|
1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40 (11), 2004-2021. 2. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8 (24), 1128-1137. 3. Sneader, W. Drug Prototypes and their Exploitation; John Wiley and Sons Ltd: Chichester, UK, 1996, 788. 4. Bemis, G. W.; Murcko, M. A., The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 1996, 39 (15), 2887-2893. 5. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8 (24), 1128-37. 6. Lutz, J. F., 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew. Chem. Int. Ed. 2007, 46 (7), 1018-25. 7. Wu, P.; Fokin, V. V. J. C., Catalytic Azide—Alkyne Cycloaddition: Reactivity and Applications. Aldrichim. Acta. 2007, 7-17. 8. Baskin, J. M.; Bertozzi, C. R., Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR Comb. Sci. 2007, 26 (11-12), 1211-1219. 9. Jewett, J. C.; Bertozzi, C. R., Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010, 39 (4), 1272-9. 10. Sletten, E. M.; Bertozzi, C. R., Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 2009, 48 (38), 6974-98. 11. McKay, C. S.; Finn, M. G., Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol. 2014, 21 (9), 1075-101. 12. Sletten, E. M.; Bertozzi, C. R., From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 2011, 44 (9), 666-76. 13. Staudinger, H.; Hauser, E., Über neue organische Phosphorverbindungen IV Phosphinimine. Helv. Chim. Acta 1921, 4 (1), 861-886. 14. Saxon, E.; Bertozzi, C. R., Cell Surface Engineering by a Modified Staudinger Reaction. Science 2000, 287 (5460), 2007-2010. 15. Saxon, E.; Armstrong, J. I.; Bertozzi, C. R., A “Traceless” Staudinger Ligation for the Chemoselective Synthesis of Amide Bonds. Org. Lett. 2000, 2 (14), 2141-2143. 16. Huisgen, R., 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. 1963, 2 (10), 565-598. 17. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41 (14), 2596-9. 18. Tornøe, C. W.; Christensen, C.; Meldal, M., Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67 (9), 3057-64. 19. Presolski, S. I.; Hong, V.; Cho, S.-H.; Finn, M. G., Tailored Ligand Acceleration of the Cu-Catalyzed Azide−Alkyne Cycloaddition Reaction: Practical and Mechanistic Implications. J. Am. Chem. Soc. 2010, 132 (41), 14570-14576. 20. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R., A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126 (46), 15046-7. 21. Debets, M. F.; van Berkel, S. S.; Dommerholt, J.; Dirks, A. T.; Rutjes, F. P.; van Delft, F. L., Bioconjugation with strained alkenes and alkynes. Acc. Chem. Res. 2011, 44 (9), 805-15. 22. Blackman, M. L.; Royzen, M.; Fox, J. M., Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130 (41), 13518-9. 23. Oliveira, B. L.; Guo, Z.; Bernardes, G. J. L., Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46 (16), 4895-4950. 24. Handula, M.; Chen, K. T.; Seimbille, Y., IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021, 26 (15), 4640. 25. Liang, G.; Ren, H.; Rao, J., A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2010, 2 (1), 54-60. 26. White, E. H.; McCapra, F.; Field, G. F.; McElroy, W. D., THE STRUCTURE AND SYNTHESIS OF FIREFLY LUCIFERIN. J. Am. Chem. Soc. 1961, 83 (10), 2402-2403. 27. Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.; Xie, H.; Xia, Z.; Rao, J., A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins. Angew. Chem. Int. Ed. Engl. 2009, 48 (51), 9658-9662. 28. Gomi, K.; Kajiyama, N., Oxyluciferin, a Luminescence Product of Firefly Luciferase, Is Enzymatically Regenerated into Luciferin. J. Biol. Chem. 2001, 276 (39), 36508-36513. 29. Okada, K.; Iio, H.; Kubota, I.; Goto, T., Firefly bioluminescence III. Conversion of oxyluciferin to luciferin in firefly. Tetrahedron Lett. 1974, 15 (32), 2771-2774. 30. Zheng, Z.; Chen, P.; Li, G.; Zhu, Y.; Shi, Z.; Luo, Y.; Zhao, C.; Fu, Z.; Cui, X.; Ji, C.; Wang, F.; Huang, G.; Liang, G., Mechanistic study of CBT-Cys click reaction and its application for identifying bioactive N-terminal cysteine peptides in amniotic fluid. Chem. Sci. 2017, 8 (1), 214-222. 31. Chen, K.-T.; Ieritano, C.; Seimbille, Y., Early-Stage Incorporation Strategy for Regioselective Labeling of Peptides using the 2-Cyanobenzothiazole/1,2-Aminothiol Bioorthogonal Click Reaction. ChemistryOpen 2018, 7 (3), 256-261. 32. Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R., Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (43), 16793-16797. 33. Miao, Q.; Bai, X.; Shen, Y.; Mei, B.; Gao, J.; Li, L.; Liang, G., Intracellular self-assembly of nanoparticles for enhancing cell uptake. Chem. Commum. 2012, 48 (78), 9738-9740. 34. Jeon, J.; Shen, B.; Xiong, L.; Miao, Z.; Lee, K. H.; Rao, J.; Chin, F. T., Efficient method for site-specific 18F-labeling of biomolecules using the rapid condensation reaction between 2-cyanobenzothiazole and cysteine. Bioconjug. Chem. 2012, 23 (9), 1902-8. 35. Cao, C. Y.; Shen, Y. Y.; Wang, J. D.; Li, L.; Liang, G. L., Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Sci. rep. 2013, 3, 1024. 36. Liang, G.; Ronald, J.; Chen, Y.; Ye, D.; Pandit, P.; Ma, M. L.; Rutt, B.; Rao, J., Controlled self-assembling of gadolinium nanoparticles as smart molecular magnetic resonance imaging contrast agents. Angew. Chem. Int. Ed. Engl. 2011, 50 (28), 6283-6. 37. Van de Bittner, G. C.; Bertozzi, C. R.; Chang, C. J., Strategy for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. J. Am. Chem. Soc. 2013, 135 (5), 1783-95. 38. Godinat, A.; Park, H. M.; Miller, S. C.; Cheng, K.; Hanahan, D.; Sanman, L. E.; Bogyo, M.; Yu, A.; Nikitin, G. F.; Stahl, A.; Dubikovskaya, E. A., A biocompatible in vivo ligation reaction and its application for noninvasive bioluminescent imaging of protease activity in living mice. ACS Chem. Biol. 2013, 8 (5), 987-99. 39. Woo, M.; Hakem, R.; Soengas, M. S.; Duncan, G. S.; Shahinian, A.; Kägi, D.; Hakem, A.; McCurrach, M.; Khoo, W.; Kaufman, S. A.; Senaldi, G.; Howard, T.; Lowe, S. W.; Mak, T. W., Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes. Dev. 1998, 12 (6), 806-19. 40. Cao, C.-y.; Chen, Y.; Wu, F.-z.; Deng, Y.; Liang, G.-l., Caspase-3 controlled assembly of nanoparticles for fluorescence turn on. Chem. Commun. 2011, 47 (37), 10320-10322. 41. White, E. H.; McCapra, F.; Field, G. F., The Structure and Synthesis of Firefly Luciferin. J. Am. Chem. Soc. 1963, 85 (3), 337-343. 42. Shuichi, S.; Kyozo, O.; Yukio, N., A Convenient Synthetic Method of 2-Carbamoyl-6-methoxybenzothiazole, One of Intermediates for the Synthesis of Firefly Luciferin. Bull. Chem. Soc. Jpn. 1963, 36 (3), 331-333. 43. Würfel, H.; Weiss, D.; Beckert, R.; Güther, A., A new application of the “mild thiolation” concept for an efficient three-step synthesis of 2-cyanobenzothiazoles: a new approach to Firefly-luciferin precursors. J. Sulphur. Chem. 2012, 33 (1), 9-16. 44. White, E. H.; Wörther, H.; Field, G. F.; McElroy, W. D., Analogs of Firefly Luciferin. J. Org. Chem. 1965, 30 (7), 2344-2348. 45. White, E. H.; Wörther, H.; Seliger, H. H.; McElroy, W. D., Amino Analogs of Firefly Luciferin and Biological Activity Thereof. J. Am. Chem. Soc. 1966, 88 (9), 2015-2019. 46. Yoshiaki, T.; Masaharu, T.; Hisao, N.; Nobutaka, S.; Minoru, I.; Toshio, G., A Convenient Synthetic Method of 2-Cyano-6-methoxybenzothiazole, –A Key Intermediate for the Synthesis of Firefly Luciferin. Bull. Chem. Soc. Jpn. 1992, 65 (2), 392-395. 47. Suzuki, N.; Nomoto, T.; Toya, Y.; Kanamori, N.; Yoda, B.; Saeki, A., Synthetic Reactions in PEG: PEG-Assisted Synthesis of 2-Cyano-6-methoxybenzothiazole, A Key Intermediate For The Synthesis of Firefly Luciferin. Biosci. Biotechnol. Biochem. 1993, 57 (9), 1561-1562. 48. Xie, A.; Cao, M.; Liu, Y.; Feng, L.; Hu, X.; Dong, W., The Synthesis of Tetrazoles in Nanometer Aqueous Micelles at Room Temperature. Eur. J. Org. Chem. 2014, 2014 (2), 436-441. 49. Meroni, G.; Ciana, P.; Maggi, A.; Santaniello, E., A New Synthesis of 2-Cyano-6-hydroxybenzothiazole, the Key Intermediate of d-Luciferin, Starting from 1,4-Benzoquinone. Synlett. 2009, 2009 (16), 2682-2684. 50. McCutcheon, D. C.; Paley, M. A.; Steinhardt, R. C.; Prescher, J. A., Expedient Synthesis of Electronically Modified Luciferins for Bioluminescence Imaging. J. Am. Chem. Soc. 2012, 134 (18), 7604-7607. 51. McCutcheon, D.; Porterfield, W.; Prescher, J., Rapid and scalable assembly of firefly luciferase substrates. Org. Biomol. Chem. 2014, 13, 2117-2121. 52. Wadsak, W.; Mitterhauser, M., Basics and principles of radiopharmaceuticals for PET/CT. Eur. J. Radiol. 2010, 73 (3), 461-9. 53. Alqahtani, F. F., SPECT/CT and PET/CT, related radiopharmaceuticals, and areas of application and comparison. Saudi Pharm. J. 2023, 31 (2), 312-328. 54. Teresa Albelda, M. a.; Garcia-España, E.; Frias, J. C., Visualizing the atherosclerotic plaque: a chemical perspective. Chem. Soc. Rev. 2014, 43 (8), 2858-2876. 55. Velikyan, I., Prospective of ⁶⁸Ga-radiopharmaceutical development. Theranostics. 2013, 4 (1), 47-80. 56. Inkster, J. A.; Colin, D. J.; Seimbille, Y., A novel 2-cyanobenzothiazole-based (18)F prosthetic group for conjugation to 1,2-aminothiol-bearing targeting vectors. Org. Biomol. Chem. 2015, 13 (12), 3667-76. 57. Monaco, A.; Zoete, V.; Alghisi, G. C.; Rüegg, C.; Michelin, O.; Prior, J.; Scapozza, L.; Seimbille, Y., Synthesis and in vitro evaluation of a novel radioligand for αvβ3 integrin receptor imaging: [18F]FPPA-c(RGDfK). Bioorg. Med. Chem. Lett. 2013, 23 (22), 6068-72. 58. Kim, K., Synthesis and Reactions of 1,2,3-Dithiazoles. Sulfur Rep. 1998, 21 (2), 147-207. 59. Rees, C. W., Polysulfur-nitrogen heterocyclic chemistry. Heterocycl. Chem. 1992, 29 (3), 639-651. 60. Rakitin, O. A.; Rees, C. W.; Vlasova, O. G., Direct synthesis of 2-cyanobenzimidazoles and the generation of S2. Tetrahedron Lett. 1996, 37 (26), 4589-4592. 61. Stewart, R.; Harris, M. G., Comparison of the acidities and basicities of amino-substituted nitrogen heterocycles. J. Org. Chem. 1978, 43 (16), 3123-3126. 62. Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.; Xie, H.; Xia, Z.; Rao, J., A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins. Angew. Chem. Int. Ed. 2009, 48 (51), 9658-9662. 63. Argenziano, M.; Lombardi, C.; Ferrara, B.; Trotta, F.; Caldera, F.; Blangetti, M.; Koltai, H.; Kapulnik, Y.; Yarden, R.; Gigliotti, L.; Dianzani, U.; Dianzani, C.; Prandi, C.; Cavalli, R., Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget. 2018, 9 (88), 35813-35829. 64. Zhang, B. S.; Jones, K. A.; McCutcheon, D. C.; Prescher, J. A., Pyridone Luciferins and Mutant Luciferases for Bioluminescence Imaging. ChemBioChem 2018, 19 (5), 470-477. 65. Hédou, D.; Deau, E.; Harari, M.; Sanselme, M.; Fruit, C.; Besson, T., Rational multistep synthesis of a novel polyfunctionalized benzo[d]thiazole and its thiazolo[5,4-b]pyridine analogue. Tetrahedron 2014, 70 (35), 5541-5549. |