帳號:guest(18.188.37.252)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:尹業凱
作者(英文):Yeh-Kai Yin
論文名稱:利用磁控濺鍍BaSnO3摻雜不同比例的La在藍寶石基板上並觀察薄膜及分析顯微結構
論文名稱(英文):Using magnetron sputtering BaSnO3 doped with different proportions of La on the sapphire substrate and observe the thin film and analyze the microstructure
指導教授:陳怡嘉
指導教授(英文):Yi-Jia Chen
口試委員:傅彥培
楊天賜
陳怡嘉
口試委員(英文):Yen-Pei Fu
Tien-Syh Yang
Yi-Jia Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:611022105
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:141
關鍵詞:鑭鋇錫氧鑭摻雜退火鑭濃度磁控濺鍍
關鍵詞(英文):LBSOLa-dopedannealingLa concentrationmagnetron sputtering
相關次數:
  • 推薦推薦:0
  • 點閱點閱:6
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:7
  • 收藏收藏:0
我們利用磁控磁控濺鍍法製成LBSO薄膜。以固定BSO靶功率並透過改變La靶的遮蓋及功率有無觀察在La不同條件摻雜下以利用EDS的元素分析觀察La濃度的變化。再透過XRD的觀察可以發現在經由退火650°C後La摻雜與未摻雜之BSO的結晶優選方向的改變。並且在La靶的遮蓋有無參數對比下,我們可以對比在有無遮蓋前後隨著La靶功率上升La濃度趨勢變化。
透過LBSO不同退火溫度下可以觀察到650°C退火是可以使LBSO完整結晶。而在600°C退火環境會是容易受到La的濃度而影響LBSO的擴散。代表600°C退火下我們可以觀察到La摻雜量對於LBSO結晶的影響。
We have fabricated LBSO thin films using the magnetron sputtering method. By keeping the BSO target power constant and varying the coverage and power of the La target, we observed the changes in La concentration under different doping conditions using EDS (Energy Dispersive X-ray Spectroscopy) elemental analysis. Furthermore, through XRD (X-ray Diffraction) observations, we observed changes in the preferred crystalline orientation of the LBSO film due to La doping after annealing at 650°C. Additionally, we compared the La concentration trend with increasing La target power before and after coverage, based on whether the La target was covered or not.
By annealing LBSO at different temperatures, we found that annealing at 650°C resulted in complete crystallization of LBSO. However, under a 600°C annealing environment, the diffusion of La significantly affected the LBSO film due to changes in La concentration. This indicates that the amount of La doping at 600°C annealing has a noticeable impact on the crystallization behavior of LBSO.
摘要 I
Abstract III
目錄 V
圖目錄 IX
第一章 序論 1
1.1 前言 1
1.2 研究動機 4
第二章 文獻回顧 5
2.1 鈣鈦礦結構 5
2.2 LBSO材料介紹 6
第三章 實驗系統及研究方法 9
3.1 實驗規劃 9
3.2 實驗前置準備 11
3.3 實驗設備 12
3.3.1 磁控濺鍍系統 12
3.3.2 試片製備 13
3.3.3 實驗製程 15
3.4 實驗操作流程及參數 16
3.4.1 實驗操作流程 16
3.4.2 實驗參數 17
3.5 分析方法 19
3.5.1 紫外光/可見光吸收光譜儀分析(UV-visible) 19
3.5.2 3D輪廓儀(3D-surface profiler) 22
3.5.3 場發射掃描式電子顯微鏡(FE-SEM) 24
3.5.4 X光繞射分析(XRD) 26
第四章 結果與討論 29
4.1 LBSO La靶材無遮蓋分析比較(無退火) 29
4.1.1 EDS元素分析 29
4.1.2 UV-visible與Tauc plot分析 33
4.1.4 FESEM的表面形貌分析 38
4.1.5 3D輪廓儀薄膜厚度量測結果 40
4.1.6 無退火試片之小結論(La靶材無遮蓋): 43
4.2 LBSO 650°C退火試片分析比較(La靶材無遮蓋) 44
4.2.1 EDS元素分析 44
4.2.2 UV-visible與Tauc plot分析 46
4.2.4 FESEM的表面形貌分析 68
4.2.5 3D輪廓儀薄膜厚度量測結果 88
4.2.6 LBSO 650°C退火試片之小結論(La靶材無遮蓋): 92
4.3 LBSO 600°C退火試片分析比較(La靶材有遮蓋): 93
4.3.1 EDS元素分析 94
4.3.2 UV-visible與Tauc plot分析 96
4.3.4 FESEM的表面形貌分析 113
4.3.5 LBSO 600°C退火試片之小結論(La靶材有部分遮蓋): 126
4.4 無La摻雜之BSO退火試片與LBSO 650°C及600°C退火試片XRD結晶峰值分析比較: 127
第五章 結論 131
第六章 未來工作 133
參考文獻 135
1. A. K. Singh, M. S. C. Patel, R. S. Uhan, S. P. Patel, R. S. Singh, V. K. Singh, “MAPbI3-on-CuInSe2 two-terminal monolithically integrated and four-terminal mechanically stacked tandem solar cells: A Theoretical Investigation Using SCAPS-1D,” Result’s In Optics Volume 10 (2023).
2. Y. Zhu, D. Chen, S. Wang, R. X. Ma, C. Y. Wang,“Research progress on the stability of perovskite solar cells”, Chinese Journal of Engineering, (2020) p.16-25.
3. H. J. Cho, T. Onozato, M. Wei, A. Sanchela, H. Ohta, “Effects of vacuum annealing on the electron mobility of epitaxial La-doped BaSnO3 films”, APL Mater 7, 022507 (2019).
4. G. Anoop, E. Y. Park, S. Lee, J. Y. Jo, “Structural, electrical, and luminescence characteristics of vacuum-annealed epitaxial (Ba,La)SnO3 thin films”, Electron. Mater. Lett. 11, (2015) p.565–571.
5. C. W. Myung, G. Lee, K. S. Kim, “La-doped BaSnO3 electron transport layer for perovskite solar cells”, J. Mater. Chem. A, (2018) p. 23071-23077.
6. K. K. James, P. S. Krishnaprasad, K. Hasna, M. K. E. Jayaraj, “Structural and optical properties of La-doped BaSnO3 thin films grown by PLD”, Journal of Physics and Chemistry of Solids, January, (2015) p.64-69.
7. T. Huang, T.Nakamura, M. Itoh, Y. Inaguma, O. Ishiyama,“Electrical properties of BaSnO3 in substitution of antimony for tin and lanthanum for barium”, J. Mater. Sci. 30, 1556 (1995).
8. R.J.Cava, P. Gammel, B. Batlogg, J.J. Krajewski, W.F. Peck Jr., L.W. Rupp Jr., R. Felder, R.B. van Dover,“Nonsuperconducting BaSn1−xSbxO3: The 5s-orbital analog of BaPb1−xBixO3”, Phys. Rev. B 42,4815 (1990)
9. M. Yasukama, T. Kono, K. Ueda, H. Yanagi, H. Hosono, “High-temperature thermoelectric properties of La-doped BaSnO3 ceramics”, Mater. Sci. Eng. B173, 29 (2010).
10. Q. Liu, J. Dai, Z. Liu, X. Zhang, G. Zhu, G. Ding, “Electrical and optical properties of Sb-doped BaSnO3 epitaxial films grown by pulsed laser deposition”, J. Phy., D:Appl. Phys. 43, 455401 (2010).
11. D. Yoon, S. Yu, J. Son, “Oxygen vacancy-assisted recovery process for increasing electron mobility in n-type BaSnO3 epitaxial thin films”, NPG Asia Mater 10, (2018) p.363–371.
12. L. Gong, R. Yu, H. Ohta, T. Katayama, “Synthesis and transparent conductivity of crack-free La:BaSnO3 epitaxial flexible sheets”, Dalton Trans 52, (2023) p.6317-6323.
13. D. Seo, K. Yu, Y. J. Chang, E. Sohn, K. H. Kim, E. J. Choi, “Infrared-optical spectroscopy of transparent conducting perovskite (La,Ba)SnO3 thin films”, Appl. Phys. Lett. 104, 022102, (2014).
14. J. Shiogai, K. Nishihara, K. Sato, A. Tsukazaki, “Improvement of electron mobility in La:BaSnO3 thin films by insertion of an atomically flat insulating (Sr,Ba)SnO3 buffer layer”, AIP Advances, Volume 6, Issue 6 (2016) 065305.
15. P. V. Wadekar, J. Alaria, M. O'Sullivan, N. L. O. Flack, T. D. Manning, L. J. Phillips, K. Durose, O. Lozano, S. Lucas, J. B. Claridge, M. J. Rosseinsky,“ Improved electrical mobility in highly epitaxial La:BaSnO3 films on SmScO3(110) substrates”, Appl. Phys. Lett. Volume 105, Issue 5, (2014) 052104.
16. C. A. Niedermeier, S. Rhode, S. Fearn, K. Ide, M. A. Moram, H. Hiramatsu, H. Hosono, T. Kamiya,“ Solid phase epitaxial growth of high mobility La:BaSnO3 thin films co-doped with interstitial hydrogen”, Appl. Phys. Lett. Volume 108, Issue 17, (2016) 172101.
17. Y. Smirnov, J. Holovsky, G. Rijnders, M. Morales-Masis, “Origins of infrared transparency in highly conductive perovskite stannate BaSnO3”, APL Mater 8, 061108 (2020).
18. L. K. Ono, E. J. Juarez-Perez, Y. Qi, “Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions”, ACS Appl. Mater. Interfaces, (2019) p. 30197-30246.
19. C. Eames, J. M. Frost, P. R. F. Barnes, B. C. O'Regan, A. Walsh, M. S. Islama, “Ionic transport in hybrid lead iodide perovskite solar cells”, Nature Communications PMC4491179 (2015)
20. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu, S. I. Seok, “Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells”, Nature Mater 13 (2014) p.897–903.
21. O. Muller, R. Roy, J. H. Wernick, “Crystal Chemistry of Non-Metallic Materials Vol. 4: The Major Ternary Structural Families”, Springer, New York (1974).
22. Y. Zhu, D. Chen, S. Wang, R. X. Ma, C. Y. Wang,Research progress on the stability of perovskite solar cells”, Chinese Journal of Engineering, (2020) p.16-25.
23. 林麗娟,“X光繞射原理及其應用”, X光材料分析技術與應用專題, (1994)
24. D. Henry, N. Eby, J. Goodge, D. Mogk, “ X-ray reflection in accordance with Bragg's Law”, Eby, G.N., 2004, Principles of Environmental Geochemistry. Brooks/Cole-Thomson Learning, (2004) p. 212-214.
25. Van de Hulst,“Light Scattering by Small Particles”, New York: John Wiley & Sons, Inc. (1957)
26. S. Kurtz, K. Emery, “Conversion efficiencies of best research solar cells worldwide from 1976 through 2016 for various photovoltaic technologies. Efficiencies determined by certified agencies/laboratories”, National Renewable Energy Laboratory (NREL), Golden, CO (2016).
27. J. Tauc, R. Grigorovici, A. Vancu, “Optical Properties and Electronic Structure of Amorphous Germanium”, Basic State Solid Physics, Volume15, Issue2, (1966) P.627-637.
28. A. A. Yadav, A. C. Lokhande, R.B. Pujari, C.D. Lokhande, “The synthesis of multifunctional porous honey comb-like La2O3 thin film for supercapacitor and gas sensor applications”, Journal of Colloid and Interface Science, Volume 484, (2019) p.51-59.
29. F. J. Jing, N. Huang, Y. W. Liu, W. Zhang, X. B. Zhao, R. K. Y. Fu, J. B. Wang, Z. Y. Shao, J. Y. Chen, Y. X. Leng, X. Y. Liu, P. K. Chu, “Hemocompatibility and antibacterial properties of lanthanum oxide films synthesized by dual plasma deposition”, Journal of Biomedical Materials Research Part A, Volume 87A, Issue 4, (2008) p. 1027-1033.
30. A. Debernardi, “Ab initio calculation of band alignment of epitaxial La2O3 on Si(111) substrate”, AIMS Materials Science, Volume 2, Issue 3, (2015) p.279~293.
31. R. Wei, L. Hu, C. Shao, X. Tang, X. Luo, J. Dai, J. Yang, W. Song, X. Zhu, Y. Sun, “Improved optoelectronic properties in solution-processed epitaxial rare-earth-doped BaSnO3 thin films via grain size engineering”, Appl. Phys. Lett., Volume 115, Issue 16, (2019), 2105.
32. A. Kumar, S. Maurya, S. Patwardhan, K. R. Balasubramaniam, “Opto-electronic properties of poly-crystalline La doped BaSnO3 films deposited on quartz substrates”, J. Phys. D Appl. Phys., Volume 54, Issue 18, (2021), 5108.
33. R. Zhang, X. Li, J. Bi, S. Zhang, S. Peng, Y. Song, Q. Zhang, L. Gu, J. Duan, Y. Cao, “One-step epitaxy of high-mobility La-doped BaSnO3 films by high-pressure magnetron sputtering”, APL Mater, Volume 9, Issue 6, (2021), 1103.
34. K. Fukuda, T. Eguchi, F. Maekawa, D. Urushihara, T. Asaka, H. Yoshida, E. Béchade, O. Masson, P. Thomas, “Morphology and oxide-ion conductivity of flux grown single crystals of BaO-doped lanthanum silicate oxyapatite”, Solid State Ionics, Volume 346, Issue11, (2020), 5219.
35. C. P. Udawatte, M. Kakihana, M. Yoshimura, “Preparation of pure perovskite-type BaSnO3 powders by the polymerized complex method at reduced temperature”,Solid State Ionics, Volume 108, Issues 1–4, (1998) P.23-30.
36. A. Tiwari, MS. Wong, “Substrate temperature effect on structure and properties of sputtered polycrystalline transparent conducting oxide films of La-doped BaSnO3”, Thin Solid Films, Volume 715, (2020), 138427.
37. T. Murauskas, V. Kubilius, R. Raudonis, M. Skapas, V. Plausinaitiene, “Structure Modification, Evolution, and Compositional Changes of Highly Conductive La:BaSnO3 Thin Films Annealed in Vacuum and Air Atmosphere”, Nanomaterials, Volume 12, Issue 14, (2022), 2408
38. K. Ganguly, A. Prakash, B. Jalan, C. Leighton, “Mobility-electron density relation probed via controlled oxygen vacancy doping in epitaxial BaSnO3”, APL Mater, Volume 5, Issue 5, (2017), 056102.
39. X. Luo, Y. S. Oh, A. Sirenko, P. Gao, T. A. Tyson, K. Char, S.-W. Cheong, “High carrier mobility in transparent Ba1−xLaxSnO3 crystals with a wide band gap”, Appl. Phys. Lett., Volume 100, Issue17, (2012), 172112.
40. B. Hadjarab, A. Bouguelia, M. Trari, “Optical and transport properties of lanthanum-doped stannate BaSnO3”, J. Phys., D: Appl. Phys. Volume 40, (2007), 5833.
41. Y. Ding, Y. Feng, H. Zhao, G. Qian, X. Zhang and X. Huang, “Arc erosion properties of Cu-La2Sn2O7 composite under different DC voltage”, IOP Publishing Ltd., Mater. Res. Express 6, (2019), 106578.
42. A. Bhattacharya, Y. Jiang, Q. Gao, X. Chu, Y. Dong, S. Liang, A. K. Chakraborty, “Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning”, Journal of Materials Research, Volume 34, Issue 12, (2019) p.2067-2077.
(此全文20250829後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *