帳號:guest(3.148.115.173)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:林昱嘉
作者(英文):Yu-Chia Lin
論文名稱:建構木黴菌(Trichoderma harzianum) L-amino acid oxidase 基因缺失突變株及檢測其誘導植物抗病之能力
論文名稱(英文):Construct Trichoderma harzianum L-amino acid oxidase gene knockout mutant strain and test its ability to induce plant disease resistance
指導教授:林國知
指導教授(英文):Kuo-Chih Lin
口試委員:彭國証
林光慧
口試委員(英文):Kou-Cheng Peng
Guang-Huey Lin
學位類別:碩士
校院名稱:國立東華大學
系所名稱:生命科學系
學號:611013001
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:69
關鍵詞:木黴菌左旋胺基酸氧化酶系統性抗性葉綠素a/b結合蛋白
關鍵詞(英文):TrichodermaL-amino acid oxidasesystemic resistanceLhcb1chlorophyll a/b/ binding proteinchloroplast
相關次數:
  • 推薦推薦:0
  • 點閱點閱:5
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏收藏:0
本論文目的在證明木黴菌ETS-323分泌之ThLAAO會與葉肉細胞之Lhcb1結合,進而激活植物防禦機制以誘導抗性對抗病原菌感染。我們使用Bimolecular Fluorescence Complementation (BiFC)技術可觀察到在阿拉伯芥葉肉細胞表現之LAAO-NYFP會在葉綠體內與Lhcb1-CYFP結合。我們使用Fluorescence Resonance Energy Transfer (FRET)技術可觀察到在阿拉伯芥葉肉細胞表現之LAAO-GFP會在葉綠體內與Lhcb1-OFP結合。由此可知當ThLAAO表現在葉肉細胞時會進入葉綠體而與類囊體上之Lhcb1結合。我們接著用Agrobacterium-mediated transformation建構ETS-323之ThLAAO基因缺失株(deletion mutants)。我們共得到8株轉形株,並命名為ETS-△LAAO1及ETS-△LAAO3-ETS-△LAAO8,其中#2轉形株之ThLAAO基因並沒缺失,故命名為ETS-2。我們發現ETS-△LAAO1-ETS-△LAAO8培養在培養基時會導致其無法產生孢子,故推測ThLAAO可幫助木黴菌在缺氧環境的土壤中產生孢子。此外、ETS-△LAAO1刺激植物生長的效果與ETS-323相似而不受ThLAAO基因缺失影響,顯見ThLAAO與木黴菌刺激植物生長的能力無關。在這ThLAAO基因缺失株中ETS-△LAAO1拮抗病原真菌Rhizoctonia solani之能力顯著降低。我們將ETS-323與ETS-△LAAO1孢子注入土壤以感染阿拉伯芥根部,然後在其葉子接種Botrytis cinerea,觀察到ETS-△LAAO1誘導阿拉伯芥抗性能力下降,推測ThLAAO可能為Trichoderma誘導植物抗性的一個重要分子。此外、我們發現當將LAAO基因轉殖入阿拉伯芥Col-0 (35S:PR1b-LAAO)時則抗病能力增強,但是若將LAAO基因轉殖入阿拉伯芥Lhcb1及Lhcb2的反義股突變株(antisense mutants) Col-0:asLhcb2-12時罹病程度與Col-0及Col-0:asLhcb2-12相似,顯示ThLAAO是經由與Lhcb1結合而誘導抗性。總而言之、木黴菌ETS-323分泌之ThLAAO會進入葉肉細胞之葉綠體內而與Lhcb1結合,進而激活植物防禦機制以誘導抗性對抗病原菌感染。
The purpose of this paper is to prove that ThLAAO secreted by Trichoderma ETS-323 will bind to Lhcb1 in mesophyll cells, thereby activating the plant defense mechanism to induce resistance against pathogen infection. Using Bimolecular Fluorescence Complementation (BiFC) technology, we observed that LAAO-NYFP expressed in Arabidopsis mesophyll cells would bind to Lhcb1-CYFP in chloroplasts. We then used Fluorescence Resonance Energy Transfer (FRET) technology and observed that LAAO-GFP expressed in Arabidopsis mesophyll cells would enter into chloroplasts and bind to Lhcb1-OFP on thylakoids. Therefore, ThLAAO expressed in mesophyll cells will enter thylakoids to bind to Lhcb1. We then constructed the ThLAAO gene deletion mutants of ETS-323 by Agrobacterium-mediated transformation and obtained 8 transformants. Among these transformants, the ThLAAO gene of the #2 transformant was not deleted. We named these transformants ETS-△LAAO1, ETS-2 and ETS-△LAAO3-ETS-△LAAO8. We found that ETS-△LAAO1-ETS-△LAAO8 could not produce spores when cultured in plates, so it was speculated that ThLAAO could help Trichoderma to produce spores in hypoxic soil environment. In addition, the effect of ETS-△LAAO1on stimulating plant growth was similar to that of ETS-323 and was not affected by the deletion of ThLAAO gene. Therefore, ThLAAO obviously had no effect on the ability of Trichoderma to stimulate plant growth. Among the ThLAAO deletion mutants, the ability of ETS-△LAAO1 to antagonize the pathogenic fungus Rhizoctonia solani was significantly reduced. We then spread the spores of ETS-323 and ETS-△LAAO1 into the soil to infect the roots of Arabidopsis seedling and then inoculated Botrytis cinerea on the leaves. We observed that the ability of ETS-△LAAO1 to induce resistance of Arabidopsis thaliana is decreased comparing to that of ETS-323. In addition, we found that when the LAAO gene was transferred into Arabidopsis Col-0 (35S:PR1b-LAAO), it enhances the disease resistance aginst the infection of Botrytis cinerea. However, if the LAAO gene was transferred into the antisense mutants (Col-0:asLhcb2-12) of Arabidopsis, the degree of disease is similar to that of Col-0 and Col-0:asLhcb2-12, indicating that ThLAAO induces resistance through binding to Lhcb1. Overall, ThLAAO secreted by Trichoderma ETS-323 will enter the chloroplasts of mesophyll cells and bind to Lhcb1, thereby activating plant defense mechanisms to induce resistance against pathogen infection.
中文摘要:I
英文摘要:III
目錄:V
一、前言(背景及重要性簡介(Background and significance)) 1
1.1 木黴菌 (Trichoderma spp.) 1
1.1.1簡介木黴菌 1
1.1.2 木黴菌的生物防治機制 1
1.1.4 Trichoderma spp.產生誘導植物抗性的蛋白質及化合物 3
1.2 T. harzianum L-amino acid oxidase (ThLAAO) 3
1.3 植物抗病 4
1.4 chlorophyll a/b/ binding protein (Lhcb) 5
二、實驗室以往的ThLAAO研究結果 7
三、目的 9
四、實驗流程 11
五、材料與實驗方法: 13
5.1 真菌材料 13
5.2 植物材料 13
5.3農桿菌品系 13
5.4大腸桿菌品系 13
5.4 使用的引子與載體 13
5.5 真菌培養 13
5.6 煙草及阿拉伯芥種植方式 14
5.6質體DNA抽取 15
5.7建構BiFC所需要的農桿菌載體 15
5.7.1 PCR擴增出LAAO、Lhcb1、Epl-1、NYFP、CYFP DNA 15
5.7.2 Overlapping PCR 16
5.7.3 建構質體pGEM-LAAO-NYFP、pGEM- Epl-1-NYFP、pGEM- Lhcb1-CYFP 17
5.7.4 TA cloning 17
5.7.5以電穿孔(electroporation)方式進行大腸桿菌之轉形作用 17
5.7.6 PCR screening確認轉型株 18
5.7.7 質體DNA抽取、限制酶SpeⅠ及BstEⅠⅠ切割、回收DNA及ligation製備pCAMBIA-LAAO-NYFP、pCAMBIA-Lhcb1-CYFP及pCAMBIA-Epl1-NYFP 18
5.7.8 電穿孔到DH5α、PCR screening、抽質體、酵素試切確認 19
5.7.9 抽質體、電穿孔到LBA4404 19
5.8 建構FRET所需要的農桿菌載體 19
5.9 以BiFC及FRET檢測ThLAAO與Lhcb1結合 21
5.10 共軛焦顯微鏡觀察 21
5.11建構木徴菌ThLAAO基因缺失突變株 22
5.11.1木黴菌genomic DNA抽取 22
5.11.2 DNA 聚合酶連鎖反應檢測確認5’UTR及3’UTR引子最適合溫度 22
5.11.3 選殖ThLAAO之5’UTR及3’UTR於pGEM T-Easy載體 23
5.11.4 選殖ThLAAO之5’UTR及3’UTR於載體pPK2 24
5.11.5農桿菌法轉形木黴菌 25
5.11.6進行mitotic stability測試及single spore isolation 26
5.12 檢測Parafilm封PDA plates對ETS-323與 ETS-ΔLAAO1-8產生孢子的影響 26
5.13 ETS-ΔLAAO缺失株對立枯絲核菌拮抗作用試驗 27
5.14 檢測ETS-ΔLAAO1缺失株對阿拉伯芥生長的影響 27
5.15 檢測LAAO及Lhcb1對誘導植物抗病能力 27
5.15.1 檢測木黴菌ETS-ΔLAAO1誘導阿拉伯芥Col-0野生株抗病能力 27
5.15.2 檢測阿拉伯芥Col-0:asLhcb2-12 (35S:PR1b-LAAO)轉型株抗病能力 28
5.16 統計分析 28
六、結果 29
6.1 探討ThLAAO是否會與葉綠體之Lhcb1結合 29
6.2 建構Trichoderma ThLAAO基因缺失突變株 31
6.2.1檢視 ETS-△LAAO抑制病原菌生長能力是否減弱 31
6.2.2 探討ThLAAO基因缺失對Trichoderma孢子形成的影響 31
6.2.3 探討ThLAAO缺失是否對Trichoderma刺激植物生長有影響 32
6.3 探討ThLAAO是否為Trichoderma 誘導抗性的一個重要分子 32
6.4 探討Lhcb1的存在是否為ThLAAO誘導抗性的必要條件 33
七、討論 35
7.1 ThLAAO會在葉綠體內與Lhcb1結合 35
7.2 ThLAAO可協助木黴菌在缺氧氣環境(hypoxia)之土壤中產生孢子 36
7.3 ThLAAO為木黴菌ETS-323誘導抗性的一個重要分子 37
7.4 Lhcb1為ThLAAO誘導阿拉伯芥抗性的必要分子 39
八、總結 41
九、參考文獻 43
十、圖表 51


羅朝村,黃秀華. 2009. 木黴菌、病原菌與作物的三角關係. 科學發展 443:34-41.
周瑋翔. 2022. 探討木黴菌分泌之L-Amino acid oxidase轉移入植物。國立東華大學生命科學系碩士論文。取自https://hdl.handle.net/11296/m69whu
Abbas A, Mubeen M, Zheng H, Sohail MA, Shakeel Q, Solanki MK, Iftikhar Y, Sharma S, Kashyap BK, Hussain S, Del Carmen Zuñiga Romano M, Moya-Elizondo EA, Zhou L. 2022. Trichoderma spp. genes involved in the biocontrol activity against Rhizoctonia solani. Front Microbiol 13:884469.
Alonso-Ramírez A, Poveda J, Martín I, Hermosa R, Monte E, Nicolás C. 2014. Salicylic acid prevents Trichoderma harzianum from entering the vascular system of roots. Mol Plant Pathol 15:823-831.
Andersson J, Wentworth M, Walters RG, Howard CA, Ruban AV, Horton P, Jansson S. 2003. Absence of the Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II - effects on photosynthesis, grana stacking and fitness. Plant J 35:350-361.
Bansal R, Pachauri S, Gururajaiah D, Sherkhane PD, Khan Z, Gupta S, Banerjee K, Kumar A, Mukherjee PK. 2021. Dual role of a dedicated GAPDH in the biosynthesis of volatile and non-volatile metabolites - novel insights into the regulation of secondary metabolism in Trichoderma virens. Microbiol Res 253:126862.
Bari R, Jones JD. 2009. Role of plant hormones in plant defence responses. Plant Mol Biol 69:473-488.
Benítez T, Rincón AM, Limón MC, Codón AC. 2004. Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249-260.
Bregge-Silva C, Nonato MC, de Albuquerque S, Ho PL, Junqueira de Azevedo IL, Vasconcelos Diniz MR, Lomonte B, Rucavado A, Díaz C, Gutiérrez JM, Arantes EC. 2012. Isolation and biochemical, functional and structural characterization of a novel L-amino acid oxidase from Lachesis muta snake venom. Toxicon 60:1263-1276.
Brunkard JO, Runkel AM, Zambryski PC. 2015. Chloroplasts extend stromules independently and in response to internal redox signals. Proc Natl Acad Sci USA 112:10044-10049.
Campos ML, Kang JH, Howe G. 2014. Jasmonate-triggered plant immunity. J Chem Ecol 40:657–675.
Caplan JL, Kumar AS, Park E, Padmanabhan MS, Hoban K, Modla S, Czymmek K, Dinesh-Kumar SP. 2015. Chloroplast stromules function during innate immunity. Dev Cell 34:45-57.
Chang, YC. 1986. Increased growth of plants in the presence of the biological control agent Trichoderma harzianum. Plant Disease 70:145-148
Chaverri P, Branco-Rocha F, Jaklitsch W, Gazis R, Degenkolb T, Samuels GJ. 2015. Systematics of the Trichoderma harzianum species complex and the re-identification of commercial biocontrol strains. Mycologia 107:558–590.
Cheng CH, Yang CA, Liu SY, Lo CT, Huang HC, Liao FC, Peng, KC. 2011. Cloning of a novel L-amino acid oxidase from Trichodedrma harzianum ETS 323 and bioactive analysis of overexpressed L-amino acid oxidase. J Agri Food Chem 59:9142–9149.
Cheng CH, Yang CA, Liu SY, Lo CT, Peng KC. 2012. L-amino acid oxidase-induced apoptosis in filamentous Botrytis cinerea. Anal Biochem 420:93-95.
Contreras-Cornejo HA, Macías-Rodríguez L, Beltrán-Peña E, Herrera-Estrella A, López-Bucio J. 2011. Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563.
Delgado-Jarana J, Moreno-Mateos MA, Benítez T. 2003. Glucose uptake in Trichoderma harzianum: role of gtt1. Eukaryot Cell 2:708-717.
Djonović S, Pozo MJ, Dangott LJ, Howell CR, Kenerley CM. 2006. Sm1, a proteinaceous elicitor secreted by the biocontrol fungus Trichoderma virens induces plant defense responses and systemic resistance. Mol Plant Microbe Interact 19:838-853.
Djonovic S, Vargas WA, Kolomiets MV, Horndeski M, Wiest A, Kenerley CM. 2007. A proteinaceous elicitor Sm1 from the beneficial fungus Trichoderma virens is required for induced systemic resistance in maize. Plant Physiol 145:875-889.
Druzhinina IS, Seidl-Seiboth V, Herrera-Estrella A, Horwitz BA, Kenerley CM, Monte E, Mukherjee PK, Zeilinger S, Grigoriev IV, Kubicek CP. 2011. Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759.
Estrada-Rivera M, Rebolledo-Prudencio OG, Pérez-Robles DA, Rocha-Medina MDC, González-López MDC, Casas-Flores S. 2019. Trichoderma histone deacetylase hda-2 modulates multiple responses in Arabidopsis. Plant Physiol 179:1343-1361.
Gruber S, Seidl-Seiboth V. 2012. Self versus non-self: fungal cell wall degradation in Trichoderma. Microbiol 158:26-34.
Guzmán-Guzmán P, Kumar A, de Los Santos-Villalobos S, Parra-Cota FI, Orozco-Mosqueda MDC, Fadiji AE, Hyder S, Babalola OO, Santoyo G. 2023. Trichoderma species: our best fungal allies in the biocontrol of plant diseases-a review. Plants (Basel) 12:432.
Harman GE. 2006. Overview of mechanisms and uses of Trichoderma spp. Phytopathol 96:190-194.
Hermosa R, Viterbo A, Chet I, Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology (Reading) 158:17-25.
Harman, GE, & Kubicek, CP. 1998. Trichoderma and Gliocladium. Volume 1: Basic Biology, Taxonomy and Genetics. CRC Press. https://doi.org/10.1201/9781482295320
Izidoro LF, Sobrinho JC, Mendes MM, Costa TR, Grabner AN, Rodrigues VM, da Silva SL, Zanchi FB, Zuliani JP, Fernandes CF, Calderon LA, Stábeli RG, Soares AM. 2014. Snake venom L-amino acid oxidases: trends in pharmacology and biochemistry. Biomed Res Int 2014:196754.
Jaroszuk-Ściseł J, Tyśkiewicz R, Nowak A, Ozimek E, Majewska M, Hanaka A, Tyśkiewicz K, Pawlik A, Janusz G. 2019. Phytohormones (auxin, gibberellin) and ACC deaminase in vitro synthesized by the mycoparasitic Trichoderma DEMTkZ3A0 strain and changes in the level of auxin and plant resistance markers in wheat seedlings inoculated with this strain conidia. Int J Mol Sci 20:4923.
Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT. 2007. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr Biol 17:499-508.
Jones JD, Dangl JL. 2006. The plant immune system. Nature 444:323-329.
Klessig DF., Choi HW., Dempsey DA. 2018. Systemic acquired resistance and salicylic acid: past, present, and future. Mol Plant-Microbe Interact 31:871–888.
Kottb M, Gigolashvili T, Großkinsky DK, Piechulla B. 2015. Trichoderma volatiles effecting Arabidopsis: from inhibition to protection against phytopathogenic fungi. Front Microbiol 6:995.
Lee S, Yap M, Behringer G, Hung R, Bennett JW. 2016. Volatile organic compounds emitted by Trichoderma species mediate plant growth. Fungal Biol Biotechnol 3:7.
Littlejohn GR, Breen S, Smirnoff N, Grant M. 2021. Chloroplast immunity illuminated. New Phytol 229:3088-3107.
Liu R, Chen T, Yin X, Xiang G, Peng J, Fu Q, Li M, Shang B, Ma H, Liu G, Wang Y, Xu Y. 2021. A Plasmopara viticola RXLR effector targets a chloroplast protein PsbP to inhibit ROS production in grapevine. Plant J 106:1557-1570.
Liu SY, Liao CK, Lo CT, Yang HH, Lin KC, Peng KC. 2016. Chrysophanol is involved in the biofertilization and biocontrol activities of Trichoderma. Physiol. Mol. Plant Pathol 96:1-7.
Liu SY, Lo CT, Chen C, Liu MY, Chen JH, Peng KC. 2007. Efficient isolation of anthraquinone-derivatives from Trichoderma harzianum ETS 323. J Biochem Biophys Methods 70:391-395.
Liu SY, Lo CT, Shibu MA, Leu YL, Jen BY, Peng KC. 2009. Study on the anthraquinones separated from the cultivation of Trichoderma harzianum strain Th-R16 and their biological activity. J Agric Food Chem 57:7288-7292.
López-Bucioa J, Pelagio-Floresa R, Herrera-Estrella A. 2015. Trichoderma as biostimulant: exploiting the multilevel properties of a plant beneficial fungus. Sci Hort 196:109–123.
Luciński R, Jackowski G. 2006. The structure, functions and degradation of pigment-binding proteins of photosystem II. Acta Biochimi Pol 53:693-708.
Macheroux P, Seth O, Bollschweiler C, Schwarz M, Kurfürst M, Au LC, Ghisla S. 2001. L-amino-acid oxidase from the Malayan pit viper Calloselasma rhodostoma. Comparative sequence analysis and characterization of active and inactive forms of the enzyme. Eur J Biochem 268:1679-1686.
Marcec MJ, Gilroy S, Poovaiah BW, Tanaka K. 2019. Mutual interplay of Ca2+ and ROS signaling in plant immune response. Plant Sci 283:343-354.
Martinez C, Blanc F, Le Claire E, Besnard O, Nicole M, Baccou JC. 2001. Salicylic acid and ethylene pathways are differentially activated in melon cotyledons by active or heat-denatured cellulase from Trichoderma longibrachiatum. Plant Physiol 127:334-344.
Martínez-Medina A, Appels FVW, van Wees SCM. 2017. Impact of salicylic acid- and jasmonic acid-regulated defences on root colonization by Trichoderma harzianum T-78. Plant Signal Behav 12:e1345404.
Morán-Diez E, Hermosa R, Ambrosino P, Cardoza RE, Gutiérrez S, Lorito M, Monte E. 2009. The ThPG1 endopolygalacturonase is required for the Trichoderma harzianum-plant beneficial interaction. Mol Plant Microbe Interact 22:1021-1031.
Morán-Diez ME, Martínez de Alba ÁE, Rubio MB, Hermosa R, Monte E. 2021. Trichoderma and the plant heritable priming responses. J Fungi (Basel) 7:318.
Moslem MA, Bahkali AH, Abd-Elsalam KA, Wit PJ. 2010. An efficient method for DNA extraction from Cladosporioid fungi. Genet Mol Res 9:2283-2291.
Mukherjee M, Mukherjee PK, Horwitz BA, Zachow C, Berg G, Zeilinger S. 2012. Trichoderma-plant-pathogen interactions: advances in genetics of biological control. Indian J Microbiol 52:522-529.
Nawrocka J, Małolepsza U. 2013. Diversity in plant systemic resistance induced by Trichoderma. Biol Control 67:149–156.
Park E, Nedo A, Caplan JL, Dinesh-Kumar SP. 2018. Plant-microbe interactions: organelles and the cytoskeleton in action. New Phytol 217:1012-1028.
Peng KC, Lin CC, Liao CF, Yu HC, Lo CT, Yang HH, Lin KC. 2021. Expression of L-amino acid oxidase of Trichoderma harzianum in tobacco confers resistance to Sclerotinia sclerotiorum and Botrytis cinerea. Plant Sci 303:110772.
Petre B, Lorrain C, Saunders DG, Win J, Sklenar J, Duplessis S, Kamoun S. 2016. Rust fungal effectors mimic host transit peptides to translocate into chloroplasts. Cell Microbiol 18:453-65.
Pieterse CMJ, Zamioudis C, Berendsen RL, Weller DM, Van Wees SCM, Bakker PAHM. 2014. Induced systemic resistance by beneficial microbes. Annu Rev Phytopathol 52:347–375.
Pietrzykowska M, Suorsa M, Semchonok DA, Tikkanen M, Boekema EJ, Aro EM, Jansson S. 2014. The light-harvesting chlorophyll a/b binding proteins Lhcb1 and Lhcb2 play complementary roles during state transitions in Arabidopsis. Plant Cell 26:3646–3660.
Rajesh, R. Waghund, M. Shelake Rahul, and N. Sabalpara Ambalal. 2016. Trichoderma: a significant fungus for agriculture and environment. Afr J Agric Res 11:1952-1965.
Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, Antúnez-Lamas M, Río-Alvarez I, Li Z, López-Torrejón G, Díaz I, Del Pozo JC, Chakravarthy S, Collmer A, Rodríguez-Palenzuela P, López-Solanilla E. 2012. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell Microbiol 14:669-81.
Rotblat B, Enshell-Seijffers D, Gershoni JM, Schuster S, Avni A. 2002. Identification of an essential component of the elicitation active site of the EIX protein elicitor. Plant J 32:1049-1055.
Salas-Marina MA, Isordia-Jasso MI, Islas-Osuna MA, Delgado-Sánchez P, Jiménez-Bremont JF, Rodríguez-Kessler M, Rosales-Saavedra MT, Herrera-Estrella A, Casas-Flores S. 2015. The Epl1 and Sm1 proteins from Trichoderma atroviride and Trichoderma virens differentially modulate systemic disease resistance against different life style pathogens in Solanum lycopersicum. Front Plant Sci 6:77.
Salas-Marina MA, Silva-Flores MA, Uresti-Rivera EE, Castro-Longoria E, Herrera-Estrella A, Casas-Flores S. 2011. Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26.
Saravanakumar K, Fan L, Fu K, Yu C, Wang M, Xia H, Sun J, Li Y, Chen J. 2016. Cellulase from Trichoderma harzianum interacts with roots and triggers induced systemic resistance to foliar disease in maize. Sci Rep 6:35543.
Seidl V, Marchetti M, Schandl R, Allmaier G, Kubicek CP. 2006. Epl1, the major secreted protein of Hypocrea atroviridis on glucose, is a member of a strongly conserved protein family comprising plant defense response elicitors. FEBS J 273:4346-4359.
Serrano I, Audran C, Rivas S. 2016. Chloroplasts at work during plant innate immunity. J Exp Bot 67:3845-3854.
Sewelam N, Kazan K, Schenk PM. 2016. Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187.
Shoresh M, Harman GE, Mastouri F. 2010. Induced systemic resistance and plant responses to fungal biocontrol agents. Annu Rev Phytopathol 48:21-43.
Siddaiah CN, Satyanarayana NR, Mudili V, Kumar Gupta V, Gurunathan S, Rangappa S, Huntrike SS, Srivastava RK. 2017. Elicitation of resistance and associated defense response in Trichoderma hamatum induced protection against pearl millet downy mildew pathogen. Sci Rep 7:43991
Singh A, Lim GH, Kachroo P. 2017. Transport of chemical signals in systemic acquired resistance. J Integ Plant Biol 59:336–344.
Steyaert JM, Weld RJ, Mendoza-Mendoza A, Stewart A. 2010. Reproduction without sex: conidiation in the filamentous fungus Trichoderma. Microbiol 156:2887-2900.
Sun MZ, Guo C, Tian Y, Chen D, Greenaway FT, Liu S. 2010. Biochemical, functional and structural characterization of Akbu-LAAO: a novel snake venom L-amino acid oxidase from Agkistrodon blomhoffii ussurensis. Biochimie 92:343-349.
Tang L, Yang G, Ma M, Liu X, Li B, Xie J, Fu Y, Chen T, Yu Y, Chen W, Jiang D, Cheng J. 2020. An effector of a necrotrophic fungal pathogen targets the calcium-sensing receptor in chloroplasts to inhibit host resistance. Mol Plant Pathol 21:686-701.
Tseng SC, Liu SY, Yang HH, Lo CT, Peng KC. 2008. Proteomic study of biocontrol mechanisms of Trichoderma harzianum ETS 323 in response to Rhizoctonia solani. J Agric Food Chem 56:6914-6922.
Tyśkiewicz R, Nowak A, Ozimek E, Jaroszuk-Ściseł J. 2022. Trichoderma: the current status of its application in agriculture for the biocontrol of fungal phytopathogens and stimulation of plant growth. Int J Mol Sci 23:2329.
Utermark J, Karlovsky P. 2008. Genetic transformation of filamentous fungi by Agrobacterium tumefaciens. Protocol Exchange doi:10.1038/nprot.2008.83.
Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Woo SL, Lorito M. 2008. Trichoderma-plant pathogen interactions. Soil Biol Biochem 40:1–10.
Vlot AC, Sales JH, Lenk M., Bauer K, Brambilla A, Sommer A, Chen Y, Wenig M, Nayem S. 2021. Systemic propagation of immunity in plants. New Phytol 229:1234–1250.
Wang KD, Borrego EJ, Kenerley CM, Kolomiets MV. 2020. Oxylipins other than jasmonic acid are xylem-resident signals regulating systemic resistance induced by Trichoderma virens in maize. Plant Cell 32:166-185.
Weindling R. 1934. Studies on a lethal principle effect in the parasitic action of Trichoderma lignorum on Rhizoctonia solani. Phytopathol 24:1153–1179.
Xu Q, Tang C, Wang X, Sun S, Zhao J, Kang Z, Wang X. 2019. An effector protein of the wheat stripe rust fungus targets chloroplasts and suppresses chloroplast function. Nat Commun 10:5571.
Yang CA, Cheng CH, Lee JW, Lo CT, Liu SY, Peng KC. 2012. Monomeric L-amino acid oxidase-induced mitochondrial dysfunction in Rhizoctonia solani reveals a novel antagonistic mechanism of Trichoderma harzianum ETS 323. J Agric Food Chem 60:2464-2471.
Yang CA, Cheng CH, Liu SY, Lo CT, Lee JW, Peng KC. 2011a. Identification of antibacterial mechanism of L-amino acid oxidase derived from Trichoderma harzianum ETS 323. FEBS J 278:3381–3394.
Yang CA, Cheng CH, Lo CT, Liu SY, Lee JW, Peng KC. 2011b. A novel L-amino acid oxidase from Trichoderma harzianum ETS 323 associated with antagonism of Rhizoctonia solani. J Agric Food Chem 59:4519-4526.
Yang F, Xiao K, Pan H, Liu J. 2021. Chloroplast: The emerging battlefield in plant-microbe interactions. Front Plant Sci 12:637853.
Yang HH, Yang SL, Peng KC, Lo CT, Liu SY. 2009. Induced proteome of Trichoderma harzianum by Botrytis cinerea. Mycol Res 113:924-932.
Yuan M, Huang Y, Ge W, Jia Z, Song S, Zhang L, Huang Y. 2019. Involvement of jasmonic acid, ethylene and salicylic acid signaling pathways behind the systemic resistance induced by Trichoderma longibrachiatum H9 in cucumber. BMC Genomics 20:144.
Zeilinger S. 2004. Gene disruption in Trichoderma atroviride via Agrobacterium-mediated transformation. Curr Genet 45:54-60.
Zehra A, Raytekar NA, Meena M, Swapnil P. 2021. Efficiency of microbial bio-agents as elicitors in plant defense mechanism under biotic stress: A review. Curr Res Microb Sci 2:100054.
(此全文20260806後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *