帳號:guest(18.118.184.169)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳昱安
作者(英文):Yu-An Chen
論文名稱:使用FT-IR觀測深度共溶劑與奈米孔洞材料陽極氧化鋁之間的作用,並改變壓力推測作用的變化。
論文名稱(英文):The changes of the interactions between ion liquids and ethylene glycol deep eutectic solvents (DES) observed as DES is confined in nanoporous anodic aluminum oxide under various pressures by FT-IR.
指導教授:張海舟
指導教授(英文):Hai-Chou Chang
口試委員:賴建智
胡安仁
口試委員(英文):Chien-chih Lai
An-Ren Hu
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:611012112
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:53
關鍵詞:深度共溶劑紅外光譜高壓氫鍵奈米材料
關鍵詞(英文):confinement effectdeep eutectic solventsnanoporousFT-IR
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:5
  • 收藏收藏:0
本篇論文主要想要探討的是,當深度共溶劑(deep eutectic solvent, DES)困在奈米孔洞材料內有何變化,並使用傅立葉轉換紅外光譜儀檢測DES的特徵峰,觀察在不同碳鏈下的離子液體(ILs)以及其互溶溶劑ethylene glycol (EG)與奈米材料陰極氧化鋁(anodic aluminium oxide, AAO)之間的作用力,並使用高壓鑽石鉆偵測在高壓下其分子間的作用力的變化。
在論文前期我們著重於討論非常基本的作用力,在binary系統的ILs/EG、ILs/AAO內,探討了陰離子([Cl-])、陽離子([ILs+])、與EG和AAO之間的作用力為何。我們藉由改變碳鏈ILs的碳鏈長度,有邏輯的敘述這些作用力是如何影響到C-H vibration在FT-IR上的變化。
在論文後期,我們發現當我們加入AAO於DES時,隨著ILs的碳鏈長度增長,C-H vibration在FT-IR上的數值變化,提供了我們confinement effect出現的有力證據,並總結出了DES在具有AAO的奈米孔洞材料下的趨勢,是會隨著碳鏈的長度改變而有所不同。
1. Jahanbakhsh Bonab, P., A. Rastkar Ebrahimzadeh, and J. Jahanbin Sardroodi, Insights into the interactions and dynamics of a DES formed by phenyl propionic acid and choline chloride. Scientific reports, 2021. 11(1): p. 1-18.
2. Araujo, C., et al., Inelastic neutron scattering study of reline: shedding light on the hydrogen bonding network of deep eutectic solvents. Physical Chemistry Chemical Physics, 2017. 19(27): p. 17998-18009.
3. Yu, L.-Y., et al., Transition State Theory-Inspired Neural Network for Estimating the Viscosity of Deep Eutectic Solvents. ACS Central Science, 2022. 8(7): p. 983-995.
4. Panda, S., et al., Molecular-level insights into the microstructure of a hydrated and nanoconfined deep eutectic solvent. The Journal of Physical Chemistry B, 2019. 123(15): p. 3359-3371.
5. Ijardar, S.P., V. Singh, and R.L. Gardas, Revisiting the physicochemical properties and applications of deep eutectic solvents. Molecules, 2022. 27(4): p. 1368.
6. Mondal, M., et al., Subsistence of diverse interactions of some biologically important molecules in aqueous ionic liquid solutions at various temperatures by experimental and theoretical investigation. Journal of Molecular Structure, 2022. 1257: p. 132571.
7. Shishov, A., et al., Deep eutectic solvents are not only effective extractants. TrAC Trends in Analytical Chemistry, 2020. 129: p. 115956.
8. Chen, J., et al., Nonionic surfactants based hydrophobic deep eutectic solvents for liquid–liquid microextraction of Sudan dyes in tomato chili sauces. Food Chemistry, 2021. 364: p. 130373.
9. Ge, D., et al., Preparation of new hydrophobic deep eutectic solvents and their application in dispersive liquid–liquid microextraction of Sudan dyes from food samples. Analytical and Bioanalytical Chemistry, 2021. 413(15): p. 3873-3880.
10. Kareem, M.A., et al., Liquid–liquid equilibria for the ternary system (phosphonium based deep eutectic solvent–benzene–hexane) at different temperatures: A new solvent introduced. Fluid Phase Equilibria, 2012. 314: p. 52-59.
11. Ariyanto, T., et al., Improving the separation of CO2/CH4 using impregnation of deep eutectic solvents on porous carbon. ACS omega, 2021. 6(29): p. 19194-19201.
12. Shen, Y., R. Abedin, and F.R. Hung, On the performance of confined deep eutectic solvents and ionic liquids for separations of carbon dioxide from methane: molecular dynamics simulations. Langmuir, 2019. 35(10): p. 3658-3671.
13. Malfait, B., et al., Structure of water at hydrophilic and hydrophobic interfaces: Raman spectroscopy of water confined in periodic mesoporous (organo) silicas. The Journal of Physical Chemistry C, 2022. 126(7): p. 3520-3531.
14. Blaszczyk-Lezak, I., M. Hernández, and C. Mijangos, One dimensional PMMA nanofibers from AAO templates. Evidence of confinement effects by dielectric and Raman analysis. Macromolecules, 2013. 46(12): p. 4995-5002.
15. Wu, S., Z. Li, and H.K. Sarma, Influence of confinement effect on recovery mechanisms of CO2-enhanced tight-oil recovery process considering critical properties shift, capillarity and adsorption. Fuel, 2020. 262: p. 116569.
16. Zheng, Z., Y. Di, and Y.-S. Wu, Nanopore confinement effect on the phase behavior of CO2/hydrocarbons in tight oil reservoirs considering capillary pressure, fluid-wall interaction, and molecule adsorption. Geofluids, 2021. 2021: p. 1-18.
17. Wong, P. and D. Moffatt, The uncoupled OH or OD stretch in water as an internal pressure gauge for high-pressure infrared spectroscopy of aqueous systems. Applied spectroscopy, 1987. 41(6): p. 1070-1072.
18. Venkataraman, N. and S. Vasudevan, Conformation of methylene chains in an intercalated surfactant bilayer. The Journal of Physical Chemistry B, 2001. 105(9): p. 1805-1812.
19. Kiefer, J., J. Fries, and A. Leipertz, Experimental vibrational study of imidazolium-based ionic liquids: Raman and infrared spectra of 1-ethyl-3-methylimidazolium bis (trifluoromethylsulfonyl) imide and 1-ethyl-3-methylimidazolium ethylsulfate. Applied spectroscopy, 2007. 61(12): p. 1306-1311. 
20. Talaty, E.R., et al., Raman and infrared spectra and ab initio calculations of C2-4MIM imidazolium hexafluorophosphate ionic liquids. The Journal of Physical Chemistry B, 2004. 108(35): p. 13177-13184.
21. Žunić, M.J., et al., Electrooxidation of p-nitrophenol using a composite organo-smectite clay glassy carbon electrode. Applied surface science, 2014. 313: p. 440-448.
22. Borisover, M., et al., Mild pre-heating of organic cation-exchanged clays enhances their interactions with nitrobenzene in aqueous environment. Adsorption, 2010. 16: p. 223-232.
23. Jankovič, Ľ., et al., Characterization of systematically selected organo-montmorillonites for polymer nanocomposites. Applied Clay Science, 2011. 51(4): p. 438-444.
24. Ricci, A., et al., Application of Fourier transform infrared (FTIR) spectroscopy in the characterization of tannins. Applied Spectroscopy Reviews, 2015. 50(5): p. 407-442.
25. Fanetti, S., et al., The role of H-bond in the high-pressure chemistry of model molecules. Journal of Physics: Condensed Matter, 2018. 30(9): p. 094001.
26. Moon, S. and H. Drickamer, Effect of pressure on hydrogen bonds on organic solids. The Journal of Chemical Physics, 1974. 61(1): p. 48-54.
27. Bhowmik, D., et al., Aqueous solutions of tetraalkylammonium halides: ion hydration, dynamics and ion–ion interactions in light of steric effects. Physical Chemistry Chemical Physics, 2014. 16(26): p. 13447-13457.
28. Shao, X., et al., Terminal Hydroxyl Groups on Al2O3 Supports Influence the Valence State and Dispersity of Ag Nanoparticles: Implications for Ozone Decomposition. ACS omega, 2021. 6(16): p. 10715-10722.
29. Boulesbaa, A. and E. Borguet, Vibrational dynamics of interfacial water by free induction decay sum frequency generation (FID-SFG) at the Al2O3 (1120)/H2O interface. The Journal of Physical Chemistry Letters, 2014. 5(3): p. 528-533.
30. Tuladhar, A., et al., Spectroscopy and ultrafast vibrational dynamics of strongly hydrogen bonded OH species at the α-Al2O3 (112̅0)/H2O interface. The Journal of Physical Chemistry C, 2016. 120(29): p. 16153-16161.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *