帳號:guest(18.117.99.221)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:鍾沅錚
作者(英文):Yuan-Cheng Chung
論文名稱:以紅外光譜儀研討PEEK協調離子液體與鈣鈦礦晶體及在不同壓力下結構變化
論文名稱(英文):Using infrared spectroscopy to study the structural changes of PEEK coordinated ionic liquid and perovskite under various pressures
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:賴建智
胡安仁
口試委員(英文):Chien-Chih Lai
Anren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:611012109
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:91
關鍵詞:離子液體壓力紅外光譜儀鈣鈦礦
關鍵詞(英文):ionic liquidpressureinfrared spectroscopyperovskite
相關次數:
  • 推薦推薦:0
  • 點閱點閱:10
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
本論文透過紅外光譜實驗研究了奈米孔洞材料(PEEK),此種薄膜在混合鈣鈦礦晶體(FAPbBr3)及離子液體([BMIM][BF4]、[BMIM][PF6]) 在不同壓力下之間的詳細作用力及相變化,其中在逐增壓力下能延緩FAPbBr3晶體產生相變化,且高壓的環境下FAPbBr3在PEEK奈米孔洞裡晶格排列比起純FAPbBr3晶體會更加緊密形成結構穩定的相,具有一定程度的穩定性,論文也顯示了PEEK混合兩種離子液體[BMIM][BF4]和[BMIM][PF6]在高壓環境下之間的作用力,藉以了解離子液體在奈米孔洞材料裡面的相變化,離子液體在PEEK的奈米孔洞之間可以看到一些作用力的發生,可以觀察到其中兩種不同性質的離子液體會與PEEK在不同壓力下產生不相同強度的作用力,導致其中相變化的差異性。
摘要 VII
目錄 IX
圖目錄 XIII
表目錄 XIX
1. 前言 1
1-1 1
1-2 1
2. 緒論 3
2-1 鈣鈦礦(perovskite) 3
2-2 高分子 5
2-3 離子液體 5
2-4 氫鍵與弱氫鍵 7
3. 實驗 9
3-1 儀器 9
3-1-1 IR 9
3-1-2 DAC 9
3-1-3 其他儀器 12
3-2 藥品 13
3-2-1 FAPbBr3製備 15
3-2-2 PEEK前處理 15
3-3 實驗步驟 16
3-3-1 常壓實驗 16
3-3-2 數據分析 18
4. 結果與討論 19
4-1 鈣鈦礦與高分子及單晶纖維的作用力 19
4-1-1 紅外光譜常壓實驗波數範圍落在2900-3500 cm-1 19
4-1-2 紅外光譜高壓實驗波數範圍落在2900-3500 cm-1 21
4-1-3 紅外光譜常壓實驗波數範圍落在1550-1800 cm-1 28
4-1-4 紅外光譜高壓實驗波數範圍落在1550-1800 cm-1 30
4-2 離子液體與高分子的作用力 38
4-2-1 [BMIM][BF4]與PEEK紅外光譜常壓實驗波數範圍落在2800-3300 cm-1 38
4-2-2 [BMIM][BF4]與PEEK紅外光譜高壓實驗波數範圍落在2800-3300 cm-1 40
4-2-3 [BMIM][BF4]與PEEK紅外光譜常壓實驗波數範圍落在700-1400 cm-1 46
4-2-4 [BMIM][BF4]與PEEK紅外光譜高壓實驗波數範圍落在700-1400 cm-1 48
4-2-5 [BMIM][PF6]與PEEK紅外光譜常壓實驗波數範圍落在2800-3300 cm-1 52
4-2-6 [BMIM][PF6]與PEEK紅外光譜高壓實驗波數範圍落在2800-3300 cm-1 54
4-2-7 [BMIM][PF6]與PEEK紅外光譜常壓實驗波數範圍落在700-1400 cm-1 60
4-2-8 [BMIM][PF6]與PEEK紅外光譜高壓實驗波數範圍落在700-1400 cm-1 62
5. 結論 66
6. Support information 67
7. 參考文獻 68
1. Guo, Z., Jena, A.K., Kim, G.M., and Miyasaka, T., The high open-circuit voltage of perovskite solar cells: a review. Energy & Environmental Science, 2022. 15(8): p. 3171-3222.
2. Chen, B., Rudd, P.N., Yang, S., Yuan, Y., and Huang, J., Imperfections and their passivation in halide perovskite solar cells. Chem Soc Rev, 2019. 48(14): p. 3842-3867.
3. Noorhisham, N.A., Amri, D., Mohamed, A.H., Yahaya, N., Ahmad, N.M., Mohamad, S., Kamaruzaman, S., and Osman, H., Characterisation techniques for analysis of imidazolium-based ionic liquids and application in polymer preparation: A review. Journal of Molecular Liquids, 2021. 326: p. 115340.
4. Sanchora, P., Pandey, D.K., Rana, D., Materny, A., and Singh, D.K., Impact of Size and Electronegativity of Halide Anions on Hydrogen Bonds and Properties of 1-Ethyl-3-methylimidazolium-Based Ionic Liquids. The Journal of Physical Chemistry A, 2019. 123(23): p. 4948-4963.
5. He, M., Huang, Y., Xu, H., Feng, G., Liu, L., Li, Y., Sun, D., and Zhang, L., Modification of polyetheretherketone implants: From enhancing bone integration to enabling multi-modal therapeutics. Acta Biomaterialia, 2021. 129: p. 18-32.
6. Verma, S., Sharma, N., Kango, S., and Sharma, S., Developments of PEEK (Polyetheretherketone) as a biomedical material: A focused review. European Polymer Journal, 2021. 147: p. 110295.
7. Wang, J., Sun, Y., Bi, W., Jiang, Z., Zhang, M., and Pang, J., High-strength corrosion resistant membranes for the separation of oil/water mixtures and immiscible oil mixtures based on PEEK. Journal of Membrane Science, 2020. 616: p. 118418.
8. Wu, J., Lu, X., Feng, X., and Shi, Y., Halogen-free ionic liquids as excellent lubricants for PEEK-stainless steel contacts at elevated temperatures. Tribology International, 2016. 104: p. 1-9.
9. Ahmad, A., Mansor, N., Mahmood, H., Iqbal, T., and Moniruzzaman, M., Effect of ionic liquids on thermomechanical properties of polyetheretherketone-multiwalled carbon nanotubes nanocomposites. Journal of Applied Polymer Science, 2022. 139(11): p. 51788.
10. Ahmad, A., Mahmood, H., Mansor, N., Iqbal, T., and Moniruzzaman, M., Ionic liquid assisted polyetheretherketone-multiwalled carbon nanotubes nanocomposites: An environmentally friendly approach. Journal of Applied Polymer Science, 2021. 138(14): p. 50159.
11. Dai, J., Zheng, H., Zhu, C., Lu, J., and Xu, C., Comparative investigation on temperature-dependent photoluminescence of CH 3 NH 3 PbBr 3 and CH (NH 2) 2 PbBr 3 microstructures. Journal of Materials Chemistry C, 2016. 4(20): p. 4408-4413.
12. Foley, B.J., Marlowe, D.L., Sun, K., Saidi, W.A., Scudiero, L., Gupta, M.C., and Choi, J.J., Temperature dependent energy levels of methylammonium lead iodide perovskite. Applied physics letters, 2015. 106(24): p. 243904.
13. Jedlicka, E., Wang, J., Mutch, J., Jung, Y.-K., Went, P., Mohammed, J., Ziffer, M., Giridharagopal, R., Walsh, A., and Chu, J.-H., Bismuth doping alters structural phase transitions in methylammonium lead tribromide single crystals. The Journal of Physical Chemistry Letters, 2021. 12(11): p. 2749-2755.
14. Mączka, M., Ptak, M., Vasconcelos, D.L.M.o., Giriunas, L., Freire, P.T.C., Bertmer, M., Banys, J., and Simenas, M., NMR and Raman scattering studies of temperature-and pressure-driven phase transitions in CH3NH2NH2PbCl3 perovskite. The Journal of Physical Chemistry C, 2020. 124(49): p. 26999-27008.
15. Wang, L., Wang, K., and Zou, B., Pressure-induced structural and optical properties of organometal halide perovskite-based formamidinium lead bromide. The journal of physical chemistry letters, 2016. 7(13): p. 2556-2562.
16. Niu, T., Chao, L., Gao, W., Ran, C., Song, L., Chen, Y., Fu, L., and Huang, W., Ionic Liquids-Enabled Efficient and Stable Perovskite Photovoltaics: Progress and Challenges. ACS Energy Letters, 2021. 6(4): p. 1453-1479.
17. Bai, S., Da, P., Li, C., Wang, Z., Yuan, Z., Fu, F., Kawecki, M., Liu, X., Sakai, N., Wang, J.T., Huettner, S., Buecheler, S., Fahlman, M., Gao, F., and Snaith, H.J., Planar perovskite solar cells with long-term stability using ionic liquid additives. Nature, 2019. 571(7764): p. 245-250.
18. Chao, L., Niu, T., Xia, Y., Chen, Y., and Huang, W., Ionic Liquid for Perovskite Solar Cells: An Emerging Solvent Engineering Technology. Accounts of Materials Research, 2021. 2(11): p. 1059-1070.
19. Mariotti, S., Mantione, D., Almosni, S., Ivanović, M., Bessho, T., Furue, M., Segawa, H., Hadziioannou, G., Cloutet, E., and Toupance, T., Ionic and poly(ionic liquid)s as perovskite passivating molecules for improved solar cell performances. Journal of Materials Chemistry C, 2022. 10(43): p. 16583-16591.
20. Tabassum, M., Zia, Q., Li, J., Khawar, M.T., Aslam, S., and Su, L., FAPbBr3 Perovskite Nanocrystals Embedded in Poly (L–lactic acid) Nanofibrous Membranes for Enhanced Air and Water Stability. Membranes, 2023. 13(3): p. 279.
21. Demchyshyn, S., Roemer, J.M., Groiß, H., Heilbrunner, H., Ulbricht, C., Apaydin, D., Böhm, A., Rütt, U., Bertram, F., and Hesser, G., Confining metal-halide perovskites in nanoporous thin films. Science advances, 2017. 3(8): p. 1700738.
22. Zhu, H., Cheng, M., Li, J., Yang, S., Tao, X., Yu, Y., and Jiang, Y., Independent dispersed and highly water-oxygen environment stable FAPbBr3 QDs-polymer composite for down-conversion display films. Chemical Engineering Journal, 2022. 428: p. 130974.
23. Huddleston, J.G., Visser, A.E., Reichert, W.M., Willauer, H.D., Broker, G.A., and Rogers, R.D., Characterization and comparison of hydrophilic and hydrophobic room temperature ionic liquids incorporating the imidazolium cation. Green Chemistry, 2001. 3(4): p. 156-164.
24. Nordness, O. and Brennecke, J.F., Ion Dissociation in Ionic Liquids and Ionic Liquid Solutions. Chemical Reviews, 2020. 120(23): p. 12873-12902.
25. Giron, R.G.P. and Ferguson, G.S., Tetrafluoroborate and Hexafluorophosphate Ions are not Interchangeable: A Density Functional Theory Comparison of Hydrogen Bonding. ChemistrySelect, 2017. 2(33): p. 10895-10901.
26. Joseph, J. and Jemmis, E.D., Red-, Blue-, or No-Shift in Hydrogen Bonds:  A Unified Explanation. Journal of the American Chemical Society, 2007. 129(15): p. 4620-4632.
27. Wong, P., Moffatt, D., and Baudais, F., Crystalline quartz as an internal pressure calibrant for high-pressure infrared spectroscopy. Applied spectroscopy, 1985. 39(4): p. 733-735.
28. Wong, P. and Moffatt, D., The uncoupled OH or OD stretch in water as an internal pressure gauge for high-pressure infrared spectroscopy of aqueous systems. Applied spectroscopy, 1987. 41(6): p. 1070-1072.
29. Wang, P., Guan, J., Galeschuk, D.T.K., Yao, Y., He, C.F., Jiang, S., Zhang, S., Liu, Y., Jin, M., Jin, C., and Song, Y., Pressure-Induced Polymorphic, Optical, and Electronic Transitions of Formamidinium Lead Iodide Perovskite. J Phys Chem Lett, 2017. 8(10): p. 2119-2125.
30. Hills-Kimball, K., Nagaoka, Y., Cao, C., Chaykovsky, E., and Chen, O., Synthesis of formamidinium lead halide perovskite nanocrystals through solid–liquid–solid cation exchange. Journal of Materials Chemistry C, 2017. 5(23): p. 5680-5684.
31. Holomb, R., Martinelli, A., Albinsson, I., Lassègues, J.C., Johansson, P., and Jacobsson, P., Ionic liquid structure: the conformational isomerism in 1-butyl-3-methyl-imidazolium tetrafluoroborate ([bmim][BF4]). Journal of Raman Spectroscopy, 2008. 39(7): p. 793-805.
32. Jeon, Y., Sung, J., Seo, C., Lim, H., Cheong, H., Kang, M., Moon, B., Ouchi, Y., and Kim, D., Structures of Ionic Liquids with Different Anions Studied by Infrared Vibration Spectroscopy. The Journal of Physical Chemistry B, 2008. 112(15): p. 4735-4740.
33. Zhu, J., Shen, Y., Xie, A., Qiu, L., Zhang, Q., and Zhang, S., Photoinduced Synthesis of Anisotropic Gold Nanoparticles in Room-Temperature Ionic Liquid. The Journal of Physical Chemistry C, 2007. 111(21): p. 7629-7633.
34. Kang, E., Kim, M., Oh, J.S., Park, D.W., and Shim, S.E., Electrospun BMIMPF6/nylon 6,6 nanofiber chemiresistors as organic vapour sensors. Macromolecular Research, 2012. 20(4): p. 372-378.
35. Mihkel, K., Physical and chemical properties of ionic liquids based on the dialkkylimidazo-lium cation. Estonian Proc. Acad. Sci. Chem, 2000. 49(3): p. 145-155.
36. Lakshmi, D.S., Cundari, T., Furia, E., Tagarelli, A., Fiorani, G., Carraro, M., and Figoli, A., Preparation of polymeric membranes and microcapsules using an ionic liquid as morphology control additive. Macromolecular Symposia, 2015. 357(1): p. 159-167.
(此全文20280626後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *