157, 24-34.
Geyer, H.J., Rimkus, G.G., Scheunert, I., Kaune, A., Schramm, K.-W., Kettrup, A., Zeeman, M., Muir, D.C., Hansen, L.G., Mackay, D., 2000. Bioaccumulation and occurrence of endocrine-disrupting chemicals (EDCs), persistent organic pollutants (POPs), and other organic compounds in fish and other organisms including humans. Bioaccumulation–New Aspects and Developments. Springer, pp. 1-166.
Giesy, J.P., Ludwig, J.P., Tillitt, D.E., 1994. Deformities in birds of the Great Lakes region. Environmental Science & Technology 28, 128A-135A.
Granek, E.F., Conn, K.E., Nilsen, E.B., Pillsbury, L., Strecker, A.L., Rumrill, S.S., Fish, W., 2016. Spatial and temporal variability of contaminants within estuarine sediments and native Olympia oysters: A contrast between a developed and an undeveloped estuary. Science of The Total Environment 557-558, 869-879.
Gupta, P.K., 2004. Pesticide exposure—Indian scene. Toxicology 198, 83-90.
Han, B.-C., Jeng, W.-L., Hung, T.-C., Ling, Y.-C., Shieh, M.-J., Chien, L.-C., 2000. Estimation of metal and organochlorine pesticide exposures and potential health threat by consumption of oysters in Taiwan. Environmental Pollution 109, 147-156.
Han, B.C., Hung, T.C., 1990. Green oysters caused by copper pollution on the Taiwan coast. Environmental Pollution 65, 347-362.
Health, U.D.o., Services, H., 1999. Agency for Toxic Substances and Disease Registry-ATSDR.
Hsiao, S.-T., Chuang, S.-C., Chen, K.-S., Ho, P.-H., Wu, C.-L., Chen, C.A., 2016. DNA barcoding reveals that the common cupped oyster in Taiwan is the Portuguese oyster Crassostrea angulata (Ostreoida; Ostreidae), not C. gigas. Scientific Reports 6, 34057.
Hung, C.-C., Gong, G.-C., Chen, H.-Y., Hsieh, H.-L., Santschi, P.H., Wade, T.L., Sericano, J.L., 2007. Relationships between pesticides and organic carbon fractions in sediments of the Danshui River estuary and adjacent coastal areas of Taiwan. Environmental Pollution 148, 546-554.
Hung, T.-C., Hsu, W.-K., Meng, P.-J., Chuang, A., 2000. Species of organotins in imposex of rock shells and hermaphroditic oysters from the western coast of Taiwan. 中央研究院化學研究所集刊, 1-12.
Jacobson, J.L., Jacobson, S.W., 1996. Intellectual impairment in children exposed to polychlorinated biphenyls in utero. New England Journal of Medicine 335, 783-789.
Jayaraj, R., Megha, P., Sreedev, P., 2016. Organochlorine pesticides, their toxic effects on living organisms and their fate in the environment. Interdisciplinary Toxicology 9, 90.
Jones, D.M., Rowland, S.J., Douglas, A.G., Howells, S., 1986. An Examination of the Fate of Nigerian Crude Oil in Surface Sediments of the Humber Estuary by Gas Chromatography and Gas Chromatography-Mass Spectrometry. International Journal of Environmental Analytical Chemistry 24, 227-247.
Jones, G., 1989. Polychlorinated biphenyls: where do we stand now. Lancet 2, 791-794.
Jones, K.C., de Voogt, P., 1999. Persistent organic pollutants (POPs): state of the science. Environmental Pollution 100, 209-221.
Kajiwara, N., Kannan, K., Muraoka, M., Watanabe, M., Takahashi, S., Gulland, F., Olsen, H., Blankenship, A.L., Jones, P.D., Tanabe, S., Giesy, J.P., 2001. Organochlorine Pesticides, Polychlorinated Biphenyls, and Butyltin Compounds in Blubber and Livers of Stranded California Sea Lions, Elephant Seals, and Harbor Seals from Coastal California, USA. Archives of Environmental Contamination and Toxicology 41, 90-99.
Kim, Y.-Y., Patra, J.-K., Shin, H.-S., 2022. Evaluation of analytical method and risk assessment of polycyclic aromatic hydrocarbons for fishery products in Korea. Food Control 131, 108421.
Kimbrough, R.D., Jensen, A.A., 2012. Halogenated biphenyls, terphenyls, naphthalenes, dibenzodioxins and related products. Elsevier.
Konecná, H., Kalina, I., 1987. Dose-rate dependence of chromosome aberrations in human peripheral blood lymphocytes irradiated in vitro. Folia Biol (Praha) 33, 301-306.
La Guardia, M.J., Hale, R.C., Harvey, E., 2006. Detailed Polybrominated Diphenyl Ether (PBDE) Congener Composition of the Widely Used Penta-, Octa-, and Deca-PBDE Technical Flame-retardant Mixtures. Environmental Science & Technology 40, 6247-6254.
Lang, V., 1992. Polychlorinated biphenyls in the environment. Journal of Chromatography A 595, 1-43.
Langenbach, T., 2013. Persistence and bioaccumulation of persistent organic pollutants (POPs). Applied bioremediation-active and passive approaches 10, 56418.
León, V.M., Moreno-González, R., González, E., Martínez, F., García, V., Campillo, J.A., 2013. Interspecific comparison of polycyclic aromatic hydrocarbons and persistent organochlorines bioaccumulation in bivalves from a Mediterranean coastal lagoon. Science of The Total Environment 463-464, 975-987.
Lee, C.-C., Chen, C.S., Wang, Z.-X., Tien, C.-J., 2021. Polycyclic aromatic hydrocarbons in 30 river ecosystems, Taiwan: Sources, and ecological and human health risks. Science of The Total Environment 795, 148867.
Lima, A.L.C., Eglinton, T.I., Reddy, C.M., 2003. High-Resolution Record of Pyrogenic Polycyclic Aromatic Hydrocarbon Deposition during the 20th Century. Environmental Science & Technology 37, 53-61.
Lin, S., Hsieh, I.-J., 1999. Occurrences of green oyster and heavy metals contaminant levels in the Sien-San area, Taiwan. Marine Pollution Bulletin 38, 960-965.
Luna-Acosta, A., Budzinski, H., Le Menach, K., Thomas-Guyon, H., Bustamante, P., 2015. Persistent organic pollutants in a marine bivalve on the Marennes-Oléron Bay and the Gironde Estuary (French Atlantic Coast)—Part 1: Bioaccumulation. Science of The Total Environment 514, 500-510.
Nisbet, I.C.T., LaGoy, P.K., 1992. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regulatory Toxicology and Pharmacology 16, 290-300.
Oros, D.R., Hoover, D., Rodigari, F., Crane, D., Sericano, J., 2005. Levels and Distribution of Polybrominated Diphenyl Ethers in Water, Surface Sediments, and Bivalves from the San Francisco Estuary. Environmental Science & Technology 39, 33-41.
Pandey, N., Gundevia, F., Prem, A.S., Ray, P.K., 1990. Studies on the genotoxicity of endosulfan, an organochlorine insecticide, in mammalian germ cells. Mutation Research/Genetic Toxicology 242, 1-7.
Pimentel, D., 1995. Amounts of pesticides reaching target pests: Environmental impacts and ethics. Journal of Agricultural and Environmental Ethics 8, 17-29.
Ramdine, G., Fichet, D., Louis, M., Lemoine, S., 2012. Polycyclic aromatic hydrocarbons (PAHs) in surface sediment and oysters (Crassostrea rhizophorae) from mangrove of Guadeloupe: Levels, bioavailability, and effects. Ecotoxicology and Environmental Safety 79, 80-89.
Ratcliffe, D.A., 1967. Decrease in Eggshell Weight in Certain Birds of Prey. Nature 215, 208-210.
Ratcliffe, D.A., 1970. Changes attributable to pesticides in egg breakage frequency and eggshell thickness in some British birds. Journal of applied ecology, 67-115.
Reigart, J.R., Roberts, J.R., 1999. Recognition and management of pesticide poisonings. US Environmental Protection Agency.
Sahoo, D.K., Roy, A., Chainy, G.B.N., 2008. Protective effects of vitamin E and curcumin on l-thyroxine-induced rat testicular oxidative stress. Chemico-Biological Interactions 176, 121-128.
Sang, S., Petrovic, S., 1999. Endosulfan-A Review of its Toxicity and its Effects on the Endocrine System. WWF (World Wild Life Fund-Canada).
Santos, L.L., Miranda, D., Hatje, V., Albergaria-Barbosa, A.C.R., Leonel, J., 2020. PCBs occurrence in marine bivalves and fish from Todos os Santos Bay, Bahia, Brazil. Marine Pollution Bulletin 154, 111070.
Shaoyong, W., Zhang, W., Wang, C., Kou, Z., Yong, W., Jiao, J., Yan, W., Pang, W., 2021. BDE-209 caused gut toxicity through modulating the intestinal barrier, oxidative stress, autophagy, inflammation, and apoptosis in mice. Science of The Total Environment 776, 146018.
Sharma, T., 2014. In silico investigation of polycyclic aromatic hydrocarbons against bacterial 1-2 dioxygenase. J. Chem. Pharm. Res 6, 873-877.
Singh, N.D., Sharma, A.K., Dwivedi, P., Patil, R.D., Kumar, M., 2007. Citrinin and endosulfan induced teratogenic effects in Wistar rats. Journal of Applied Toxicology: An International Journal 27, 143-151.
Subramaniam, K., Solomon, J., 2006. Organochlorine pesticides BHC and DDE in human blood in and around Madurai, India. Indian Journal of Clinical Biochemistry 21, 169.
Thompson, S., Budzinski, H., Garrigues, P., Narbonne, J.F., 1999. Comparison of PCB and DDT Distribution between Water-column and Sediment-dwelling Bivalves in Arcachon Bay, France. Marine Pollution Bulletin 38, 655-662.
United Nations Environment Programme, U., 2021. Stockholm convention. Proje.
US‐EPA, 2003. Health Effects Support Document for Aldrin/Dieldrin.
Varjani, S.J., Gnansounou, E., Pandey, A., 2017. Comprehensive review on toxicity of persistent organic pollutants from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188, 280-291.
Venkatesan, M.I., 1988. Occurrence and possible sources of perylene in marine sediments-a review. Marine Chemistry 25, 1-27.
Videla, L.A., Tapia, G., Varela, P., Cornejo, P., Guerrero, J., Israel, Y., Fernández, V., 2004. Effects of acute γ-hexachlorocyclohexane intoxication in relation to the redox regulation of nuclear factor-κB, cytokine gene expression, and liver injury in the rat. Antioxidants and Redox Signaling 6, 471-480.
Wagner, S.L., 1997. Diagnosis and treatment of organophosphate and carbamate intoxication. Occupational Medicine (Philadelphia, Pa.) 12, 239-249.
Wakeham, S.G., Schaffner, C., Giger, W., 1980. Poly cyclic aromatic hydrocarbons in Recent lake sediments—II. Compounds derived from biogenic precursors during early diagenesis. Geochimica et Cosmochimica Acta 44, 415-429.
Wang, Y., Wang, T., Li, A., Fu, J., Wang, P., Zhang, Q., Jiang, G., 2008. Selection of Bioindicators of Polybrominated Diphenyl Ethers, Polychlorinated Biphenyls, and Organochlorine Pesticides in Mollusks in the Chinese Bohai Sea. Environmental Science & Technology 42, 7159-7165.
Witt, G., 1995. Polycyclic aromatic hydrocarbons in water and sediment of the Baltic Sea. Marine Pollution Bulletin 31, 237-248.
Xu, W., Wang, X., Cai, Z., 2013. Analytical chemistry of the persistent organic pollutants identified in the Stockholm Convention: A review. Analytica Chimica Acta 790, 1-13.
Yakushiji, T., Watanabe, I., Kuwabara, K., Tanaka, R., Kashimoto, T., Kunita, N., Hara, I., 1984. Rate of decrease and half-life of polychlorinated biphenyls (PCBs) in the blood of mothers and their children occupationally exposed to PCBs. Archives of Environmental Contamination and Toxicology 13, 341-345.
Zakaria, M.P., Takada, H., Tsutsumi, S., Ohno, K., Yamada, J., Kouno, E., Kumata, H., 2002. Distribution of polycyclic aromatic hydrocarbons (PAHs) in rivers and estuaries in Malaysia: a widespread input of petrogenic PAHs. Environmental science & technology 36, 1907-1918.
于紫玲, 林钦, 孙闰霞, 谷阳光, 柯常亮, 石凤琼, 2015. 海南岛沿海牡蛎体中 PAHs 的时空分布及其健康风险评价. 中国环境科学 35, 1570-1578.
國家攝食資料庫 https://tnfcds.nhri.edu.tw
臺灣貝類資料庫https://shell.sinica.edu.tw
漁業統計年報 https://www.fa.gov.tw/cht/PublicationsFishYear/index.aspx
食品中污染物質及毒素衛生標準https://law.moj.gov.tw/LawClass/LawAll.aspx?pcode=L0040138
食品含戴奧辛及多氯聯苯處理規範 https://www.rootlaw.com.tw/LawContent.aspx?LawID=A040170051036800-1090415
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *