帳號:guest(18.191.87.203)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:黃擴增
作者(英文):Kuo-Tzeng Huang
論文名稱:提高信息攜帶量的二合一秘密影像分享
論文名稱(英文):Information Carrying Capacity Enhancement for Two-in-One Secret Image Sharing
指導教授:楊慶隆
指導教授(英文):Ching-Nung Yang
口試委員:郭文中
張道顧
口試委員(英文):Wen-Chung Kuo
Tao-Ku Chang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學號:611021229
出版年(民國):112
畢業學年度:111
語文別:英文
論文頁數:57
關鍵詞:秘密影像分享視覺密碼多項式秘密影像分享二合一秘密影像分享疊合多項式插值法
關鍵詞(英文):Secret image sharingVisual cryptographyPolynomial based secret image sharingTwo-in-one secret image sharingStacking operationPolynomial interpolation
相關次數:
  • 推薦推薦:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:18
  • 收藏收藏:0
二合一秘密影像分享 (two-in-one secret image sharing; TiOSIS) 是植基於視覺密碼(Visual Cryptography Scheme; VCS)與多項式秘密影像分享(Polynomial-based Secret Image Sharing; PSIS)的秘密影像分享技術。視覺密碼(VCS)可以通過疊合子影像然後直接用進行視覺解碼,而基於多項式的秘密影像分享(PSIS)則可以通過多項式插值法無損地恢復秘密影像。結合上這兩個方案VCS與PSIS,TiOSIS有兩種的解碼選項。我們可以利用VCS做快速疊合簡單地支接解碼黑白秘密影像,同時子影像中的子像素 (註: 利用子像素的排列組合) 可以攜帶用於PSIS來回復無損失的灰階秘密影像。
一般而言,TiOSIS會有一張黑白的秘密影像用於VCS和一張灰階影像用於PSIS。TiOSIS的主要目的是共享灰階秘密影像,而VCS解碼的黑白秘密影像只是用來預覽、和驗證。事實上,只要能成功預覽可,我們並不需要非常清晰的VCS疊合結果。在本論文,我們提出了一種基於4方形點子像素的TiOSIS,4方形點子像素是一個2x2組成的四方形4個子像素圖案,我們使用三黑一白(3B1W)來代表黑,三白一黑(3W1B)來代表白,因為(3B1W)、與(3W1B)都各有4種不同的排列,所以我們可以用它們來代表用於PSIS的2(=⌊〖log〗_2^4 ⌋)個秘密影像位元。傳統的TiOSIS中是使用不同的黑白子向像素組合來隱藏秘密資訊,我們所提出的植基於4方形點子像素方法中,它可以攜帶的信息容量包括傳統方法的隱藏方式、還加上4方形點子像素的排列的2個位元。雖然基於4方形點子像素的TiOSIS有較大的子影像擴張,但平均下來的攜帶量是更大的更適合用於多媒體數據通訊。理論分析證明了我們的(k, n)-TiOSIS信息攜帶能力增加,實驗結果也呈現了我們機制的VCS預覽解碼的清晰度是在視覺可視的接受範圍。
A two-in-one secret image sharing (TiOSIS) is a hybrid using two SIS technologies: one is the visual cryptography scheme (VCS) and the other is polynomial-based secret image sharing scheme (PSIS). VCS can be used for visually decoding visual secret based on human visual system (HVS) by stacking shadow images. On the other hand, PSIS could recover lossless secret images via using polynomial interpolation. The TiOSIS based on VCS and PSIS has two decoding options. We could use the stacking-to-see property of VCS to easily and visually decode a black/white secret image, and meantime the subpixels in shadow images could carry information used for PSIS to reconstruct a lossless grayscale secret image.
Generally, TiOSIS will have a black/white secret image for VCS and a grayscale image for PSIS. The main purpose of TiOSIS is to share and recover a grayscale secret image, and the black/white secret image in VCS decoding is just for preview and authentication. Actually, we do not need very clear stacked result of VCS. We just need a visual quality of VCS for preview and authentication. In this thesis, we propose a 4 square-dot subpixel based TiOSIS, the 4-square dot pixel is a pattern composed of 2×2 pixels. We use three black and one white dots (3B1W) to represent “black” color, and three white and one black dots (3W1B) to represent “white” color. Since there are four different combinations of for (3B1W) and (3W1B), we can use 2(=⌊〖log〗_2^4 ⌋) to represent 2 secret bits used in PSIS. The conventional TiOSIS, uses different combinations of black and white sub-pixels to carry secret information. Our proposed TiOSIS carries the secret information like the conventional TiOSIS, and other 2 bits using 4-square dot pixel. Although the shadow size of our TiOSIS is expanded, the average carrying capacity is increased, on which it is more suitable for multimedia communication. Theoretical analyses the enhancement of carrying capacity for our TiOSIS, and experiments also demonstrate that the clarity of VCS decoding is enough for preview.
Chapter 1 Introduction 1
Chapter 2 Preliminary 5
2.1 VCS 5
2.2 PSIS 6
2.3 TiOSIS 6
Chapter 3 Motivation 11
Chapter 4 The Proposed TiOSIS Using 4 Square-Dot Subpixel 15
4.1 Infrastructure of Subpixel 15
4.2 Stacked Subpixels for the Conventional TiOSIS and the Proposed TiOSIS 18
4.3 Contrast and Security Conditions 20
4.4 Carrying Information in Shadow 21
Chapter 5 Construction of The Proposed TiOSIS 25
5.1 (2, n)-TiOSIS 25
5.2 (k, k)-TiOSIS 29
5.3 (3, n)-TiOSIS 32
Chapter 6 Monotonously Increasing Property in Contrast Condition for The Proposed (k, n)-TiOSIS 37
Chapter 7 Experiment and Comparison 43
7.1 Experimental Results 43
7.2 Discussion and Comparison 48
Chapter 8 Conclusions and Future Work 59
References 61
[CHAN08]
C.C. Chang, Y.P. Hsieh, C.H. Lin, “Sharing Secrets in Stego Images with Authentication, Pattern Recognition, vol. 41, pp. 3130-3137, 2008.
[CHEN17]
Y.C. Chen, “Fully Incrementing Visual Cryptography from a Succinct Non-monotonic Structure,” IEEE Trans. on Inform. Forensics Sec., vol. 12, pp. 1082-1091, 2017.
[CIMA06]
S. Cimato, R. De Prisco, and A. De Santis, “Probabilistic Visual Cryptography Schemes,” The Com. Journal, vol. 49, pp.97-107, 2006.
[CIMA11]
S. Cimato and C. N. Yang, Visual Cryptography and Secret Image Sharing, Boca Raton, FL, USA: CRC Press, 2011.
[JIA18]
X. Jia, D. Wang, D. Nie, and C. Zhang, “Collaborative Visual Cryptography Schemes,” IEEE Trans. Circuits Syst. Video Technol., vol. 28, pp. 1056-1070, 2018.
[LI12]
P. Li, P.-J. Ma, X.-H. Su, C.-N. Yang, Improvements of a Two-in-One Image Secret Sharing Scheme Based on Gray Mixing Model, Journal of Visual Comm. and Image Rep., vol. 23, pp. 441-453, 2012.
[LI13]
P. Li, C.-N. Yang, Q. Kong, Y. Ma, Z. Liu, “Sharing More Information in Gray Visual Cryptography Scheme,” Journal of Visual Comm. and Image Rep., vol. 24, pp. 1380-1393, 2013.
[LI16]
P. Li, C.N. Yang, Z. Zhou, Essential Secret Image Sharing Scheme with the Same Size of Shadows, Digital Sig. Process., vol.50, 51-60, 2016.
[LI18]
P. Li, Z. Liu, C.N. Yang, A Construction Method of (t, k, n)-essential Secret Image Sharing Scheme, Sig. Process.: Image Comm., vol. 65, 210-220, 2018.
[LIN07]
S.J. Lin and J.C. Lin, “VCPSS: A Two-in-One Two-Decoding-Options Image Sharing Method Combining Visual Cryptography (VC) and Polynomial-Style Sharing (PSS) Approaches,” Pattern Recognition, vol. 40, pp. 3652-3666, 2007.
[LIU17]
Y. Liu, C. Yang, Scalable Secret Image Sharing Scheme with Essential Sshadows, Sig. Process.: Image Comm., vol. 58, pp. 49-55, 2017.
[LIU19]
Y.X. Liu, C.N. Yang, C.M. Wu, Q.D. Sun, W. Bi, “Threshold Changeable Secret Image Sharing Scheme Based on Interpolation Polynomial,” Multimedia Tools and App., vol. 78, pp. 8653-18667, 2019.
[NAOR95]
M. Naor and A. Shamir, “Visual Cryptography,” Advances in Cryptology-EUROCRYPT’ 94, vol. LNCS 950, pp.1-12, 1995.
[PRIS13]
R. De Prisco and A. De Santis, “Color Visual Cryptography Schemes for Black and White Secret Images,” Theoretical Computer Sci. vol. 510, pp. 62-86, 2013.
[SHAM79]
A. Shamir, “How to Share A Secret, Comm. ACM, vol. 22, pp. 612-613, 1979.
[SHYU09]
S.J. Shyu, “Image Encryption by Multiple Random Grids, Pattern Recognition, vol. 42, pp. 1582-1596, 2009.
[SHYU12]
S.J. Shyu and H.W. Jiang, “Efficient Construction for Region Incrementing Visual Cryptography,” IEEE Transactions on Circuits and Systems for Video Technology IEEE Trans. Circuits Syst. Video Technol., vol. 22, pp. 769-777, 2012.
[SHYU13]
S.J. Shyu and H.W. Jiang, “General Constructions for Threshold Multiple-Secret Visual Cryptography Schemes,” IEEE Trans. on Inform. Forensics Sec., vol. 8, pp. 733-743, 2013.
[THIE02]
C.C. Thien and J.C. Lin, “Secret Image Sharing,” Computer & Graphics, vol. 26, pp. 765-770, 2002.
[VERH97]
E.R Verheul and H.C.A Van Tilborg, “Constructions and Properties of k out of n Visual Secret Sharing Scheme,” Designs, Codes and Cryptography, vol. 1, pp. 179-196, 1997.
[WU18]
X. Wu, C.N. Yang, Y.T. Zhuang, S.C. Hsu, Improving Recovered Image Quality in Secret Image Sharing by Simple Modular Arithmetic, Sig. Process.: Image Comm. vol. 66, pp. 42-49, 2018.
[WU19a]
X. Wu and C.N. Yang, “Invertible Secret Image Sharing with Steganography and Authentication for AMBTC Compressed Images,” Sig. Process.: Image Comm., vol. 78, pp. 437-447, 2019.
[WU19b]
X. Wu and C.N. Yang, “A Combination of Color-Black-and-White Visual Cryptography and Polynomial Based Secret Image Sharing,” Journal of Visual Comm. Image Rep., vol. 61, pp. 74-84, 2019.
[WU20]
X. Wu and C.N. Yang, “Probabilistic Color Visual Cryptography Schemes for Black and White Secret Images,” Journal of Visual Comm. and Image Rep., Vol. 70, Article 102793, July, 2020.
[YAN15]
X. Yan, S. Wang, X. Niu, and C.N. Yang, “Generalized Random Grids-based Threshold Visual Cryptography with Meaningful Shares,” Signal Processing, vol. 109, pp. 317-333, 2015.
[YAN21]
X. Yan, C.N. Yang, X. Zhang, and S. Wang, “A Common Method of Share Authentication in Image Secret Sharing,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, pp. 2896-2908, 2021.
[YANG04]
C. N. Yang, “New Visual Secret Sharing Schemes Using Probabilistic Method,” Pattern Recognition Letters, vol. 25, pp. 481-494, 2004.
[YANG07]
C. Yang, T. Chen, K. Yu, C. Wang, Improvements of Image Sharing with Steganography and authentication,” Journal of Sys. and Sof., vol. 80, pp. 1070-1076, 2007.
[YANG08]
C.N. Yang and T.S. Chen, “Colored Visual Cryptography Scheme Based on Additive Color Mixing,” Pattern Recognition, vol. 41, pp. 3114-3129, 2008.
[YANG10]
C.N. Yang and C.B. Ciou, “Image Secret Sharing Method with Two-decoding Options: Lossless Recovery and Previewing Capability,” Image and Vision Comp., vol. 28, pp. 1600-1610, 2010.
[YANG12a]
C.N. Yang, H.W. Shih, and L. Harn, “k out of n Region Incrementing Scheme in Visual Cryptography,” IEEE Trans. Circuits Syst. Video Technol., vol. 22, pp. 799-810, 2012.
[YANG12b]
C.-N. Yang, J.-F. Ouyang, L. Harn, Steganography and Authentication in Image Sharing without Parity Bits, Optics Comm., vol. 285, pp. 1725-1735, 2012.
[YANG14a]
C.N. Yang, C.C. Wu, and D. Wang, “A Discussion on the Relationship between Probabilistic Visual Cryptography and Random Grid,” Information Sciences, vol. 278, pp. 141-173, 2014.
[YANG14b]
C.N. Yang and D. Wang, “Property Analysis of XOR Based Visual Cryptography,” IEEE Trans. on Circuits and Syst. for Video Technol., vol. 24, pp. 189-197, 2014.
[YANG16]
C.N. Yang, L.Z. Sun, and S.R. Cai, “Extended Color Visual Cryptography for Black and White Secret Image,” Theoretical Computer Sci., vol. 609, pp. 143-161, 2016.
[YANG19]
C.N. Yang, C.C. Wu, Y.C. Lin, “k out of n Region-based Progressive Visual Cryptography,” IEEE Trans. Circuits Syst. Video Technol., vol. 29, pp. 252-262, 2019.
[YANG21a]
C.N. Yang, X. Wu, H.Y. Lin, and C. Kim, “Intragroup and Intergroup Secret Image Sharing Based on Homomorphic Lagrange Interpolation,” Journal of Info. Sec. and App., vol. 61, Article 102910, 2021.
[YANG21b]
C.N. Yang and Y.Y. Yang, “On the Analysis and Design of Visual Cryptography with Error Correcting Capability,” IEEE Trans. Circuits Syst. Video Technol., vol. 31, pp. 2465-2479, 2021.
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *