帳號:guest(13.58.40.171)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:彭得境
作者(英文):De-Jing Peng
論文名稱:研究以磁控濺鍍法成長含鑭摻雜之鋇錫氧薄膜以追求高平整度之退火條件
論文名稱(英文):Study on the annealing conditions for growing La-doped BaSnO3 thin films by magnetron sputtering in pursuit of high flatness
指導教授:陳怡嘉
指導教授(英文):Yi-Jia Chen
口試委員:陳怡嘉
傅彥培
楊天賜
口試委員(英文):Yi-Jia Chen
Yen-Pei Fu
Tien-Syh Yang
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:611022104
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:79
關鍵詞:鑭鋇錫氧磁控濺鍍平整度
關鍵詞(英文):BaSnO3magnetron sputteringflatness
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏收藏:0
  本研究中,我們利用磁控濺鍍法,製備鑭摻雜鋇錫氧薄膜。並以不同溫度退火的方式期望獲得均勻且平整的鈣鈦礦(perovskite)結構鑭鋇錫氧薄膜。製程中,我們使用了藍寶石與白雲母兩種不同的基板進行薄膜的濺鍍。濺鍍完成後分別以600°C、625°C、650°C、675°C的退火溫度進行退火,分析不同退火溫度下的薄膜情況。
  我們從XRD分析中得知,我們的薄膜有形成鈣鈦礦結晶。且白雲母基板上結晶具有優選方向。在FESEM圖像中顯示650°C以上退火薄膜均勻且連續,但薄膜在白雲母基板675°C退火會發生剝裂破壞試片。最後由AFM分析得知650°C退火6小時後,薄膜有最佳的平整度。
  In this study, we utilized magnetron sputtering to fabricate lanthanum-doped barium stannate (BaSnO3) thin films. Different annealing temperatures were employed to obtain uniform and flat perovskite structure in the lanthanum barium stannate thin films. During the process, we used two different substrates: sapphire and mica, for thin film deposition. The films were annealed at 600°C, 625°C, 650°C, and 675°C, respectively, to analyze their behavior under various annealing temperatures.
  From the X-ray diffraction (XRD) analysis, we observed the formation of the perovskite crystal structure in our thin films. The crystallization on the mica substrate exhibited preferred orientation. In the field-emission scanning electron microscopy (FESEM) images, films annealed above 650°C showed uniform and continuous structures, but for films grown on the mica substrate and annealed at 675°C experienced sample delamination and damage. Finally, atomic force microscopy (AFM) analysis revealed that the films annealed at 650°C for 6 hours exhibited the best surface flatness.
摘要 i
Abstract iii
目錄 v
圖目錄 vii
表目錄 xi
第一章、緒論 1
第二章、文獻回顧 3
2.1透明導電氧化物(Transparent Conducting Oxides, TCO) 3
2.2鑭摻雜鋇錫氧(La-doped BaSnO3, LBSO) 3
2.3三維磊晶與二維磊晶 4
第三章、實驗方法 7
3.1實驗規劃 7
3.2實驗儀器 9
3.3實驗樣品製備 10
3.3.1試片製備流程 10
3.3.2磁控濺鍍(Magnetron Sputtering) 10
3.4分析儀器 12
3.4.1 X光繞射儀(XRD) 12
3.4.2場發射掃描式電子顯微鏡(FESEM) 14
3.4.3 X光光電子能譜儀(XPS) 16
3.4.4紫外光-可見光光譜儀(UV-vis) 17
3.4.5原子力顯微鏡(AFM) 19
第四章、結果與討論 21
4.1薄膜結構分析 21
4.2表面形貌分析 44
4.3薄膜能隙分析 50
4.4薄膜元素分析 53
4.5薄膜Mapping元素分析 56
4.6薄膜粗糙度分析 59
4.7 薄膜電性分析 71
第五章、結論 73
第六章、未來工作 75
References 77
[1] X. Wang, L. Zhi, K. Müllen, Nano Lett. 8, 323 (2008).
[2] G. Gustafsson, Y. Cao, G. M. Treacy, F. Klavetter, N. Colaneri, A. J. Heeger, Nature 357, 477 (1992).
[3] K. Nomura, H. Ohta, A. Takagi, T. Kamiya, M. Hirano, H Hosono, Nature 432, 488 (2004).
[4] Y. H. Ng, A. Iwase, A. Kudo, R. Amal, J. Phys. Chem. Lett. 1, 2607 (2010).
[5] Y. Leterrier, L. Médico, F. Demarco, J. -A. E. Månson, U. Betz, M. F. Escolà, M. K. Olsson, F.
[6] 楊致宇。「新型可撓式透明導電薄膜:鋇鑭錫氧成長於白雲母之異質磊晶」。碩士論文,國立交通大學材料科學與工程學系所,(2020)。
[7] H. J. Kim, U. Kim, H. M. Kim, T. H. Kim, H. S. Mun, B. -G. Jeon, K. T. Hong, W.-J. Lee, C. Ju, K. H. Kim, K. Char, Appl. Phys. Express. 5, 061102 (2012).
[8] H. J. Kim, U. Kim, T. H. Kim, J. Kim, H. M. Kim, B. -G. Jeon, W.-J. Lee, H. S. Mun, K. T. Hong, J. Yu, K. Char, K. H. Kim, Phys. Rev. B 86, 165205 (2012).
[9] A. Prakash, P. Xu, A. Faghaninia, S. Shukla, J. W. Ager, C. S. Lo, B. Jalan, Nature Commun. 8, 15167 (2017).
[10] 姚宗誠。「應用奈米複合材料於鈣鈦礦太陽能電池緩衝層之研究」。碩士論文,國立東華大學光電工程學系,(2021)。
[11] B. G. Lewis, D. C. Paine, MRS Bull. 25, pp. 22 (2000).
[12] Y. Kanai, Jpn. J. Appl. Phys. 23, L12 (1984).
[13] N. Nadaud, N. Lequeux, M. Nanot, J. Jové, T. Roisnel, J. Solid State Chem. 135, 140 (1998).
[14] A. Stadler, Materials 5, 661 (2012).
[15] T. Huang, T. Nakamura, M. Itoh, Y. Inaguma, O. Ishiyama, J. Mater. Sci. 30, 1556 (1995).
[16] R. J. Cava, P. Gammel, B. Batlogg, J. J. Krajewski, W. F. Peck Jr., L. W. Rupp Jr., R. Felder, R. B. van Dover, Phys. Rev. B 42, 4815 (1990).
[17] M. Yasukawa, T. Kono, K. Ueda, H. Yanagi, H. Hosono, Mater. Sci. Eng. B 173, 29 (2010).
[18] H. F. Wang, Q. Z. Liu, F. Chen, G. Y. Gao, W. Wu, X. H. Chen, J. Appl. Phys. 101, 106105 (2007).
[19] Q. Liu, J. Dai, Z. Liu, X. Zhang, G. Zhu, G. Ding, J. Phys. D: Appl. Phys. 43, 455401 (2010).
[20] Aggoune, W., Eljarrat, A., Nabok, D. et al. A consistent picture of excitations in cubic BaSnO3 revealed by combining theory and experiment. Commun Mater 3, 12 (2022).
[21] P.J Kelly, R.D Arnell, “Magnetron sputtering: a review of recent developments and applications” Vacuum, 56, 3, (2000), 159-172.
[22] J. Epp, 4 - X-ray diffraction (XRD) techniques for materials characterization, Editor(s): Gerhard Hübschen, Iris Altpeter, Ralf Tschuncky, Hans-Georg Herrmann,Materials Characterization Using Nondestructive Evaluation (NDE) Methods,Woodhead Publishing, 81-124, (2016).
[23] 王進威 博士。「中子粉末繞射簡介及其應用」。國家同步輻射研究中心 中子束應用中心,(2021)。
[24] Brodusch, N., Demers, H., & Gauvin, R. Field Emission Scanning Electron Microscopy. SpringerBriefs in Applied Sciences and Technology. (2018).
[25] Billah, Areef. Investigation of multiferroic and photocatalytic properties of Li doped BiFeO3 nanoparticles prepared by ultrasonication. 10.13140/RG.2.2.23988.76166. (2016).
[26] Clemens M Franz, Atomic Force Microscopy: A Versatile Tool for Studying Cell Morphology, Adhesion and Mechanics, Cellular and Molecular Bioengineering 1(4):289-300, (2008)
[27] Franz J. Giessibl, “Advances in atomic force microscopy” Rev. Mod. Phys. 75, 949 – Published (2003).
[28] J. Tauc, R. Grigorovici, and A. Vancu, Phys. Status Solidi, 15, 627 (1966).
[29] J. Tauc (F. Abeles ed.), Optical Properties of Solids, North-Holland (1972).
[30] E. A. Davis and N. F. Mott, Philos. Mag., 22, 903 (1970).
[31] Ying-Hao Chu. Van der Waals oxide heteroepitaxy, npj Quantum Materials volume 2, Article number: 67 (2017).
[32] Muhammad Iqbal Bakti Utama, Qing Zhang, Jun Zhang, Yanwen Yuan, Francisco J. Belarre, Jordi Arbiol, Qihua Xiong. Recent developments and future directions in the growth of nanostructures by van der Waals epitaxy, Nanoscale 5, 3570 (2013).
[33] A. Koma. Van der Waals epitaxy—a new epitaxial growth method for a highly lattice-mismatched system, Thin Solid Films 216, 72 (1992).
[34] A. Koma, K. Sunouchi, T. Miyajima. Fabrication and characterization of heterostructures with subnanometer thickness, Microelectronic Engineering 2, 129 (1984)
[35] Gang Lu, Xuhui Wang, Juan Du, Min Zhang, Yali Gao, Yanbo Liu, Jing Ma, Zhenhua Lin. Enhancing Perovskite Solar Cell Performance through Surface Engineering of Metal Oxide Electron-Transporting Layer, coating 10, 46 (2020).
[36] Anish Bhattacharya, Yufang Jiang, Qi Gao, Xiangfeng Chu, Yongping Dong, Shiming Liang, Amit K. Chakraborty. Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning. Journal of Materials Research 34(12):1-11 (2019).
(此全文20250828後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *