帳號:guest(3.141.192.57)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:謝承洋
作者(英文):Cheng-Yang Hsieh
論文名稱:適用於緊急任務無人機之飛行路線與充電機制
論文名稱(英文):A Flight Path and Charging Mechanism for Drones on Time-Critical Missions
指導教授:黃振榮
指導教授(英文):Chenn-Jung Huang
口試委員:陳亮均
陳恆鳴
口試委員(英文):Liang-Chun Chen
Heng-Ming Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:資訊工程學系
學號:611021235
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:45
關鍵詞:路線與充電規劃雷射充電無線充電無人機
關鍵詞(英文):Path and charging planninglaser chargingwireless chargingunmanned aerial vehicle
相關次數:
  • 推薦推薦:0
  • 點閱點閱:20
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:21
  • 收藏收藏:0
無人機(unmanned aerial vehicle, UAV)產業最近幾年在各大企業被廣泛運用,無論是利用無人機進行配送貨物或是緊急救災的任務。為達成這些無人機應用的目標,許多科技公司與電商平台的計畫也將目光放到了無人機運輸的開發與研究。縱使無人機在運輸領域有著極大的優勢及便利性,但是在電池的續航力方面仍存在不可忽視的瓶頸。在研究目前大部分使用於無人機充電技術的應用後,試著將這些技術與地面的雷射基站以及無人機自身結合建構出穩定且高效的充電環境,能更容易滿足無人機長時間續航的需求。在本文中,針對正在執行具有時間限制任務並且電量不足的無人機,提出了可以使用地面上的雷射充電基站或其他未在執行任務之無人機支援充電的機制。以此來改善無人機在執行緊急任務時可能面臨到電量不足的問題。
本文藉由模擬實驗來證實目前對於無人機執行任務常見的傳統充電方式,做為任務環境中的固定充電資源,並提出結合雷射充電站和無人機對無人機的充電方法。組成整體機制主要的模組包含: 預估路線及電力判斷模組、任務路線規劃及執行模組、充電方法與充電點選擇模組。實驗結果得出,本文提出的飛行路線與充電機制,能夠改善無人機在執行緊急任務中在有限的充電資源內大幅降低在排隊的等待時間和用電成本以及在時間限制內成功將貨物運送至指定地點。
The unmanned aerial vehicle (UAV) industry has been widely adopted by major enterprises in recent years, whether for delivering goods or carrying out emergency relief missions. To achieve the goals of these UAV applications, many technology companies and e-commerce platforms have turned their attention to the development and research of drone transportation. Despite the significant advantages and convenience of drones in the transportation field, there is still an undeniable bottleneck in battery life. After studying the current applications of drone charging technology, an attempt is made in this research to integrate these technologies with ground-based laser stations and the drones themselves to create a stable and efficient charging environment, which can more easily meet the long endurance requirements of drones. In this paper, a mechanism is proposed for drones that are currently engaged in time-limited missions and suffer from insufficient battery power. This mechanism utilizes ground-based laser charging stations or other drones that are not engaged in missions to support charging, aiming to address the issue of insufficient battery power that drones may face during emergency missions.
Through simulation experiments, this paper verifies the common traditional charging methods for drones in mission execution as fixed charging resources in the mission environment. It also proposes a charging method that combines laser charging stations with drones. The main modules of the integrated mechanism include the route estimation and power judgment module, mission path planning and execution module, drone-to-drone charging pairing, and laser charging point selection module. The experimental results demonstrate that the flight routes and charging mechanisms proposed in this paper can improve the efficiency of drones in emergency missions by significantly reducing waiting time and energy costs in limited charging resources, and successfully delivering goods to designated locations within the time constraints.
第1章 緒論 1
1.1 研究背景 1
1.2 研究動機 2
1.3 研究目的 2
1.4 研究方法與論文架構 3
第2章 文獻探討 5
2.1 無人機未來發展與挑戰 5
2.2 無人機貨物運送技術 6
2.3 無人機充電技術 7
第3章 無人機充電與路線規劃及執行架構 9
3.1 系統環境和架構 9
3.2 預估路線及電力判斷模組 11
3.3 任務路線規劃及執行模組 12
3.4 充電方法與充電點選擇模組 14
第4章 實驗結果與分析 17
4.1 模擬環境設定 17
4.2 實驗結果與分析 19
第5章 結論與未來工作 27
5.1 結論 27
5.2 未來工作 27
參考文獻 29
[1] Ait Saadi, A., Soukane, A., Meraihi, Y., Benmessaoud Gabis, A., Mirjalili, S., & Ramdane-Cherif, A. (2022). UAV path planning using optimization approaches: A survey. Archives of Computational Methods in Engineering, 29(6), 4233-4284.
[2] Xu, C., Liao, X., Tan, J., Ye, H., & Lu, H. (2020). Recent research progress of unmanned aerial vehicle regulation policies and technologies in urban low altitude. IEEE Access, 8, 74175-74194.
[3] Diels, L., Vlaminck, M., De Wit, B., Philips, W., & Luong, H. (2022). On the optimal mounting angle for a spinning LiDAR on a UAV. IEEE Sensors Journal, 22(21), 21240-21247.
[4] Code of Federal Regulation. Title 14, Chapter 1, Subchapter F, Part 107. Available from: https://www.ecfr.gov/current/title-14/chapter-I/subchapter-F/part-107
[5] Fortune Business Insight. The global unmanned aerial vehicle. Available from: https://www.fortunebusinessinsights.com/industry-reports/unmanned-aerial-vehicle-uav-market-101603
[6] Ma, Y., Wang, G., Hu, X., Luo, H., & Lei, X. (2019). Cooperative occupancy decision making of Multi-UAV in Beyond-Visual-Range air combat: A game theory approach. Ieee Access, 8, 11624-11634.
[7] Chen, K. W., Xie, M. R., Chen, Y. M., Chu, T. T., & Lin, Y. B. (2022). DroneTalk: An Internet-of-Things-based drone system for last-mile drone delivery. IEEE Transactions on Intelligent Transportation Systems, 23(9), 15204-15217.
[8] Alkouz, B., Shahzaad, B., & Bouguettaya, A. (2021, December). Service-based drone delivery. In 2021 IEEE 7th International Conference on Collaboration and Internet Computing (CIC) (pp. 68-76). IEEE.
[9] Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., ... & De Souza, A. F. (2021). Self-driving cars: A survey. Expert Systems with Applications, 165, 113816.
[10] Duo, B., Wu, Q., Yuan, X., & Zhang, R. (2020). Anti-jamming 3D trajectory design for UAV-enabled wireless sensor networks under probabilistic LoS channel. ieee transactions on vehicular technology, 69(12), 16288-16293.
[11] Gao, N., Zeng, Y., Wang, J., Wu, D., Zhang, C., Song, Q., ... & Jin, S. (2021). Energy model for UAV communications: Experimental validation and model generalization. China Communications, 18(7), 253-264.
[12] Xiong, B., Zhang, Z., Jiang, H., Zhang, J., Wu, L., & Dang, J. (2022). A 3D non-stationary MIMO channel model for reconfigurable intelligent surface auxiliary UAV-to-ground mmWave communications. IEEE Transactions on Wireless Communications, 21(7), 5658-5672.
[13] Cheng, Z., Zhao, L., & Shi, Z. (2022). Decentralized Multi-UAV Path Planning Based on Two-Layer Coordinative Framework for Formation Rendezvous. IEEE Access, 10, 45695-45708.
[14] Qin, Y., Kishk, M. A., & Alouini, M. S. (2020). Performance evaluation of UAV-enabled cellular networks with battery-limited drones. IEEE Communications Letters, 24(12), 2664-2668.
[15] Benarbia, T., & Kyamakya, K. (2021). A literature review of drone-based package delivery logistics systems and their implementation feasibility. Sustainability, 14(1), 360.
[16] Liu, C., Huang, L., & Dong, Z. (2022). A Two-Stage Approach of Joint Route Planning and Resource Allocation for Multiple UAVs in Unmanned Logistics Distribution. IEEE Access, 10, 113888-113901.
[17] Jeong, H. Y., Song, B. D., & Lee, S. (2020). The flying warehouse delivery system: A quantitative approach for the optimal operation policy of airborne fulfillment center. IEEE Transactions on Intelligent Transportation Systems, 22(12), 7521-7530.
[18] Yang, H., Ruby, R., Pham, Q. V., & Wu, K. (2021). Aiding a disaster spot via multi-UAV-based IoT networks: Energy and mission completion time-aware trajectory optimization. IEEE Internet of Things Journal, 9(8), 5853-5867.
[19] Verma, A., Bhattacharya, P., Zuhair, M., Tanwar, S., & Kumar, N. (2021). Vacochain: Blockchain-based 5g-assisted uav vaccine distribution scheme for future pandemics. IEEE Journal of Biomedical and Health Informatics, 26(5), 1997-2007.
[20] Cohen, A. P., Shaheen, S. A., & Farrar, E. M. (2021). Urban air mobility: History, ecosystem, market potential, and challenges. IEEE Transactions on Intelligent Transportation Systems, 22(9), 6074-6087.
[21] Chittoor, P. K., Chokkalingam, B., & Mihet-Popa, L. (2021). A review on UAV wireless charging: Fundamentals, applications, charging techniques and standards. IEEE access, 9, 69235-69266.
[22] Baek, J., Han, S. I., & Han, Y. (2019). Optimal UAV route in wireless charging sensor networks. IEEE Internet of Things Journal, 7(2), 1327-1335.
[23] Cai, C., Wang, J., Zhang, F., Liu, X., Zhang, P., & Zhou, Y. G. (2021). A multichannel wireless UAV charging system with compact receivers for improving transmission stability and capacity. IEEE Systems Journal, 16(1), 997-1008.
[24] Lai, C., Chau, M. T., Thai, R., Souvannakoumane, S., Watagoda, C., Oda, K., ... & Yu, Z. (2023, April). Methods of Automating Power Swapping Mechanisms for Extending UAV Flight Missions. In 2023 Wireless Telecommunications Symposium (WTS) (pp. 1-10). IEEE.
[25] Luo, C., Liu, N., Hou, Y., Hong, Y., Chen, Z., & Li, D. (2023). Trajectory optimization of laser-charged UAV to minimize the average age of information for wireless rechargeable sensor network. Theoretical Computer Science, 945, 113680.
[26] Jaafar, W., & Yanikomeroglu, H. (2020). Dynamics of laser-charged UAVs: A battery perspective. IEEE Internet of Things Journal, 8(13), 10573-10582.
[27] Xue, P., Li, X., Jiang, Z., Luo, B., Miao, Y., Liu, X., & Deng, R. H. (2023). A Multi-CUAV Multi-UAV Electricity Scheduling Scheme: From Charging Location Selection to Electricity Transaction. IEEE Internet of Things Journal.
[28] OBERLO-WHAT TIME DO PEOPLE SHOP ONLINE. Available from: https://www.oberlo.com/statistics/what-time-do-people-shop-online
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *