帳號:guest(3.145.9.51)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:孫逸辰
作者(英文):Yi-Chen Sun
論文名稱:開發新穎生物正交點擊化學應用於分子影像探針之製備
論文名稱(英文):Development of Novel Bioorthogonal Click Reactions for Imaging Probe Design
指導教授:陳國庭
指導教授(英文):Kuo-Ting Chen
口試委員:林哲仁
林正坤
口試委員(英文):Che-Jen Lin
Cheng-Kun Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:611012115
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:161
關鍵詞:生物正交點擊反應分子影像氰基苯並噻唑/1,2-胺基硫醇點擊反應氰基吡啶咪唑/1,2-胺基硫醇點擊反應放射標記法
關鍵詞(英文):Bioorthogonal click reactionMolecular imageCBT/1,2-aminothiol click reactionCPI/1,2-aminothiol click reactionRadiolabeling method
相關次數:
  • 推薦推薦:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
生物正交點擊反應具有高選擇性、良好的反應速率和生物相容性且不會去干擾生物體內的反應,在生物化學和藥物開發領域中有著相當廣泛的應用。生物正交點擊反應,例如: 疊氮-炔烴環加成反應 (Strain-Promoted Azide-Alkyne Cycloaddition, SPAAC)、逆電子需求的狄爾斯-阿爾德反應 (Inverse-Electron Demand Diels-Alder Reaction, IEDDA),其反應速率快的特性適用於短半衰期放射性核種的標記,在發展新藥及醫學成像探針的開發上扮演著重要的角色。
近年來,來自螢光素生合成的2-氰基苯並噻唑 (Cyanobenzothiazole, CBT)/1,2-胺基硫醇 (1,2-aminothiol)點擊反應受到了關注,其被認為是一種新的生物正交反應。該反應利用氰基和1,2-胺基硫醇基團之間的快速縮合反應形成穩定的噻唑環。CBT/1,2-胺基硫醇點擊反應已被直接應用於標記蛋白質、碳水化合物、脂質和其他生物分子,用於分子成像研究。然而,儘管有許多基於CBT的研究,但其他CBT衍生物尚未研究,CBT基團結構修改的影響仍然有限。這裡我們報告了一系列CBT衍生物的合成與動力學研究,將這些類似物的結構作為CBT替代物進行點擊反應。
由於我們對新成像探針標記技術的開發感興趣,衍生物合成後,需要展示其與胺基硫醇反應的放射標記能力,合成了類似物與金屬螯合劑 (DOTA)鍵結的產物,並與各種肽耦合後再將鎵標記於產物。我們預計從我們所合的產物中,找到一個反應速率最優良的,進而使其點擊化學反應為成像探針的開發提供一個新方向。
Bioorthogonal click reactions have been widely studied in the field of biochemistry and drug development due to their high selectivity, good reaction rate, and biocompatibility without interfering with biological metabolism. These bio-orthogonal click reactions, such as strain-promoted azide-alkyne cycloaddition (SPAAC) and inverse-electron demand Diels-Alder reaction (IEDDA), are particularly suitable for labeling short-lived radioactive isotopes. Therefore, they play an important role in many aspects of drug discovery and nuclear medicine imaging probe development.
In recent years, the click reaction between Cyanobenzothiazole (CBT) derived from luciferin biosynthesis and 1,2-aminothiol has attracted attention as a new bioorthogonal reaction. This reaction utilizes the fast condensation reaction between the cyano and 1,2-aminothiol groups to form a stable thiazole ring. The CBT/1,2-aminothiol click reaction has been directly applied to label proteins, carbohydrates, lipids, and other biomolecules for molecular imaging studies. However, despite numerous studies based on CBT, other CBT derivatives have not been studied, and the effects of structural modifications on the CBT group are still limited. Here, we report the synthesis and kinetic studies of a series of CBT analogs, which were used as CBT substitutes for click reactions.
Since we are interested in the development of new imaging probe labeling techniques, after synthesizing a series of analogs, we needed to demonstrate their radiolabeling ability with amino thiols. We synthesized products that were linked to a metal chelator (DOTA) and coupled with various peptides before gallium labeling. We expect to find the analog with the best reaction rate among the products we synthesized, which will provide a new direction for the development of click chemistry reactions as imaging probes.
謝誌 i
中文摘要 ii
Abstract iv
目錄 vi
Scheme 目錄 viii
Figure 目錄 ix
Table 目錄 x
壹、 前言 1
一、 文獻討論 1
1.1 點擊化學 1
1.2 生物正交點擊反應 1
1.3 氰基苯並噻唑/1,2-胺基硫醇點擊反應 5
1.4 氰基苯並噻唑 6
1.5 放射性核種 13
1.6 直接標記法 15
1.7 兩步標記法 15
二、 研究動機 17
貳、 結果與討論 19
第一部分、 開發氰基吡啶咪唑/1,2-胺基硫醇點擊反應 19
1.1 氰基苯並噻唑的合成 19
1.2 氰基苯並咪唑的合成 21
1.3 氰基吡啶咪唑的合成 24
1.4 氰基吡啶咪唑/1,2-胺基硫醇點擊反應的選擇性 27
1.5 氰基吡啶咪唑的穩定性 29
1.6 標記測試 31
1.7 氰基吡啶咪唑與胜肽結合 34
第二部分、 開發氰基吡啶噻唑/1,2-胺基硫醇點擊反應 37
2.1 氰基吡啶噻唑的合成 37
2.2 CPT與DOTA偶合 40
第三部分、 動力學測試 42
參、 結論 45
肆、 實驗步驟 47
一、 實驗儀器 47
二、 實驗方法 48
伍、 參考文獻 77
陸、 化合物之1H、13C光譜 83
柒、 化合物之質譜 121
1. Kolb, H. C.; Finn, M. G.; Sharpless, K. B., Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew. Chem. Int. Ed. 2001, 40 (11), 2004-2021.
2. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8 (24), 1128-1137.
3. Sneader, W. Drug Prototypes and their Exploitation; John Wiley and Sons Ltd: Chichester, UK, 1996, 788.
4. Bemis, G. W.; Murcko, M. A., The Properties of Known Drugs. 1. Molecular Frameworks. J. Med. Chem. 1996, 39 (15), 2887-2893.
5. Kolb, H. C.; Sharpless, K. B., The growing impact of click chemistry on drug discovery. Drug Discov. Today 2003, 8 (24), 1128-37.
6. Lutz, J. F., 1,3-dipolar cycloadditions of azides and alkynes: a universal ligation tool in polymer and materials science. Angew. Chem. Int. Ed. 2007, 46 (7), 1018-25.
7. Wu, P.; Fokin, V. V. J. C., Catalytic Azide—Alkyne Cycloaddition: Reactivity and Applications. Aldrichim. Acta. 2007, 7-17.
8. Baskin, J. M.; Bertozzi, C. R., Bioorthogonal Click Chemistry: Covalent Labeling in Living Systems. QSAR Comb. Sci. 2007, 26 (11-12), 1211-1219.
9. Jewett, J. C.; Bertozzi, C. R., Cu-free click cycloaddition reactions in chemical biology. Chem. Soc. Rev. 2010, 39 (4), 1272-9.
10. Sletten, E. M.; Bertozzi, C. R., Bioorthogonal chemistry: fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 2009, 48 (38), 6974-98.
11. McKay, C. S.; Finn, M. G., Click chemistry in complex mixtures: bioorthogonal bioconjugation. Chem. Biol. 2014, 21 (9), 1075-101.
12. Sletten, E. M.; Bertozzi, C. R., From mechanism to mouse: a tale of two bioorthogonal reactions. Acc. Chem. Res. 2011, 44 (9), 666-76.
13. Staudinger, H.; Hauser, E., Über neue organische Phosphorverbindungen IV Phosphinimine. Helv. Chim. Acta 1921, 4 (1), 861-886.
14. Saxon, E.; Bertozzi, C. R., Cell Surface Engineering by a Modified Staudinger Reaction. Science 2000, 287 (5460), 2007-2010.
15. Saxon, E.; Armstrong, J. I.; Bertozzi, C. R., A “Traceless” Staudinger Ligation for the Chemoselective Synthesis of Amide Bonds. Org. Lett. 2000, 2 (14), 2141-2143.
16. Huisgen, R., 1,3-Dipolar Cycloadditions. Past and Future. Angew. Chem. Int. Ed. 1963, 2 (10), 565-598.
17. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B., A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. Angew. Chem. Int. Ed. 2002, 41 (14), 2596-9.
18. Tornøe, C. W.; Christensen, C.; Meldal, M., Peptidotriazoles on solid phase: [1,2,3]-triazoles by regiospecific copper(i)-catalyzed 1,3-dipolar cycloadditions of terminal alkynes to azides. J. Org. Chem. 2002, 67 (9), 3057-64.
19. Presolski, S. I.; Hong, V.; Cho, S.-H.; Finn, M. G., Tailored Ligand Acceleration of the Cu-Catalyzed Azide−Alkyne Cycloaddition Reaction: Practical and Mechanistic Implications. J. Am. Chem. Soc. 2010, 132 (41), 14570-14576.
20. Agard, N. J.; Prescher, J. A.; Bertozzi, C. R., A strain-promoted [3 + 2] azide-alkyne cycloaddition for covalent modification of biomolecules in living systems. J. Am. Chem. Soc. 2004, 126 (46), 15046-7.
21. Debets, M. F.; van Berkel, S. S.; Dommerholt, J.; Dirks, A. T.; Rutjes, F. P.; van Delft, F. L., Bioconjugation with strained alkenes and alkynes. Acc. Chem. Res. 2011, 44 (9), 805-15.
22. Blackman, M. L.; Royzen, M.; Fox, J. M., Tetrazine ligation: fast bioconjugation based on inverse-electron-demand Diels-Alder reactivity. J. Am. Chem. Soc. 2008, 130 (41), 13518-9.
23. Oliveira, B. L.; Guo, Z.; Bernardes, G. J. L., Inverse electron demand Diels-Alder reactions in chemical biology. Chem. Soc. Rev. 2017, 46 (16), 4895-4950.
24. Handula, M.; Chen, K. T.; Seimbille, Y., IEDDA: An Attractive Bioorthogonal Reaction for Biomedical Applications. Molecules 2021, 26 (15), 4640.
25. Liang, G.; Ren, H.; Rao, J., A biocompatible condensation reaction for controlled assembly of nanostructures in living cells. Nat. Chem. 2010, 2 (1), 54-60.
26. White, E. H.; McCapra, F.; Field, G. F.; McElroy, W. D., THE STRUCTURE AND SYNTHESIS OF FIREFLY LUCIFERIN. J. Am. Chem. Soc. 1961, 83 (10), 2402-2403.
27. Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.; Xie, H.; Xia, Z.; Rao, J., A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins. Angew. Chem. Int. Ed. Engl. 2009, 48 (51), 9658-9662.
28. Gomi, K.; Kajiyama, N., Oxyluciferin, a Luminescence Product of Firefly Luciferase, Is Enzymatically Regenerated into Luciferin. J. Biol. Chem. 2001, 276 (39), 36508-36513.
29. Okada, K.; Iio, H.; Kubota, I.; Goto, T., Firefly bioluminescence III. Conversion of oxyluciferin to luciferin in firefly. Tetrahedron Lett. 1974, 15 (32), 2771-2774.
30. Zheng, Z.; Chen, P.; Li, G.; Zhu, Y.; Shi, Z.; Luo, Y.; Zhao, C.; Fu, Z.; Cui, X.; Ji, C.; Wang, F.; Huang, G.; Liang, G., Mechanistic study of CBT-Cys click reaction and its application for identifying bioactive N-terminal cysteine peptides in amniotic fluid. Chem. Sci. 2017, 8 (1), 214-222.
31. Chen, K.-T.; Ieritano, C.; Seimbille, Y., Early-Stage Incorporation Strategy for Regioselective Labeling of Peptides using the 2-Cyanobenzothiazole/1,2-Aminothiol Bioorthogonal Click Reaction. ChemistryOpen 2018, 7 (3), 256-261.
32. Baskin, J. M.; Prescher, J. A.; Laughlin, S. T.; Agard, N. J.; Chang, P. V.; Miller, I. A.; Lo, A.; Codelli, J. A.; Bertozzi, C. R., Copper-free click chemistry for dynamic in vivo imaging. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (43), 16793-16797.
33. Miao, Q.; Bai, X.; Shen, Y.; Mei, B.; Gao, J.; Li, L.; Liang, G., Intracellular self-assembly of nanoparticles for enhancing cell uptake. Chem. Commum. 2012, 48 (78), 9738-9740.
34. Jeon, J.; Shen, B.; Xiong, L.; Miao, Z.; Lee, K. H.; Rao, J.; Chin, F. T., Efficient method for site-specific 18F-labeling of biomolecules using the rapid condensation reaction between 2-cyanobenzothiazole and cysteine. Bioconjug. Chem. 2012, 23 (9), 1902-8.
35. Cao, C. Y.; Shen, Y. Y.; Wang, J. D.; Li, L.; Liang, G. L., Controlled intracellular self-assembly of gadolinium nanoparticles as smart molecular MR contrast agents. Sci. rep. 2013, 3, 1024.
36. Liang, G.; Ronald, J.; Chen, Y.; Ye, D.; Pandit, P.; Ma, M. L.; Rutt, B.; Rao, J., Controlled self-assembling of gadolinium nanoparticles as smart molecular magnetic resonance imaging contrast agents. Angew. Chem. Int. Ed. Engl. 2011, 50 (28), 6283-6.
37. Van de Bittner, G. C.; Bertozzi, C. R.; Chang, C. J., Strategy for dual-analyte luciferin imaging: in vivo bioluminescence detection of hydrogen peroxide and caspase activity in a murine model of acute inflammation. J. Am. Chem. Soc. 2013, 135 (5), 1783-95.
38. Godinat, A.; Park, H. M.; Miller, S. C.; Cheng, K.; Hanahan, D.; Sanman, L. E.; Bogyo, M.; Yu, A.; Nikitin, G. F.; Stahl, A.; Dubikovskaya, E. A., A biocompatible in vivo ligation reaction and its application for noninvasive bioluminescent imaging of protease activity in living mice. ACS Chem. Biol. 2013, 8 (5), 987-99.
39. Woo, M.; Hakem, R.; Soengas, M. S.; Duncan, G. S.; Shahinian, A.; Kägi, D.; Hakem, A.; McCurrach, M.; Khoo, W.; Kaufman, S. A.; Senaldi, G.; Howard, T.; Lowe, S. W.; Mak, T. W., Essential contribution of caspase 3/CPP32 to apoptosis and its associated nuclear changes. Genes. Dev. 1998, 12 (6), 806-19.
40. Cao, C.-y.; Chen, Y.; Wu, F.-z.; Deng, Y.; Liang, G.-l., Caspase-3 controlled assembly of nanoparticles for fluorescence turn on. Chem. Commun. 2011, 47 (37), 10320-10322.
41. White, E. H.; McCapra, F.; Field, G. F., The Structure and Synthesis of Firefly Luciferin. J. Am. Chem. Soc. 1963, 85 (3), 337-343.
42. Shuichi, S.; Kyozo, O.; Yukio, N., A Convenient Synthetic Method of 2-Carbamoyl-6-methoxybenzothiazole, One of Intermediates for the Synthesis of Firefly Luciferin. Bull. Chem. Soc. Jpn. 1963, 36 (3), 331-333.
43. Würfel, H.; Weiss, D.; Beckert, R.; Güther, A., A new application of the “mild thiolation” concept for an efficient three-step synthesis of 2-cyanobenzothiazoles: a new approach to Firefly-luciferin precursors. J. Sulphur. Chem. 2012, 33 (1), 9-16.
44. White, E. H.; Wörther, H.; Field, G. F.; McElroy, W. D., Analogs of Firefly Luciferin. J. Org. Chem. 1965, 30 (7), 2344-2348.
45. White, E. H.; Wörther, H.; Seliger, H. H.; McElroy, W. D., Amino Analogs of Firefly Luciferin and Biological Activity Thereof. J. Am. Chem. Soc. 1966, 88 (9), 2015-2019.
46. Yoshiaki, T.; Masaharu, T.; Hisao, N.; Nobutaka, S.; Minoru, I.; Toshio, G., A Convenient Synthetic Method of 2-Cyano-6-methoxybenzothiazole, –A Key Intermediate for the Synthesis of Firefly Luciferin. Bull. Chem. Soc. Jpn. 1992, 65 (2), 392-395.
47. Suzuki, N.; Nomoto, T.; Toya, Y.; Kanamori, N.; Yoda, B.; Saeki, A., Synthetic Reactions in PEG: PEG-Assisted Synthesis of 2-Cyano-6-methoxybenzothiazole, A Key Intermediate For The Synthesis of Firefly Luciferin. Biosci. Biotechnol. Biochem. 1993, 57 (9), 1561-1562.
48. Xie, A.; Cao, M.; Liu, Y.; Feng, L.; Hu, X.; Dong, W., The Synthesis of Tetrazoles in Nanometer Aqueous Micelles at Room Temperature. Eur. J. Org. Chem. 2014, 2014 (2), 436-441.
49. Meroni, G.; Ciana, P.; Maggi, A.; Santaniello, E., A New Synthesis of 2-Cyano-6-hydroxybenzothiazole, the Key Intermediate of d-Luciferin, Starting from 1,4-Benzoquinone. Synlett. 2009, 2009 (16), 2682-2684.
50. McCutcheon, D. C.; Paley, M. A.; Steinhardt, R. C.; Prescher, J. A., Expedient Synthesis of Electronically Modified Luciferins for Bioluminescence Imaging. J. Am. Chem. Soc. 2012, 134 (18), 7604-7607.
51. McCutcheon, D.; Porterfield, W.; Prescher, J., Rapid and scalable assembly of firefly luciferase substrates. Org. Biomol. Chem. 2014, 13, 2117-2121.
52. Wadsak, W.; Mitterhauser, M., Basics and principles of radiopharmaceuticals for PET/CT. Eur. J. Radiol. 2010, 73 (3), 461-9.
53. Alqahtani, F. F., SPECT/CT and PET/CT, related radiopharmaceuticals, and areas of application and comparison. Saudi Pharm. J. 2023, 31 (2), 312-328.
54. Teresa Albelda, M. a.; Garcia-España, E.; Frias, J. C., Visualizing the atherosclerotic plaque: a chemical perspective. Chem. Soc. Rev. 2014, 43 (8), 2858-2876.
55. Velikyan, I., Prospective of ⁶⁸Ga-radiopharmaceutical development. Theranostics. 2013, 4 (1), 47-80.
56. Inkster, J. A.; Colin, D. J.; Seimbille, Y., A novel 2-cyanobenzothiazole-based (18)F prosthetic group for conjugation to 1,2-aminothiol-bearing targeting vectors. Org. Biomol. Chem. 2015, 13 (12), 3667-76.
57. Monaco, A.; Zoete, V.; Alghisi, G. C.; Rüegg, C.; Michelin, O.; Prior, J.; Scapozza, L.; Seimbille, Y., Synthesis and in vitro evaluation of a novel radioligand for αvβ3 integrin receptor imaging: [18F]FPPA-c(RGDfK). Bioorg. Med. Chem. Lett. 2013, 23 (22), 6068-72.
58. Kim, K., Synthesis and Reactions of 1,2,3-Dithiazoles. Sulfur Rep. 1998, 21 (2), 147-207.
59. Rees, C. W., Polysulfur-nitrogen heterocyclic chemistry. Heterocycl. Chem. 1992, 29 (3), 639-651.
60. Rakitin, O. A.; Rees, C. W.; Vlasova, O. G., Direct synthesis of 2-cyanobenzimidazoles and the generation of S2. Tetrahedron Lett. 1996, 37 (26), 4589-4592.
61. Stewart, R.; Harris, M. G., Comparison of the acidities and basicities of amino-substituted nitrogen heterocycles. J. Org. Chem. 1978, 43 (16), 3123-3126.
62. Ren, H.; Xiao, F.; Zhan, K.; Kim, Y.-P.; Xie, H.; Xia, Z.; Rao, J., A Biocompatible Condensation Reaction for the Labeling of Terminal Cysteine Residues on Proteins. Angew. Chem. Int. Ed. 2009, 48 (51), 9658-9662.
63. Argenziano, M.; Lombardi, C.; Ferrara, B.; Trotta, F.; Caldera, F.; Blangetti, M.; Koltai, H.; Kapulnik, Y.; Yarden, R.; Gigliotti, L.; Dianzani, U.; Dianzani, C.; Prandi, C.; Cavalli, R., Glutathione/pH-responsive nanosponges enhance strigolactone delivery to prostate cancer cells. Oncotarget. 2018, 9 (88), 35813-35829.
64. Zhang, B. S.; Jones, K. A.; McCutcheon, D. C.; Prescher, J. A., Pyridone Luciferins and Mutant Luciferases for Bioluminescence Imaging. ChemBioChem 2018, 19 (5), 470-477.
65. Hédou, D.; Deau, E.; Harari, M.; Sanselme, M.; Fruit, C.; Besson, T., Rational multistep synthesis of a novel polyfunctionalized benzo[d]thiazole and its thiazolo[5,4-b]pyridine analogue. Tetrahedron 2014, 70 (35), 5541-5549.
(此全文20280903後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *