帳號:guest(3.14.142.194)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:Rafael Berroya Navarro
作者(英文):Rafael Berroya Navarro
論文名稱:以生物物理學和生化方法研究N(6)-甲基化賴氨酸殘基的重組分枝桿菌結核肝素結合血凝集素的分子表徵
論文名稱(英文):Molecular Characterization of Recombinant Mycobacterium tuberculosis Heparin-Binding Hemagglutinin Adhesin with N(6)-Methylated L-Lysyl Residues by Biophysical and Biochemical Methods
指導教授:錢嘉琳
指導教授(英文):Chia-Lin Chyan
口試委員:楊雪慧
洪上程
口試委員(英文):Hsueh-Hui Yang
Shang-Cheng Hung
學位類別:碩士
校院名稱:國立東華大學
系所名稱:化學系
學號:611012201
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:116
關鍵詞(英文):Mycobacterium tuberculosisMycolicibacterium smegmatisheparin-binding hemagglutinin adhesinlysine methylationnuclear magnetic resonance
相關次數:
  • 推薦推薦:0
  • 點閱點閱:12
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏收藏:0
The heparin-binding hemagglutinin adhesin (HBHA) is protein virulence factor that enables the Mycobacterium tuberculosis (Mtb) to attach to human epithelial cells to commence extrapulmonary pathogenesis, which leads to disseminated tuberculosis. The glycosaminoglycan-binding domain at the N-terminal of wild-type HBHA was found to contain methylation at the ζN position of lysine residues and the post-translational modification was crucial for its antigenic properties that can be used as immunoprotection against tuberculosis and as a diagnostic marker for active tuberculosis. Previously, the protein was expressed in Escherichia coli (Eco) and which structure and interaction of its glycosaminoglycan-binding domain with heparan sulfate oligosaccharide was characterized by multidimensional NMR. In this study, M. tuberculosis H37Rv HBHA and its glycosaminoglycan-binding domain, which is within residues 110–199, was expressed in Mycolicibacterium smegmatis (Msm) mc24517 to resemble the native protein, which is post-translationally methylated. Unlike Eco HBHA, the full length and truncated glycosaminoglycan-binding domain of methylated Msm HBHA was recognized by the anti-Mtb HBHA monoclonal antibody. 13C–1H HSQC NMR spectroscopy, HCN 3D NMR, 13C-edited NOESY-HSQC 3D NMR, and 1H–1H 2D NOESY identified the resonances of the novel peaks that belong to mono and di-methylated lysine εCH, δCH, ηCH, and ζN of Msm HBHA. 13C–1H HSQC NMR spectroscopy and liquid chromatography–tandem mass spectrometry revealed the overall relative abundance, relative abundance per residue, residue localization, and distribution of mono, di, and tri-methyl lysines within the protein amino acid sequence. Di and tri-methylation occurred more frequently at repeating lysine sequences at C-terminal. Protein interaction studies using isothermal titration calorimetry revealed that Msm HBHA110–199 was six-fold stronger in binding heparan sulfate oligosaccharides. Gel electrophoresis of tryptic digests revealed Msm HBHA was more resistant to trypsin cleavage than unmodified Eco HBHA. The positive effects of HBHA methylation to these interactions enable tuberculosis bacteria to survive in its host environment; at the same time, the effects can also be advantageous as methylated HBHA may serve as a good candidate for host immunoprotection.
Acknowledgment i
Abstract iii
Table of Contents v
List of Tables and Figures vii
1. Introduction 1
1.1. Tuberculosis and the search for an effective vaccine 2
1.2. The heparin-binding hemagglutinin adhesin of M. tuberculosis 3
1.3. Objectives of the Study 5
1.4. Scope and Limitation 6
2. Materials and Methods 7
2.1. Expression and Purification of recombinant HBHA in E. coli 8
2.2. Chemical methylation of E. coli expressed recombinant HBHA 9
2.3. Preparation of chemically competent E. coli cells for cloning Mycobacterium expression plasmids 10
2.4. Preparation of M. smegmatis electrocompetent cells 10
2.5. Cloning and extraction of plasmid vectors 11
2.6. Construction of plasmid vectors with hbhA inserts 12
2.7. Transformation of M. smegmatis mc24517 14
2.8. Extraction and Purification of HBHA and HBHA110–199 from M. smegmatis 15
2.9. Dot blot immunoassay with anti-Mtb H37Rv HBHA monoclonal antibody 17
2.10. Nuclear magnetic resonance spectroscopy of methylated recombinant
HBHA 19
2.11. Multidimensional NMR studies and structure calculation of methylated HBHA-heparin complexes 24
2.13. Mass analysis of proteolyzed methylated HBHA by liquid chromatography and tandem mass spectrometry 25
2.14. Qualitative trypsin digestion assay 27
2.15. Isothermal titration calorimetry of methylated HBHA-enoxaparin versus non-methylated HBHA-enoxaparin 28
2.16. Circular dichroism spectroscopy of M. smegmatis expressed HBHA 29
3. Results 31
3. 1. Cloning of hbhA to pYUB28b vector 32
3.2. Transformation of M. smegmatis mc24517, expression, and purification of HBHA 33
3.3. Dot blot assay with anti-Mtb H37Rv HBHA monoclonal antibody 42
3.4. NMR Spectroscopy of methylated HBHA 46
3.5. LC-MS/MS of M. smegmatis expressed recombinant HBHA 68
3.6. Qualitative trypsin digestion assay of HBHA 75
3.7. Circular dichroism spectroscopy of M. smegmatis expressed HBHA 71
3.8. Isothermal titration calorimetry of HBHA with heparan sulfate hexadecasaccharide 79

4. Discussion 83
4.1. Plasmid construction, cloning, and expression of HBHA in M. smegmatis 84
4.2. Dot blot assay with anti-Mtb H37Rv HBHA monoclonal antibody 85
4.3. Nuclear magnetic resonance spectroscopy of methylated recombinant HBHA 87
4.4. LC-MS/MS of M. smegmatis expressed recombinant HBHA 88
4.5. Qualitative trypsin digestion assay of HBHA 90
4.6. Interaction of HBHA with heparin-like hexadecasaccharides 91
5. Conclusion and Recommendations 93
4.1. Conclusion 94
4.2. Recommmendations 95
5. References 97
6. Appendices 103
(1) World Health Organization. Global Tuberculosis Report 2021; World Health Organization: Geneva, 2021.
(2) Andersen, P.; Doherty, T. M. The Success and Failure of BCG — Implications for a Novel Tuberculosis Vaccine. Nat. Rev. Microbiol. 2005, 3 (8), 656–662. https://doi.org/10.1038/nrmicro1211.
(3) Mangtani, P.; Abubakar, I.; Ariti, C.; Beynon, R.; Pimpin, L.; Fine, P. E. M.; Rodrigues, L. C.; Smith, P. G.; Lipman, M.; Whiting, P. F.; Sterne, J. A. Protection by BCG Vaccine Against Tuberculosis: A Systematic Review of Randomized Controlled Trials. Clin. Infect. Dis. 2014, 58 (4), 470–480. https://doi.org/10.1093/cid/cit790.
(4) Rijnink, W. F.; Ottenhoff, T. H. M.; Joosten, S. A. B-Cells and Antibodies as Contributors to Effector Immune Responses in Tuberculosis. Front. Immunol. 2021, 12, 640168. https://doi.org/10.3389/fimmu.2021.640168.
(5) Nunes-Alves, C.; Booty, M. G.; Carpenter, S. M.; Jayaraman, P.; Rothchild, A. C.; Behar, S. M. In Search of a New Paradigm for Protective Immunity to TB. Nat. Rev. Microbiol. 2014, 12 (4), 289–299. https://doi.org/10.1038/nrmicro3230.
(6) Andersen, P.; Scriba, T. J. Moving Tuberculosis Vaccines from Theory to Practice. Nat. Rev. Immunol. 2019, 19 (9), 550–562. https://doi.org/10.1038/s41577-019-0174-z.
(7) Khader, S. A.; Divangahi, M.; Hanekom, W.; Hill, P. C.; Maeurer, M.; Makar, K. W.; Mayer-Barber, K. D.; Mhlanga, M. M.; Nemes, E.; Schlesinger, L. S.; van Crevel, R.; Vankalayapati, R.; Xavier, R. J.; Netea, M. G. Targeting Innate Immunity for Tuberculosis Vaccination. J. Clin. Invest. 2019, 129 (9), 3482–3491. https://doi.org/10.1172/JCI128877.
(8) Menozzi, F. D.; Rouse, J. H.; Alavi, M.; Laude-Sharp, M.; Muller, J.; Bischoff, R.; Brennan, M. J.; Locht, C. Identification of a Heparin-Binding Hemagglutinin Present in Mycobacteria. J. Exp. Med. 1996, 184 (3), 993–1001. https://doi.org/10.1084/jem.184.3.993.
(9) Pethe, K.; Alonso, S.; Biet, F.; Delogu, G.; Brennan, M. J.; Locht, C.; Menozzi, F. D. The Heparin-Binding Haemagglutinin of M. Tuberculosis Is Required for Extrapulmonary Dissemination. Nature 2001, 412 (6843), 190–194. https://doi.org/10.1038/35084083.
(10) Delogu, G.; Brennan, M. J. Functional Domains Present in the Mycobacterial Hemagglutinin, HBHA. J. Bacteriol. 1999, 181 (24), 7464–7469. https://doi.org/10.1128/JB.181.24.7464-7469.1999.
(11) Menozzi, F. D.; Bischoff, R.; Fort, E.; Brennan, M. J.; Locht, C. Molecular Characterization of the Mycobacterial Heparin-Binding Hemagglutinin, a Mycobacterial Adhesin. Proc. Natl. Acad. Sci. 1998, 95 (21), 12625–12630. https://doi.org/10.1073/pnas.95.21.12625.
(12) Mueller-Ortiz, S. L.; Wanger, A. R.; Norris, S. J. Mycobacterial Protein HbhA Binds Human Complement Component C3. Infect. Immun. 2001, 69 (12), 7501–7511. https://doi.org/10.1128/IAI.69.12.7501-7511.2001.
(13) Sohn, H.; Kim, J.-S.; Shin, S. J.; Kim, K.; Won, C.-J.; Kim, W. S.; Min, K.-N.; Choi, H.-G.; Lee, J. C.; Park, J.-K.; Kim, H.-J. Targeting of Mycobacterium Tuberculosis Heparin-Binding Hemagglutinin to Mitochondria in Macrophages. PLoS Pathog. 2011, 7 (12), e1002435. https://doi.org/10.1371/journal.ppat.1002435.
(14) Raze, D.; Verwaerde, C.; Deloison, G.; Werkmeister, E.; Coupin, B.; Loyens, M.; Brodin, P.; Rouanet, C.; Locht, C. Heparin-Binding Hemagglutinin Adhesin (HBHA) Is Involved in Intracytosolic Lipid Inclusions Formation in Mycobacteria. Front. Microbiol. 2018, 9, 2258. https://doi.org/10.3389/fmicb.2018.02258.
(15) Zheng, Q.; Li, Z.; Zhou, S.; Zhang, Q.; Zhou, L.; Fu, X.; Yang, L.; Ma, Y.; Hao, X. Heparin-Binding Hemagglutinin of Mycobacterium Tuberculosis Is an Inhibitor of Autophagy. Front. Cell. Infect. Microbiol. 2017, 7. https://doi.org/10.3389/fcimb.2017.00033.
(16) Locht, C.; Hougardy, J.-M.; Rouanet, C.; Place, S.; Mascart, F. Heparin-Binding Hemagglutinin, from an Extrapulmonary Dissemination Factor to a Powerful Diagnostic and Protective Antigen against Tuberculosis. Tuberculosis 2006, 86 (3–4), 303–309. https://doi.org/10.1016/j.tube.2006.01.016.
(17) De Maio, F.; Squeglia, F.; Goletti, D.; Delogu, G. The Mycobacterial HBHA Protein: A Promising Biomarker for Tuberculosis. Curr. Med. Chem. 2019, 26 (11), 2051–2060. https://doi.org/10.2174/0929867325666181029165805.
(18) Savolainen, L.; Pusa, L.; Kim, H.-J.; Sillanpää, H.; Seppälä, I.; Tuuminen, T. Pilot Study of Diagnostic Potential of the Mycobacterium Tuberculosis Recombinant HBHA Protein in a Vaccinated Population in Finland. PLoS ONE 2008, 3 (9), e3272. https://doi.org/10.1371/journal.pone.0003272.
(19) Temmerman, S.; Pethe, K.; Parra, M.; Alonso, S.; Rouanet, C.; Pickett, T.; Drowart, A.; Debrie, A.-S.; Delogu, G.; Menozzi, F. D.; Sergheraert, C.; Brennan, M. J.; Mascart, F.; Locht, C. Methylation-Dependent T Cell Immunity to Mycobacterium Tuberculosis Heparin-Binding Hemagglutinin. Nat. Med. 2004, 10 (9), 935–941. https://doi.org/10.1038/nm1090.
(20) Parra, M.; Pickett, T.; Delogu, G.; Dheenadhayalan, V.; Debrie, A.-S.; Locht, C.; Brennan, M. J. The Mycobacterial Heparin-Binding Hemagglutinin Is a Protective Antigen in the Mouse Aerosol Challenge Model of Tuberculosis. Infect. Immun. 2004, 72 (12), 6799–6805. https://doi.org/10.1128/IAI.72.12.6799-6805.2004.
(21) Schepers, K.; Dirix, V.; Mouchet, F.; Verscheure, V.; Lecher, S.; Locht, C.; Mascart, F. Early Cellular Immune Response to a New Candidate Mycobacterial Vaccine Antigen in Childhood Tuberculosis. Vaccine 2015, 33 (8), 1077–1083. https://doi.org/10.1016/j.vaccine.2014.12.011.
(22) Zanetti, S.; Bua, A.; Delogu, G.; Pusceddu, C.; Mura, M.; Saba, F.; Pirina, P.; Garzelli, C.; Vertuccio, C.; Sechi, L. A.; Fadda, G. Patients with Pulmonary Tuberculosis Develop a Strong Humoral Response against Methylated Heparin-Binding Hemagglutinin. Clin. Vaccine Immunol. 2005, 12 (9), 1135–1138. https://doi.org/10.1128/CDLI.12.9.1135-1138.2005.
(23) Pethe, K.; Bifani, P.; Drobecq, H.; Sergheraert, C.; Debrie, A.-S.; Locht, C.; Menozzi, F. D. Mycobacterial Heparin-Binding Hemagglutinin and Laminin-Binding Protein Share Antigenic Methyllysines That Confer Resistance to Proteolysis. Proc. Natl. Acad. Sci. 2002, 99 (16), 10759–10764. https://doi.org/10.1073/pnas.162246899.
(24) Lanfranconi, M. P.; Arabolaza, A.; Gramajo, H.; Alvarez, H. M. Insights into the Evolutionary History of the Virulent Factor HBHA of Mycobacterium Tuberculosis. Arch. Microbiol. 2021, 203 (5), 2171–2182. https://doi.org/10.1007/s00203-021-02192-y.
(25) Delogu, G.; Bua, A.; Pusceddu, C.; Parra, M.; Fadda, G.; Brennan, M. J.; Zanetti, S. Expression and Purification of Recombinant Methylated HBHA in Mycobacterium Smegmatis. FEMS Microbiol. Lett. 2004, 239 (1), 33–39. https://doi.org/10.1016/j.femsle.2004.08.015.
(26) Host, H.; Drobecq, H.; Locht, C.; Menozzi, F. D. Enzymatic Methylation of the Mycobacterium Tuberculosis Heparin-Binding Haemagglutinin: HBHA Methylation. FEMS Microbiol. Lett. 2007, 268 (2), 144–150. https://doi.org/10.1111/j.1574-6968.2007.00636.x.
(27) Parada, C.; Neri-Badillo, I. C.; Vallecillo, A. J.; Segura, E.; Silva-Miranda, M.; Guzmán-Gutiérrez, S. L.; Ortega, P. A.; Coronado-Aceves, E. W.; Cancino-Villeda, L.; Torres-Larios, A.; Aceves Sánchez, M. de J.; Flores Valdez, M. A.; Espitia, C. New Insights into the Methylation of Mycobacterium Tuberculosis Heparin Binding Hemagglutinin Adhesin Expressed in Rhodococcus Erythropolis. Pathogens 2021, 10 (9), 1139. https://doi.org/10.3390/pathogens10091139.
(28) Huang, T.-Y.; Irene, D.; Zulueta, M. M. L.; Tai, T.-J.; Lain, S.-H.; Cheng, C.-P.; Tsai, P.-X.; Lin, S.-Y.; Chen, Z.-G.; Ku, C.-C.; Hsiao, C.-D.; Chyan, C.-L.; Hung, S.-C. Structure of the Complex between a Heparan Sulfate Octasaccharide and Mycobacterial Heparin-Binding Hemagglutinin. Angew. Chem. Int. Ed. 2017, 56 (15), 4192–4196. https://doi.org/10.1002/anie.201612518.
(29) Zulueta, M. M. L.; Chyan, C.-L.; Hung, S.-C. Structural Analysis of Synthetic Heparan Sulfate Oligosaccharides with Fibroblast Growth Factors and Heparin-Binding Hemagglutinin. Curr. Opin. Struct. Biol. 2018, 50, 126–133. https://doi.org/10.1016/j.sbi.2018.03.003.
(30) Theillet, F.-X.; Liokatis, S.; Jost, J. O.; Bekei, B.; Rose, H. M.; Binolfi, A.; Schwarzer, D.; Selenko, P. Site-Specific Mapping and Time-Resolved Monitoring of Lysine Methylation by High-Resolution NMR Spectroscopy. J. Am. Chem. Soc. 2012, 134 (18), 7616–7619. https://doi.org/10.1021/ja301895f.
(31) Theillet, F.-X.; Smet-Nocca, C.; Liokatis, S.; Thongwichian, R.; Kosten, J.; Yoon, M.-K.; Kriwacki, R. W.; Landrieu, I.; Lippens, G.; Selenko, P. Cell Signaling, Post-Translational Protein Modifications and NMR Spectroscopy. J. Biomol. NMR 2012, 54 (3), 217–236. https://doi.org/10.1007/s10858-012-9674-x.
(32) Studier, F. W. Protein Production by Auto-Induction in High-Density Shaking Cultures. Protein Expr. Purif. 2005, 41 (1), 207–234. https://doi.org/10.1016/j.pep.2005.01.016.
(33) Andrade, M. A.; Chacón, P.; Merelo, J. J.; Morán, F. Evaluation of Secondary Structure of Proteins from UV Circular Dichroism Spectra Using an Unsupervised Learning Neural Network. Protein Eng. Des. Sel. 1993, 6 (4), 383–390. https://doi.org/10.1093/protein/6.4.383.
(34) Miles, A. J.; Ramalli, S. G.; Wallace, B. A. DICHROWEB , a Website for Calculating Protein Secondary Structure from Circular Dichroism Spectroscopic Data. Protein Sci. 2022, 31 (1), 37–46. https://doi.org/10.1002/pro.4153.
(35) Sudmeier, J. L.; Ash, E. L.; Günther, U. L.; Luo, X.; Bullock, P. A.; Bachovchin, W. W. HCN, A Triple-Resonance NMR Technique for Selective Observation of Histidine and Tryptophan Side Chains In13C/15N-Labeled Proteins. J. Magn. Reson. B 1996, 113 (3), 236–247. https://doi.org/10.1006/jmrb.1996.0182.
(36) Wang, F.; Jain, P.; Gulten, G.; Liu, Z.; Feng, Y.; Ganesula, K.; Motiwala, A. S.; Ioerger, T. R.; Alland, D.; Vilchèze, C.; Jacobs, W. R.; Sacchettini, J. C. Mycobacterium Tuberculosis Dihydrofolate Reductase Is Not a Target Relevant to the Antitubercular Activity of Isoniazid. Antimicrob. Agents Chemother. 2010, 54 (9), 3776–3782. https://doi.org/10.1128/AAC.00453-10.
(37) Snapper, S. B.; Melton, R. E.; Mustafa, S.; Kieser, T.; Jr, W. R. J. Isolation and Characterization of Efficient Plasmid Transformation Mutants of Mycobacterium Smegmatis. Mol. Microbiol. 1990, 4 (11), 1911–1919. https://doi.org/10.1111/j.1365-2958.1990.tb02040.x.
(38) Bashiri, G.; Rehan, A. M.; Greenwood, D. R.; Dickson, J. M. J.; Baker, E. N. Metabolic Engineering of Cofactor F420 Production in Mycobacterium Smegmatis. PLoS ONE 2010, 5 (12), e15803. https://doi.org/10.1371/journal.pone.0015803.
(39) Bashiri, G.; Baker, E. N. Production of Recombinant Proteins in Mycobacterium Smegmatis for Structural and Functional Studies: Mycobacterium Smegmatis Expression System. Protein Sci. 2015, 24 (1), 1–10. https://doi.org/10.1002/pro.2584.
(40) Radhakrishnan, A.; Furze, C. M.; Ahangar, M. S.; Fullam, E. A GFP-Strategy for Efficient Recombinant Protein Overexpression and Purification in Mycobacterium Smegmatis. RSC Adv. 2018, 8 (58), 33087–33095. https://doi.org/10.1039/C8RA06237D.
(41) Rouse, D. A.; Morris, S. L.; Karpas, A. B.; Mackall, J. C.; Probst, P. G.; Chaparas, S. D. Immunological Characterization of Recombinant Antigens Isolated from a Mycobacterium Avium Lambda Gt11 Expression Library by Using Monoclonal Antibody Probes. Infect. Immun. 1991, 59 (8), 2595–2600. https://doi.org/10.1128/iai.59.8.2595-2600.1991.
(42) Neidhardt, F. C.; Bloch, P. L.; Smith, D. F. Culture Medium for Enterobacteria. J. Bacteriol. 1974, 119 (3), 736–747. https://doi.org/10.1128/jb.119.3.736-747.1974.
(43) Seely, J. H.; Benoiton, N. L. Effect of N -Methylation and Chain Length on Kinetic Constants of Trypsin Substrates. ε- N -Methyllysine and Homolysine Derivatives as Substrates. Can. J. Biochem. 1970, 48 (10), 1122–1131. https://doi.org/10.1139/o70-176.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *