帳號:guest(18.117.187.205)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳鈐鈴
作者(英文):Cheng-Ling Chen
論文名稱:PD&OE合作探究學習歷程行為分析:以國中凸透鏡成像單元為例
論文名稱(英文):Analysis of PD&OE inquiry-based learning behavior: Case in learning “Image Formation with Converging Lenses”
指導教授:蔡其瑞
指導教授(英文):Chi-Ruei Tsai
口試委員:劉明洲
何慧瑩
口試委員(英文):Ming-Chou Liu
Huei-Ying Ho
學位類別:碩士
校院名稱:國立東華大學
系所名稱:教育與潛能開發學系
學號:610988301
出版年(民國):111
畢業學年度:110
語文別:中文
論文頁數:120
關鍵詞:合作學習探究式學習滯後行為序列分析立論
關鍵詞(英文):collaborative learninginquiry-based learninglag sequential analysis(LSA)argument
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本研究目的以「凸透鏡成像」為探究課程單元,進行預測-操作及觀察-解釋
(predict-do& observe-explain, PD&OE) 探究活動共計 7 週,分析其合作探究歷程之學習行為。研究對象為八年級學生共 83 人,組成 24 組進行合作探究式學習,有效樣本 52 位學生,共 18 組。透過智慧型裝置紀錄學生動手實作與論證等探究行為,所得攝影紀錄依編碼表進行編碼,進而運用滯後行為序列分析探討不同學習屬性的學習者其合作探究行為歷程。研究結果顯示,自各班級非隨機取樣的 52位學生,不同性別學生在 PD&OE 合作探究課程中,七種探究行為的出現頻率未達顯著差異。另外,高學習成就學生之 PD&OE 合作探究學習行為,呈現出立論行為與循證行為高度交織之現象,代表其循證學習、思辨反思等深度知識建構的行為歷程。而低學習成就學生之 PD&OE 合作探究學習行為,則呈現出立論行為循環或循證行為循環之現象,無法基於循證結果進入科學思辨學習歷程,以形成高階知識建構。
This study aims to look at collaborative inquiry learning of middle school students through an inquiry-based lesson “Image Formation by Convex Lenses” with the Predict-Do & Observe-Explain (PD&OE) technique for 7 weeks. The participants of the study were 83 eighth-grade students, who were divided into 24 groups for collaborative inquiry-based learning; among them, 52 students in 18 groups were valid samples. The students’ inquiry behaviors such as hands-on practices and arguments were recorded by smart devices. The photographic records were encoded based on a coding scheme and lag sequential analysis was further performed to examine the collaborative inquiry learning processes of respective learners with different attributes of learning. The results show that among the 52 students who were non-randomly sampled from each class, students of different genders in a PD&OE collaborative inquiry lesson did not appear significantly different in terms of the frequency of occurrence of the seven inquiry behaviors. In addition, high-achieving students in a PD&OE collaborative inquiry lesson demonstrated high intertwining of argument-based and evidence-based behaviors. This indicates their behavioral processes for constructing deep knowledge such as evidence-based learning and reflective thinking. As for low-achieving students in a PD&OE collaborative inquiry lesson, they revealed the circularity of argument-based or evidence-based behaviors, which suggests that they failed to enter the learning process of scientific thinking based on evidence-based results so as to form a construction of higher-order knowledge.
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 8
第三節 研究問題 8
第四節 名詞解釋 8
第五節 研究限制 10
第二章 文獻探討 13
第一節 探究式學習 13
第二節 探究行為 23
第三節 STEM 學習與性別 34
第四節 滯後行為序列分析 36
第三章 研究方法 45
第一節 研究參與者 45
第二節 研究流程 46
第三節 課程設計 51
第四節 研究設計 54
第五節 研究工具 56
第六節 資料收集與分析 60
第四章 結果與討論 67
第一節 信實度與描述性統計 67
第二節 不同性別在合作學習中的探究行為 71
第三節 研究參與者的行為序列特徵 73
第五章 結論與建議 91
第一節 結論 91
第二節 其他研究發現 93
第三節 未來研究發展與建議 94
參考文獻 97
中文部分
史麗珠、鍾佳玘、趙國玉、林雪蓉、侯嘉玲、林慧芬 (2015)。注意力不足過動症知識量表之發展及信效度評估。台灣衛誌,34 (3),319-334 http://doi.org/10.6288/TJPH201534 103110
吳相儀、陳冠羽、廖思涵、劉政宏、謝碧玲 (2018)。「新編青少年強項量表」之編製與驗證。測驗學刊,65(4),367-399。
李松濤、林煥祥、洪振方 (2010)。探究式教學對學童科學論證能力影響之探究。科學教育學刊,18(3),177-203。http://doi.org/10.6173/CJSE.2010.1803.01
林建良、蔡俊彥 (2020)。高中科技課程翻轉教學對學習知覺效果的性別差異。科學教育學刊,28(1),1-23。http://doi.org/10.6173/CJSE.202003_28(1).0001
張芬芬 (2010)。質性資料分析的五步驟:在抽象階梯上爬升。初等教育學刊,35,87-120。
國家教育研究院 (2018,11 月 2 日)。十二年國民基本教育課程綱要國民中小學暨普通型、 技術型、綜合型高級中等學校—自然科學領域訂定發布。
https://cirn.moe.edu.tw/Upload/file/27888/82352.pdf
郭重吉 (2018)。從實務理論初探教學實務模型的發展與應用。師資培育與教師專業發展期刊,11(3),31-59。http://doi.org/10.3966/207136492018121103002
劉湘瑤 (2012 年 2 月)。科學的探究教學與評量。科學研習,55(2),7-11。

英文部分
Aboagye, G. K., Ossei-Anto, T. A., & Ampiah, J. G. (2018). Combining inquiry-based hands-on and simulation methods with cooperative learning on students’ learning outcomes in electric circuits. American Journal of Educational Research, 6(8), 1172-1181. http://doi.org/10.12691/education-6-8-16
Abramczyk, A. & Jurkowski, S. (2020). Cooperative learning as an evidence-based teaching strategy: what teachers know, believe, and how they use it. Journal of Education for Teaching, 46(3), 296-308. http://doi.org/10.1080/02607476.2020.1733402
Aditomo, A., & Klieme, E. (2019). Forms of inquiry-based science instruction and their relations with learning outcomes: evidence from high and low-performing education systems. International Journal of Science Education, 42(4). https://doi.org/10.1080/09500693.2020.1716093
Aozulay, A. (2020, February). Investing in her education, building a better future. ScooNews. https://www.scoonews.com/news/investing-in-her-education-building-a-better-future-8794
Arievitch, I. M. (2020). Reprint of: The vision of developmental teaching and learning and bloom's taxonomy of educational objectives. Learning, Culture and Social Interaction, 27, 100473. https://doi.org/10.1016/j.lcsi.2019.01.007
Ayçiçek, B. (2021). Integration of critical thinking into curriculum: Perspectives of prospective teachers. Thinking Skills and Creativity, 41. https://doi.org/10.1016/j.tsc.2021.100895
Bahari, A. A., Kussin, H. J., Harun, R. N. S. R., Mohamed, M., & Jobar, N. A. (2021). The limitations of conducting collaborative argumentation when teaching argumentative essays in Malaysian secondary schools. Studies in English Language and Education, 8(3), 1111-1122. https://doi.org/10.24815/siele.v8i3.19287

Bakeman, R., & Gottman, J. M. (1997). Observing interaction: An introduction to sequential analysis (2nd ed.). New York: Cambridge University Press. https://doi.org/10.1017/CBO9780511527685
Bell, T., Urhahne, D., Schanze, S., & Ploetzner R. (2010). Collaborative inquiry learning: models, tools, and challenges. International Journal of Science Education, 32(3), 349-377. https://doi.org/10.1080/09500690802582241
Böheim, R., Urdan, T., Knogler, M., & Seidel,T. (2020). Student hand-raising as an indicator of behavioral engagement and its role in classroom learning. Contemporary Educational Psychology, 62, 101894. https://doi.org/10.1016/j.cedpsych.2020.101894
Bosch, E., Seifried, E., & Spinath, B. (2021). What successful students do: Evidence-based learning activities matter for students' performance in higher education beyond prior knowledge, motivation, and prior achievement. Learning and Individual Differences, 91, 102056. https://doi.org/10.1016/j.lindif.2021.102056
Brown, N. J. S., Furtak, E. M., Timms, M., Nagashima, S. O., & Wilson, M. (2010). The evidence-based reasoning framework: Assessing scientific reasoning. Educational Assessment, 15(3-4), 123-141. https://doi.org/10.1080/10627197.2010.530551
Bybee, R. W. (2011). Scientific and engineering practices in K-12 classrooms: Understanding a framework for K-12 science education. The Science Teacher, 35, 10. https://link.springer.com/article/10.1007%2Fs11423-021-09938-x
Bybee, R. W., & Trowbridge, J. H. (1990). Applying standards-based constructivism: A two-step guide for motivating students. Cambridge University Press.
Carin, A. A., & Sund, R. B. (1997). Teaching modern science. Merrill Pub Co.
Chen, C. M., & Wang, W. F. (2020). Mining effective learning behaviors in a web-based inquiry science environment. Journal of Science Education and Technology, 29(4), 519-535. https://doi.org/10.1007/s10956-020-09833-9
Chen, K. Z., & Li, S. C. (2021). Sequential, typological, and academic dynamics of self-regulated learners: Learning analytics of an undergraduate chemistry online course. Computers and Education: Artificial Intelligence, 2, 100024. https://doi.org/10.1016/j.caeai.2021.100024
Chen, Y. C., Hand, B., & Park, S. (2016). Examining elementary students' development of oral and written argumentation practices through argument-based inquiry. Science & Education, 25(34), 277-320. https://doi.org/10.1007/s11191-016-981
Ching, C. P. (2014). Linking theory to practice: A case-based approach in teacher education. Procedia-Social and Behavioral Sciences, 123, 280-288. http://doi.org/10.1016/j.sbspro.2014.01.1425
Chinn, C. A., & Malhotra, B. A. (2002). Children’s responses to anomalous scientific data: How is conceptual change impeded? Journal of Educational Psychology, 94(2), 327-343. http://doi.org/10.1037//0022-0663.94.2.327
Choi, Y. (2020). An open-inquiry assignment for small and advanced undergraduate science courses. J Microbiol Biol Education, 21(1). https://doi.org/10.1128/jmbe.v21i1.1903
Choowong, K., & Worapun,W. (2021).The development of scientific reasoning ability on concept of light and image of grade 9 students by using inquiry-based learning 5E with prediction observation and explanation strategy. Journal of Education and Learning, 10(5), 152-159. https://doi.org/10.5539/jel.v10n5p152
Clark, D. B., Sampson, V., Weinberger, A., & Erkens, G. (2007). Analytic frameworks for assessing dialogic argumentation in online learning environments. Educational Psychology Review, 19(3), 343–374. http://doi.org/10.1007/s10648-007-9050-7
Courel-Ibáñez, J. (2021). Game patterns in padel: a sequential analysis of elite men players. International Journal of Performance Analysis in Sport. https://doi.org/10.1080/24748668.2021.1927630
De Vries, E., Lund, K., & Baker, M. (2009). Computer-mediated epistemic dialogue: Explanation and argumentation as vehicles for understanding scientific notions. The Journal of the Learning Sciences, 11(1), 63-103. https://doi.org/10.1207/S15327809JLS1101_3
Denzin, N. K. (1978). The research act: A theoretical introduction to sociological method. McGraw-Hill.
Dobber, M., Zwart, R., Tanis, M. & van Oers, B. (2017). Literature review: The role of the teacher in inquiry-based education. Educational Research Review, 22(1), 194-214.
Ennis, R. H. (2018). Critical thinking across the curriculum:A vision. Topoi, 37, 165-184. https://doi.org/10.1007/s11245-016-9401-4
Eren, E. (2021). Exploring science identity development of women in physics and physical sciences in higher education. Science & Education, 30, 1131–1158. https://doi.org/10.1007/s11191-021-00220-3
Esen, U. K., Tuysuz, M., Sarici, E., Soysal, C. & Kilinc, S. (2021). The role of the argumentation-based laboratory on the development of preservice chemistry teachers’ argumentation skills. International Journal of Science Education, 43,(1), 30-55. https://doi.org/10.1080/09500693.2020.1846226
Fakhriyah, F., Rusilowati, A., Wiyanto, W., & Susilaningsih, E. (2021). Argument-driven inquiry learning model: A systematic review. International Journal of Research in Education and Science,7(3), 767-784. https://doi.org/10.46328/ijres.2001
Fan, Y. C., Wang, T. H., & Wang, K. H. (2020). Studying the effectiveness of an online argumentation model for improving undergraduate students' argumentation ability. Journal of computer assisted learning, 36(4), 526-539. https://doi.org/10.1111/jcal.12420
Felton, M., Crowell, A., Garcia-Mila, M., & Villarroel, C. (2019). Capturing deliberative argument: An analytic coding scheme for studying argumentative dialogue and its benefits for learning. Learning, Culture and Social Interaction, 100350. https://doi.org/10.1016/j.lcsi.2019.100350
Ferretti, R. P., & Lewis, W. E. ( 2013). Best practices in writing instruction. In S. Graham, C.A. MacArthur & J. Fitzgerland (Eds.), Best practices in writing instruction (2nd ed., 113-140). Guilford Press.
Fitriani, A., Zubaidah, S., Susilo, H., & Al Mudhar, M. H. I. (2020). People: A learning model to enhance students’ critical thinking skills and scientific attitudes. International Journal of Instruction, 13(2), 89-106. https://doi.org/10.29333/iji.2020.1327a
Floren, L. C., Ten, C. O., Irby, D. M., & O'Brien, B. C. (2020). An interaction analysis model to study knowledge construction in interprofessional education: proof of concept. National Center for Biotechnology Information , 35(5), 736-743. https://doi.org/10.1080/13561820.2020.1797653.
Furtak, E. M., Hardy, I., Beinbrech, C., Shavelson, R. J., & Shemwell, J. T. (2010). A framework for analyzing evidence-based reasoning in science classroom discourse. Educational Assessment, 15(3-4), 175-196. https://doi.org/10.1080/10627197.2010.530553
García-Carmona, A., & Acevedo-Díaz, J. A. (2017). Understanding the nature of science through a critical and reflective analysis of the controversy between Pasteur and Liebig on fermentation. Science & Education, 26(1), 65-91. http://dx.doi.org/10.1007/s11191-017-9876-4
García-Carmona, A. (2020). From inquiry-based science education to the approach based on scientific practices. Science & Education, 29, 443-463. https://doi.org/10.1007/s11191-020-00108-8
Gillies, R. M. (2003). Structuring cooperative group work in classrooms: International Journal of Educational Research, 39(1-2), 35-49. https://doi.org/10.1016/S0883-0355(03)00072-7
Gillies, R. M., Nichols, K., Burgh, G., & Haynes, M. (2012). The effects of two strategic and meta-cognitive questioning approaches on children’s explanatory behaviour, problem-solving, and learning during cooperative, inquiry-based science. International Journal of Educational Research , 53, 93-106. https://doi.org/10.1016/j.ijer.2012.02.003
Gormally, C., Brickman, P., Hallar, B., & Armstrong, N. (2009). Effects of inquiry-based learning on students' science literacy skills and confidence. International journal for the scholarship of teaching and learning, 3(2), Article 16. https://doi.org/10.20429/ijsotl.2009.030216
Gunawardena, C. N., Lowe, C. A., & Anderson, T. (1997). Analysis of a global online debate and the development of an interaction analysis model for examining social construction of knowledge in computer conferencing. Journal of Educational Computing Research, 17(4), 397-431. http://doi.org/10.2190/7MQV-X9UJ-C7Q3-NRAG
Han, J., Kim, K. H., Rhee, W., & Cho, Y. H. (2021). Learning analytics dashboards for adaptive support in face-to-face collaborative argumentation. Computers & Education, 163, 104041. https://doi.org/10.1016/j.compedu.2020.10404
Harmon-Jones, E., & Mills, J. (2019). An introduction to cognitive dissonance theory and an overview of current perspectives on the theory. American Psychological Association , 3-24. https://doi.org/10.1037/0000135-001
Haury, D. L. & Rillero, P. (1994). Perspectives of hands-on science teaching. ERIC Publications.
Hodson, D. (2014). Learning science, learning about science, doing science: Different goals demand different learning methods. International Journal of Science Education, 36(15), 2534-2553. https://doi.org/10.1080/09500693.2014.899722
Hofmann,R., Vrikki, M., & Evagorou, M. (2021). Engaging teachers in dialogic teaching as a way to promote cultural literacy learning: A reflection on teacher professional development. Dialogue for Intercultural Understanding, 135-148. https://doi.org/10.1007/978-3-030-71778-0_10
Hong, J. C., Hwang, M. Y., Liu, M. C., Ho, H. Y., & Chen, Y. L. (2014). Using a “prediction-observation-explanation” inquiry model to enhance student interest and intention to continue science learning predicted by their Internet cognitive failure. Computers & Education, 72, 110-120. https://doi.org/10.1016/j.compedu.2013.10.004.
Hong, J. C., Hwang, M.Y., Tai, K.H., & Tsai, C.R., (2017). An exploration of students’ science learning interest related to their cognitive anxiety, cognitive load, self-confidence and learning progress using inquiry-based learning with an iPad. Research in Science Education, 47, 1193-1212. https://doi.org/10.1007/s11165-016-9541-y
Hong, J. C., Lu, C. C., Wang, J. L., Liao, S., Wu, M. R., Hwang, M. Y., & Lin, P. S. (2013). Gender and prior science achievement affect categorization on a procedural learning task. Thinking Skills and Creativity, 8, 92-101. https://doi.org/10.1016/j.tsc.2012.07.005
Hong, J. C., Hsiao, H. S., Chen, P. H., Lu, C. C., Tai, K. H., & Tsai, C. R. (2021). Critical attitude and ability associated with students’ self-confidence and attitude toward “predict-observe-explain” online science inquiry learning. Computers & Education, 166. https://doi.org/10.1016/j.compedu.2021.104172
Hou, H. T., Chang, K. E., & Sung,Y. T. (2008). Analysis of problem-solving-based online asynchronous discussion pattern. Educational Technology & Society, 11(1), 17-28. https://doi.org/10.1002/tea.20347
Huba, M. E., & Freed, J. E. (2000). Learner-centered assessment on college campuses : Shifting the focus from teaching to learning. Pearson Press. https://uncw.edu/cas/assessment/docs/resources/learnercenteredassessement.pdf
Iordanou, K., Kuhn, D., Matos, F., Shi, Y., & Hemberger, L. (2019). Learning by arguing. Learning and Instruction,63. https://doi.org/10.1016/j.learnins truc.2019.05.004.
Jiang,Y., Clarke-Midura, J., Keller,B., Baker,R. S., Paquette,L., & Ocumpaugh, J. (2018). Note-taking and science inquiry in an open-ended learning environment. Contemporary Educational Psychology, 55, 12-29. https://doi.org/10.1016/j.cedpsych.2018.08.004
Johnson, D. W. & Johnson, R. T. (2009). Making cooperative learning work. Theory Into Practice, 38, 67-73. https://doi.org/10.1080/00405849909543834
Johnson, D. W., & Johnson, R. T. (2009). Energizing learning: The instructional power of conflict. Educational Researcher, 38(1), 37-51. https://doi.org/10.3102/0013189X08330540
Jurik, V., Gröschner, A., & Seidel, T. (2013). How student characteristics affect girls’ and boys’ verbal engagement in physics instruction. Learning and Instruction, 23, 33-42. https://doi.org/10.1016/j.learninstruc.2012.09.002
Katchevich, D., Hofstein, A., & Mamlok-Naaman, R. (2013). Argumentation in the chemistry laboratory: Inquiry and confirmatory experiments. Research in Science Education, 43(1), 317-345. https://doi.org/10.1007/s11165-011-9267-9
Kind, P. M., Kind, V., Hofstein, A., & Wilson, J. (2011). Peer argumentation in the school science laboratory exploring effects of task features. International Journal of Science Education, 33(18), 2527-2558. https://doi.org/10.1080/09500693.2010.550952
Klahr, D., Zimmerman, C., & Jirout, J. (2011). Educational interventions to advance children's scientific thinking. Science, 971-975. https://doi.org/10.1126/science.1204528
Kostiainen, E., Ukskoski, T., Ruohotie-Lyhty, M., Kauppinen, M., Kainulainen, J., & Makinen, T. (2018). Meaningful learning in teacher education. Teaching and Teacher Education,71, 66-77. https://doi.org/10.1016/j.tate.2017.12.009
Kuhn, D. (2010). Teaching and learning science as argument. Science Education, 94(5), 810-824. https://doi.org/10.1002/sce.20395
Kuhn, D., & Udell, W. (2003). The development of argument skills. Child Development, 74(5), 1245-1260. https://doi.org/10.1111/1467-8624.00605
Kuhn, L., & Reiser, B. (2005). Students constructing and defending evidence-based scientific explanations. In: Annual meeting of the National Association for Research in Science Teaching, Dallas, EUA.
https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.472.4662&rep=rep1&type=pdf
Lai, C. L., & Hwang, G. J. (2015). A spreadsheet-based visualized Mind tool for improving students’ learning performance in identifying relationships between numerical variables. Interactive Learning Environments. 23(2), 230-249. https://doi.org/10.1080/10494820.2014.997247
Larrain, A., Freire, P., Grau, V., López, P., Salvat, I., & Silva, M. (2018). The effect of peer-group argumentative dialogue on delayed gains in scientific content knowledge. New Directions in Child and Adolescent Development, 162, 67-87. https://doi.org/10.1002/cad.20263.
Larrain, A., Freire, P., López, P., & Grau, V. (2019). Counter-arguing during curriculum-supported peer interaction facilitates middle-school students’ science content knowledge. Cognition and Instruction, 37, 453-482. https://doi.org/10.1080/07370008.2019.1627360.
Larrain, A., Freire, P., Strasser, K., & Grau, V. (2020). The development of a coding scheme to analyse argumentative utterances during group-work. Thinking Skills and Creativity, 36. https://doi.org/10.1016/j.tsc.2020.100657
Larrain, A., Singer, V., Strasser, K., Howe, C., López, P., Pinochet, J., Moran, C., Sánchez, Á., Silva, M., & Villavicencio, C. (2020). Argumentation skills mediate the effect of peer argumentation on content knowledge in middle-school students. Journal of Educational Psychology. https://doi.org/10.1037/edu0000619
Lazonder, A. W., & Harmsen, R. (2016). Meta-analysis of inquiry-based learning: Effects of guidance. Review of Educational Research, 681-718. https://doi.org/10.3102/0034654315627366
Le, H., Fan, Y., Jia, J., & Wang, Q. (2019). How do excellent MOOC learners learn: Mining learning behavior patterns in MOOC. China Electronic Education, 385, 72-79. https://kns.cnki.net/kcms/detail/11.3792.G4.20190124.0851.024. html.
Lee, M. C., & Sulaiman, F. (2018). The effectiveness of practical work on students’ motivation and understanding towards learning physics. International Journal of Humanities and Social Science Invention,7(8), 35-41.
Lesgold, A. M. (2001). The nature and methods of learning by doing. American Psychologist, 56(11), 964-973. https://doi.org/10.1037/0003-066X.56.11.964
Liu, E., Zhao, J., & Sofeia, N. (2022). Students’ entire deep learning personality model and perceived teachers’ emotional support. Frontiers in Psychology, 13. https://doi.org/10.3389/fpsyg.2021.793548
Lu, K., Pang, F., & Shadiev, R. (2021). Understanding the mediating effect of learning approach between learning factors and higher order thinking skills in collaborative inquiry-based learning. Education Technology Research and Development, 69, 2475-2492. https://doi.org/10.1007/s11423-021-10025-4
Luo, M., Sun, D., Zhu, L., & Yang,Y. (2021). Evaluating scientific reasoning ability: Student performance and the interaction effects between grade level, gender, and academic achievement level. Thinking Skills and Creativity, 41. https://doi.org/10.1016/j.tsc.2021.100899.
Lust, G., Elen, J., & Clarebout, G. (2013). Regulation of tool-use within a blended course: Student differences and performance effects. Computers & Education, 60(1), 385-395. https://doi.org/10.1016/j.compedu.2012.09.001
Macagno, F. (2016). Argument relevance and structure. Assessing and developing student’ uses of evidence. International Journal of Educational Research,79,180–194. https://doi.org/10.1016/j.ijer.2016.07.002
Mahon, K., Kemmis, S., Francisco, S., & Lloyd, A. (2017). Introduction: Practice theory and the theory of practice Architectures. In K. Mahon, S. Francisco & S. Kemmis (Eds.), Exploring education and professional practice (pp. 1-30). Springer. http://doi.org/10.1007/978-981-10-2219-7_1
Maldonado-Mahauad, J., Perez-Sanagustín, M., Kizilcec, R. F., Morales, N., & Munoz-Gama, J. (2018). Mining theory-based patterns from big data: Identifying self-regulated learning strategies in massive open online courses. Computers in Human Behavior, 80, 179-196. https://doi.org/10.1016/j.chb.2017.11.011
Mamun, M. A. A., Lawrie, G., & Wright, T. (2020). Instructional design of scaffolded online learning modules for self-directed and inquiry-based learning environments. Computers & Education,144,103695. https://doi.org/10.1016/j.compedu.2019.103695
Mamun, M. A. A., Lawrie, G, & Wright, T. (2022). Exploration of learner-content interactions and learning approaches: The role of guided inquiry in the self-directed online environments. Computers & Education,178, 104398. https://doi.org/10.1016/j.compedu.2021.104398
Marton, F., & Saljo, R. (1976). On qualitative differences in learning: I outcome and process. British Journal of Educational Psychology, 46(1), 4-11. https://doi.org/10.1111/j.2044-8279.1976.tb02980.x
Mason, R. (1992). Evaluation methodologies for computer conferencing applications. In: A.R. Kaye (Eds.), Collaborative learning through computer conferencing. NATO ASI Series, 90, (105-116). Springer.
https://doi.org/10.1007/978-3-642-77684-7_7
McBurney, P., Rahwan, I., Parsons, S., & Moraitis, P. (Eds.)(2010). Argumentation in multi-agent systems. Springer Press.
https://link.springer.com/content/pdf/10.1007/978-3-642-21940-5.pdf
Mercer, N. (2004). Sociocultural discourse analysis. Journal of Applied Linguistics, 1(2), 137-168. https://doi.org/10.1558/japl.v1i2.137
Microsoft. (2017). Why Europe's girls aren't studying STEM. Retrieved from https://news.microsoft.com/europe/features/dont-european-girls-like-science-technology/#sm.0001rwq32pg3aeugq6s20umv1vnag
Minner, D. D., Levy, A. J., & Century, J. (2010). Inquiry-based science instruction -What is it and does it matter? Results from a research synthesis years 1984 to 2002. Journal of Research in Science Teaching, 47(4), 474-496. https://doi.org/10.1002/tea.20347
Miralda-Banda, A., Garcia-Mila, M., & Felton, M. (2021). Concept of evidence and the quality of evidence-based reasoning in elementary students. Topoi, 40(2), 359-372. https://doi.org/10.1007/s11245-019-09685-y
Naibert, N., Vaughan, E. B., Brevick, K., & Barbera, J. (2022). Exploring student perceptions of behavioral, cognitive, and emotional engagement at the activity level in general chemistry. Journal of Chemical Education, 99(3), 1358-1367. https://doi.org/10.1021/acs.jchemed.1c01051
Ndlela, N. N., Pereira, L., & Oloyede, I. O. (2020). Use of instructional methods developing higher order thinking skills by business studies teachers in Eswatini. Open Journal of Social Sciences, 8(8). https://doi.org/10.4236/jss.2020.88004
Newell, G. E., Beach, R., Smith, J., & VanDerHeide, J. (2011). Teaching and learning argumentative reading and writing: A review of research. Reading Research Quarterly, 46(3), 273-304. https://doi.org/10.1598/RRQ.46.3.4
Nhan, H. & Nhan, T. A. (2019). Different grouping strategies for cooperative learning in english majored seniors and juniors at Can tho University. Vietnam. Education Sciences, 9(1), 59. https://doi.org/10.3390/educsci9010059
Noroozi, O., Weinberger, A., Biemans, H. J. A., Mulder, M., & Chizari, M. (2013). Facilitating argumentative knowledge construction through a transactive discussion script in CSCL. Computers & Education, 61, 59-76. https://doi.org/10.1016/j.compedu.2012.08.013
Ouyang, F., Hu, Y., Zhang, Y., Guo, Y., & Yang, Y. (2021). In-service teachers’ knowledge building during face-to-face collaborative learning. Teaching and Teacher Education, 107, 103479. https://doi.org/10.1016/j.tate.2021.103479
Özer, F., & Sarıbaş, D. (2022). Exploring pre-service science teachers’ understanding of scientific inquiry and scientific practices through a laboratory course. Science & Education. https://doi.org/10.1007/s11191-022-00325-3
Patton, M. Q. (2014). Qualitative Research & Evaluation Methods (4th ed.). Sage Publications, Inc.
Pegg, J. M. (2006). Developing explanations: student reasoning about science concepts during claims-evidence inquiry lessons. Oregon State University. https://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/3f4628449
Pietarinen,T., Vauras, M., Laakkonen, E., Kinnunen, R., & Volet, S. (2018). High school students' perceptions of affect and collaboration during virtual science inquiry learning. Journal of Computer Assisted Learning, 35(3), 334-348. https://doi.org/10.1111/jcal.12334
Putri1, L. A., Permanasari, A., Winarno1, N., & Ahmad, N. J. (2021). Enhancing students’scientific literacy using virtual lab activity with inquiry-based learning. Journal of Science Learning,4 (2), 173-184. https://doi.org/10.17509/jsl.v4i2.27561
Rapanta, C. & Felton, M. K. (2022). Learning to argue through dialogue: a review of instructional approaches. Educational Psychology Review, 34, 477-509 https://doi.org/10.1007/s10648-021-09637-2
Rapanta, C. (2019). Argumentation strategies in the classroom. Vernon Press.
Rapanta, C. (2021). Can teachers implement a student-centered dialogical argumentation method across the curriculum? Teaching and Teacher Education,105, 103404. https://doi.org/10.1016/j.tate.2021.103404
Rogiers, A., Merchie, E., & Van Keer, H. (2019). Learner profiles in secondary education: Occurrence and relationship with performance and student characteristics. The Journal of Educational Research,112(3), 385-396. http://doi.org/10.1080/00220671.2018.1538093
Rönnebeck, S., Bernholt, S., & Ropohl, M. (2016). Searching for a common ground–A literature review of empirical research on scientific inquiry activities. Studies in Science Education, 52(2), 161-197. https://doi.org/10.1080/03057267.2016.1206351
Sackett, G. P. (Ed.). (1978). Observing Behavior: Theory and applications in mental retardation. University Park Press.
Sampson, V., & Clark, D. B. (2011). A comparison of the collaborative scientific argumentation practices of two high and two low performing groups. Research in Science Education, 41, 63-97. https://doi.org/10.1007/s11165-009-9146-9
Sass, T. R. (2015). Understanding the STEM Pipeline. National center for analysis of longitudinal data in education research, CALDER Working Paper No. 125. http://joemls.dils.tku.edu.tw/wp-content/uploads/2020/08/APA-7th-ed-0710.pdf
Schnitzler, K., Holzberger, D. & Seidel, T. (2021). All better than being disengaged: Student engagement patterns and their relations to academic self-concept and achievement. European Journal of Psychology of Education, 36, 627-652. https://doi.org/10.1007/s10212-020-00500-6
Scott, L. (2015). Future learning 3: What kind of pedagogies for the 21st century? Education and Research: UNESCO. https://unesdoc.unesco.org/ark:/48223/pf0000243126
Segundo Marcos, R. I., López Fernández, V., Daza González, M. T., & Phillips-Silver, J. (2020). Promoting children’s creative thinking through reading and writing in a cooperative learning classroom. Thinking Skills and Creativity, 36, 100663. https://doi.org/10.1016/j.tsc.2020.100663
Sexton, S. S. (2020). Meaningful learning-David P. Ausubel. In B. Akpan & T.J. Kennedy (Eds.), Science Education in Theory and Practice. https://doi.org/10.1007/978-3-030-43620-9_12
Shang, J., Xiao, R., Zhang, Y. (2020). A sequential analysis on the online learning behaviors of Chinese adult learners: Take the KGC learning platform as an example. Education in a Smart Learning Environment, 61-76. https://doi.org/10.1007/978-3-030-51968-1_6
Shi, D., Irwin, D., & Du, P. (2022). Languaging dynamics in interactive lecturing: exploring an embodied approach to deep learning in L2 higher education contexts. Classroom Discourse. https://doi.org/10.1080/19463014.2021.1971543
Shi,Y. C. (2019). Enhancing evidence-based argumentation in a Mainland China middle school. Contemporary Educational Psychology, 59, 101809 https://doi.org/10.1016/j.cedpsych.2019.101809
Simon, S., Erduran, S., & Osborne, J. (2007). Learning to teach argumentation: research and development in the science classroom. International Journal of Science Education, 28(2-3), 235-260. https://doi.org/10.1080/09500690500336957
Skuballa, I.T., Dammert, A., & Renkl, A. (2018). Two kinds of meaningful multimedia learning: Is cognitive activity alone as good as combined behavioral and cognitive activity? Learning and Instruction, 54, 35-46. https://doi.org/10.1016/j.learninstruc.2018.02.001
Sølvik, R. M., & Glenna, A. E. H. (2021). Teachers’ potential to promote students’ deeper learning in whole-class teaching: An observation study in Norwegian classrooms. Journal of Educational Change. https://doi.org/10.1007/s10833-021-09420-8
Stuyck, H., Aben, B., Cleeremans, A., & van den Bussche, E.(2021). The Aha! moment: Is insight a different form of problem solving? Consciousness and Cognition, 90, 103055. https://doi.org/10.1016/j.concog.2020.103055.
Stuyck, H., Cleeremans, A., & van den Bussche, E. (2022). Aha! under pressure: The Aha! experience is not constrained by cognitive load. Cognition, 219, 104946. https://doi.org/10.1016/j.cognition.2021.104946.
Sun, Z., Lin, C.-H., Lv, K., & Song, J. (2021). Knowledge-construction behaviors in a mobile learning environment: a lag-sequential analysis of group differences. Educational Technology Research and Development, 69, 533-551. http://doi.org/10.1007/s11423-021-09938-x
Tach, L. M., & Farkas, G. (2006). Learning-related behaviors, cognitive skills, and ability grouping when schooling begins. Social Science Research,35(4), 1048-1079. https://doi.org/10.1016/j.ssresearch.2005.08.001
Teig, N., Scherer, R., & Nilsen, T. (2018). More isn't always better: The curvilinear relationship between inquiry-based teaching and student achievement in science. Learning and Instruction, 56, 20-29. https://doi.org/10.1016/j.learninstruc.2018.02.006
Tristanti, L.B., & Nusantara, T. (2021). Identifying students' mathematical argumentation competence in solving cubes and pyramid problems. Journal of Physics: Conference Series. https://doi.org/10.1088/1742-6596/1933/1/012118
Turner, D., Pleuss, J., & Collins, C. (2021). The impact of academically homogeneous classrooms for undergraduate statistics. Primus, 31(6), 718-728. https://doi.org/10.1080/10511970.2019.1710629
UNESCO. (2021, Nov. 25). Women in Science: UNESCO Regional Mapping Identifies Persistent Gender Disparities. https://en.unesco.org/news/women-science-unesco-regional-mapping-identifies-persistent-gender-disparities
Uzuntiryaki-Kondakci, E., Tuysuz, M., Sarici, E., Soysal, C., & Kilinc, S. (2021). The role of the argumentation-based laboratory on the development of pre-service chemistry teachers’ argumentation skills. International Journal of Science Education, 43(1), 30-55. http://doi.org/ 10.1080/09500693.2020.1846226
van den Hurk, A., Meelissen, M., & van Langen, A. (2019). Interventions in education to prevent STEM pipeline leakage. International Journal of Science Education, 41(2), 150-164.
http://doi.org/ 10.1080/09500693.2018.1540897
van der Graaf, J., Segers, E., & de Jong, T. (2020). Fostering integration of informational texts and virtual labs during inquiry-based learning. Contemporary educational psychology, 62, 101890. https://doi.org/10.1016/j.cedpsych.2020.101890
van Eemeren, F. H., Grootendorst, R., Henkemans, F. S., Blair, J. A., Johnson, R. H., Plantin, C., & Willard, C.A. (1996). Fundamentals of argumentation theory: A handbook of historical backgrounds and contemporary developments (1st ed.). Lawrence Erlbaum Associates, Inc. https://doi.org/10.4324/9780203811306
Wang, C., Xu, L. L., & Liu, H. (2021). Exploring behavioural patterns of virtual manipulatives supported collaborative inquiry learning: Effect of device‐student ratios and external scripts. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12620
Wang, H. H., Lin, H. S., Chen, Y. C., Pan, Y. T. & Hong, Z. R. (2021) . Modelling relationships among students’ inquiry-related learning activities, enjoyment of learning, and their intended choice of a future STEM career. International Journal of Science Education, 43(1), 157-178. https://doi.org/10.1080/09500693.2020.1860266
Wang, Y. L. (2021). The development of a coding scheme for intergenerational learning and its application to the patterns of intergenerational collaborative communication. Frontiers in Psychology, 12, 245. https://doi.org/10.3389/fpsyg.2021.629658
Wang, C., Chen, P., Wang, J., & Ling, Y. (2021). Rigorous evidence and reasoning or not?A demonstration of iron corrosion to induce students’ critical thinking. Journal of Chemical Education, 98(5), 1718-1725. https://doi.org/10.1021/acs.jchemed.0c01335
Wang, H., Tlili, A., Zhong, X., Cai, Z., & Huang, R. (2021) .The impact of gender on online learning behavioral patterns: A comparative study based on lag sequential analysis. International Conference on Advanced Learning Technologies (ICALT), 190-194. http://doi.org/10.1109/ICALT52272.2021.00064.
Warsah, I., Morganna, R., Uyun, M., Hamengkubuwono, & Afandi, M. (2021).The impact of collaborative learning on learners' critical thinking skills. International Journal of Instruction, 14(2), 443-460. https://doi.org/10.29333/iji.2021.14225a
Wen, C. T., Liu, C. C., Chang, H. Y., Chang, C. J., Chang, M. H., Fan-Chiang, S. H., Yang, C. W., & Hwang, F. K. (2020). Students’ guided inquiry with simulation and its relation to school science achievement and scientific literacy. Computers and Education, 149. https://doi.org/10.1016/j.compedu.2020.103830
White, R. T., & Gunstone, R. F. (1992). Prediction-observation-explanation. In R. T. White & R. F. Gunstone (Eds.), Probing understanding (44-64). The Falmer Express.
Worrell, F. C., Casad, B. J., Daniel, D. B., McDaniel, M., Messer, W. S., Miller Jr, H. L., Prohaska, V., & Zlokovich, M. S. (2010). Promising principles for translating psychological science into teaching and learning. In D. F. Halpern (Ed.), Undergraduate education in psychology: A blueprint for the future of the discipline (129-144). American Psychological Association. https://doi.org/10.1037/12063-008
Wu, H. K., & Hsieh, C. E. (2006). Developing sixth graders’ inquiry skills to construct explanations in inquiry‐based learning environments. International Journal of Science Education, 28(11), 1289-1313. https://doi.org/10.1080/09500690600621035
Wu, I. C. & Yu, H. K. (2020). Sequential analysis and clustering to investigate users’ online shopping behaviors based on n0eed-states. Information Processing & Management, 57(6), 102323. https://doi.org/10.1016/j.ipm.2020.102323
Yang, K. H. & Chen, H. H. (2021). What increases learning retention: employing the prediction-observation-explanation learning strategy in digital game-based learning, Interactive Learning Environments. https://doi.org/10.1080/10494820.2021.1944219
Yang, X., Li, J., & Xing, B. (2018). Behavioral patterns of knowledge construction in online cooperative translation activities. The Internet and Higher Education, 36, 13-21. https://doi.org/10.1016/j.iheduc.2017.08.003
Yang, X., Li, J., Guo, X., & Li, X. (2015). Group interactive network and behavioral patterns in online English-to-Chinese cooperative translation activity. Internet Higher Education,25, 28-36. https://doi.org/10.1016/j.iheduc.2014.12.003
Yang, X., Zhang, M., Kong, L., Wang, Q., & Hong, J. C. (2021). The effects of scientific self-efficacy and cognitive anxiety on science engagement with the “question-observation-doing-explanation” model during school disruption in COVID-19 pandemic. Journal of Science Education and Technology, 30, 380-393. https://doi.org/10.1007/s10956-020-09877-x
Yoon, M., Lee, J., & Jo, I. H. (2021).Video learning analytics: Investigating behavioral patterns and learner clusters in video-based online learning. The Internet and Higher Education,50. https://doi.org/10.1016/j.iheduc.2021.100806.
Zafrani, E., & Yarden, A. (2021). Dialog‐constraining institutional logics and their interactional manifestation in the science classroom. Science Education,106 (1),142-171. https://doi.org/10.1002/sce.21687
Zhang, J., & Chen, B. (2021). The effect of cooperative learning on critical thinking of nursing students in clinical practicum: A quasi-experimental study. Journal of Professional Nursing, 37(1), 177-183. https://doi.org/10.1016/j.profnurs.2020.05.008
Zhang, N., Liu, Q., Zheng, X., Luo, L. & Cheng, Y. (2021). Analysis of social interaction and behavior patterns in the process of online to offline lesson study: A case study of chemistry teaching design based on augmented reality. Asia Pacific Journal of Education. https://doi.org/10.1080/02188791.2020.1866493
Zhao, L., He, W., Liu, X., Tai, K. H., & Hong, J. C. (2021). Exploring the effects on fifth graders' concept achievement and scientific epistemological beliefs: Applying the prediction-observation-explanation inquiry-based learning model in science education. Journal of Baltic Science Education, 20(4), 664-676. https://doi.org/10.33225/jbse/21.20.664
Zheng, J., Xing, W., & Zhu, G. (2019). Examining sequential patterns of self- and socially shared regulation of STEM learning in a CSCL environment. Computers & Education, 136, 34-48. https://doi.org/10.1016/j.compedu.2019.03.005.
Zimmerman, B. J. (2000). Attaining self-regulation: A social cognitive perspective. Handbook of self-regulation, 13-39.
https://doi.org/10.1016/B978-012109890-2/50031-7
Zubaidah, S., Corebima, A. D., Mahanal, S., & Mistianah. (2018). Revealing the relationship between reading interest & critical thinking through remap GI & Jigsaw. International Journal of Instruction, 11(2), 41-56. https://doi.org/10.12973/iji.2018.1124a.
Zwiers, J. (Ed.) (2004). Building reading comprehension habits in grades 6-12: A toolkit of classroom activities. International Reading Association.
(此全文20250803後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *