帳號:guest(18.227.24.8)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:蕭仕笠
作者(英文):SHIH-LI HSIAO
論文名稱:微錐體陣列結構與應用
論文名稱(英文):Structure and Applications of Truncated Microcone Array
指導教授:陳素華
魏茂國
指導教授(英文):Su-Hua Chen
Mao-Kuo Wei
口試委員:陳素華
魏茂國
林伯彥
游象正
口試委員(英文):Su-Hua Chen
Mao-Kuo Wei
Bo-Yen Lin
Shang-Jenq You
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:611022109
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:155
關鍵詞:微錐體擴散板有機發光二極體積分穿透度光學路徑
關鍵詞(英文):microconediffuserorganic light-emitting diodes (OLED)integral transmittanceoptical pathway
相關次數:
  • 推薦推薦:0
  • 點閱點閱:16
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本研究結合微影製程、PDMS模造技術、紫外線成型製程製作微錐體陣列結構,探討微影製程中的曝光劑量、軟烤溫度、顯影劑濃度對於微錐體的底部直徑、高度、側壁傾斜角的影響,以及探討微錐體陣列高度、填充因子、側壁傾斜角對於OLED外部光耦合效率的影響。
此外,本研究以二維光學模擬軟體模擬光線入射微錐體結構的行進,計算和模擬光線從微錐體結構面和平坦面入射後的光學路徑,並探討折射率和微錐體側壁傾斜角對於光線從結構面或平坦面入射所造成積分穿透度差異值的影響。
實驗結果顯示,微錐體的側壁傾斜角81°與高度14μm,可以提高OLED功率效率23.4%。此外,當微錐體的折射率和側壁傾斜角分別為1.5和44°時,光線從微錐體結構面和平坦面入射後的積分穿透度差異值達到28%,此實驗結果與模擬計算的結果相符。
This study combines photolithography, PDMS molding, and UV forming techniques to create microcone arrays. It explores the effects of exposure dose, softbake temperature, and developer concentration in the photography process on the bottom diameter, height, and sidewall angle of the mocrocones. Additionally, it investigates how the height, filling factor, and sidewall angle of the microcone array impact the external light-outcoupling of OLEDs.
Furthermore, this study employs two-dimensional optical simulation software to simulate the propagation of light rays incident on microcone structures. It calculates and simulates the optical paths of light rays after incidence on the microcone structure surface and a flat surface. It also investigates the impact of refractive index and microcone sidewall angle on the differential integrated transmittance resulting from light rays incident on the structured surface versus a flat surface.
The experimental results demonstrate that microcones with a sidewall angle of 81° and a height of 14μm can enhance OLED power efficiency by 23.4%. In addition, when the refractive index of the microcones is 1.5 and the sidewall angle is 44°, the differential integrated transmittance between light incident on the microcone structure surface and a flat surface reaches 28%. These experimental findings align with the results obtained from simulation calculations.
第一章 緒論 1
1.1 前言 1
1.2 研究動機 3
1.3 文獻回顧 3
1.3.1 微結構陣列的製程方法 3
1.3.1.1 紫外線雷射微影技術 4
1.3.1.2 柔性光罩製作微透鏡陣列技術 6
1.3.1.3 飛秒雷射掃描 8
1.3.1.4 單步雙層微影技術 10
1.3.1.5 熱整形 12
1.3.1.6 人工超複眼 14
1.3.1.7 擴散板微影 17
1.3.1.8 選擇性潤濕表面上形成可控焦距自組裝微透鏡陣列 19
1.3.2 不同折射率造成的散射影響 21
1.3.3 電致玻璃 24
1.3.4 電致變色 26
第二章 理論 29
2.1 司乃爾定律 29
2.2 矽晶圓的結構 30
2.3 正、負光阻劑 30
2.4 乾、濕式蝕刻 31
2.5 積分穿透度及霧度原理 32
2.6 六邊形、矩形排列填充因子計算 33
2.7 輝度原理 34
2.8 CIE色彩空間 35
第三章 實驗步驟與儀器 37
3.1 微影製程 37
3.1.1 PDMS模造和紫外線成型製程 39
3.1.2 PDMS抗沾黏自組裝製備 40
3.1.3 3A分子塞 41
3.1.4 擴散板製作 43
3.1.5 掃描式電子顯微鏡分析微透鏡陣列樣貌 44
3.1.6 OLED光學效率的增益 44
3.1.7 紫外-可見分子吸收光譜法 45
3.1.8 微錐體高度、底部直徑、間距、側壁傾斜角 46
3.2 實驗儀器 47
3.2.1 恆溫水槽 47
3.2.2 鐵氟龍盆 48
3.2.3 加熱板 48
3.2.4 旋轉塗佈機 49
3.2.5 光罩 50
3.2.6 紫外光曝光頭 51
3.2.7 浸潤式曝光載台 51
3.2.8 照度計 52
3.2.9 真空烘箱 53
3.2.10 烘箱 53
3.2.11 紫外線臭氧改質燈箱 54
3.2.12 六連式電磁加熱攪拌機 55
3.2.13 O-ring O型環真空烘箱 55
3.2.14 紫外線硬化機 56
3.2.15 掃描式電子顯微鏡 56
3.2.16 紫外-可見光光譜儀 57
3.2.17 光學顯微鏡 58
3.2.18 輝度計 58
3.2.19 光學模擬軟體 59
3.3 實驗藥品及耗材 59
第四章 實驗結果與討論 60
4.1 矩形排列光罩 60
4.1.1 曝光劑量對於微錐體表面形貌的影響-軟烤95C 60
4.1.2 曝光劑量對於微錐體表面形貌的影響-軟烤120C 67
4.1.3 軟烤溫度對於微錐體表面形貌的影響-曝光劑量400 mJ/cm2 73
4.2 填充因子 79
4.3 微錐體陣列對白光OLED效率增益 81
4.4 填充因子對於微錐體陣列光學性質的影響 88
4.5 側壁傾斜角對於微錐體光學性質的影響-光學模擬 90
4.6 折射率對於微錐體光學性質的影響-光學模擬 99
4.7 側壁傾斜角和折射率對於微錐體光學性質的影響 100
4.8 擴散板的表面形貌 103
4.9 擴散角對於擴散板光學性質的影響 104
第五章 結論 109
第六章 未來工作 110
6.1 矩形排列光罩 110
6.1.1 顯影劑濃度對於微錐體表面形貌的影響 110
參考文獻 117
第七章 附錄 121
7.1 : 折射率1.4的微錐狀二維模擬結果 121
7.2 : 折射率1.45的微錐狀二維模擬結果 128
7.3 : 折射率1.5的微錐狀二維模擬結果 135
7.4 : 折射率1.55的微錐狀二維模擬結果 143
7.5 : 折射率1.6的微錐狀二維模擬結果 149
[1]Y. Qu, J. Kim, C. Coburn, and S. R. Forrest, “Efficient, Nonintrusive Outcoupling in Organic Light Emitting Devices Using Embedded Microlens Arrays,” American Chemical Society Photonics, Vol. 5, No. 6, pp. 2453-2458, 2018.
[2]J. Choi, S. Kim, C. H. Park, J. H. Kwack, C. H. Park, H. Hwang, H. S. Im, Y. W. Park, and B. K. Ju, “Light Extraction Enhancement in Flexible Organic Light-Emitting Diodes by a Light-Scattering Layer of Dewetted Ag NaNoparticles at Low Temperatures,” American Chemical Society Appl Mater Interfaces, Vol. 10, No. 38, pp. 32373-32379, Sep 26, 2018.
[3]J. J. Kim, J. Lee, S. P. Yang, H. G. Kim, H. S. Kweon, S. Yoo, and K. H. Jeong, “Biologically Inspired Organic Light-Emitting Diodes,” NaNo Lett, Vol. 16, No. 5, pp. 2994-3000, May 11, 2016.
[4]Y. Luo, C. Wang, L. Wang, Y. Ding, L. Li, B. Wei, and J. Zhang, “Flexible organic light-emitting diodes with enhanced light out-coupling efficiency fabricated on a double-sided naNotextured substrate,” American Chemical Society Appl Mater Interfaces, Vol. 6, No. 13, pp. 10213-9, Jul 9, 2014.
[5]K. H. Han, Y. S. Park, D. H. Cho, Y. Han, J. Lee, B. Yu, N. S. Cho, J. I. Lee, and J. J. Kim, “Optical Analysis of Power Distribution in Top-Emitting Organic Light Emitting Diodes Integrated with NaNolens Array Using Finite Difference Time Domain,” American Chemical Society Appl Mater Interfaces, Vol. 10, No. 22, pp. 18942-18947, Jun 6, 2018.
[6]Z. Wang, M. Zhu, S. Gou, Z. Pang, Y. Wang, Y. Su, Y. Huang, Q. Weng, O. G. Schmidt, and J. Xu, “Pairing of Luminescent Switch with Electrochromism for Quasi-Solid-State Dual-Function Smart Windows,” American Chemical Society Applied Materials & Interfaces, Vol. 10, No. 37, pp. 31697-31703, 2018.
[7]T. Moein, D. Ji, X. Zeng, K. Liu, Q. Gan, and A. N. Cartwright, “Holographic photopolymer linear variable filter with enhanced blue reflection,” American Chemical Society Appl Mater Interfaces, Vol. 6, No. 5, pp. 3081-3087, Mar 12, 2014.
[8]C. Fang, J. Zheng, Y. Zhang, Y. Li, S. Liu, W. Wang, T. Jiang, X. Zhao, and Z. Li, “Antireflective Paraboloidal Microlens Film for Boosting Power Conversion Efficiency of Solar Cells,” American Chemical Society Appl Mater Interfaces, Vol. 10, No. 26, pp. 21950-21956, Jul 5, 2018.
[9]M. Xu, Y. Xue, J. Li, L. Zhang, H. Lu, and Z. Wang, “Large-Area and Rapid Fabrication of a Microlens Array on a Flexible Substrate for an Integral Imaging 3D Display,” American Chemical Society Appl Mater Interfaces, Vol. 15, No. 7, pp. 10219-10227, Feb 8, 2023.
[10]J. Yong, F. Chen, Q. Yang, G. Du, H. Bian, D. Zhang, J. Si, F. Yun, and X. Hou, “Rapid fabrication of large-area concave microlens arrays on PDMS by a femtosecond laser,” American Chemical Society Appl Mater Interfaces, Vol. 5, No. 19, pp. 9382-9385, Oct 9, 2013.
[11]W. Liu, J. Wang, X. Xu, C. Zhao, X. Xu, and P. S. Weiss, “Single-Step Dual-Layer Photolithography for Tunable and Scalable NaNopatterning,” American Chemical Society NaNo, Vol. 15, No. 7, pp. 12180-12188, Jul 27, 2021.
[12]M. Wang, W. Yu, T. Wang, X. Han, E. Gu, and X. Li, "A novel thermal reflow method for the fabrication of microlenses with an ultrahigh focal number," Royal Society of Chemistry Advances, Vol. 5, No. 44, pp. 35311-35316, 2015.
[13]S. Luan, H. Cao, H. Deng, G. Zheng, Y. Song, and C. Gui, “Artificial Hyper Compound Eyes Enable Variable-Focus Imaging on both Curved and Flat Surfaces,” American Chemical Society Appl Mater Interfaces, Vol. 14, No. 40, pp. 46112-46121, Oct 12, 2022.
[14]J.-M. Kang, M.-K. Wei, H.-Y. Lin, J.-H. Lee, H.-Y. Lin, J.-H. Tsai, and T.-C. Wu, “Shape-controlled microlens arrays fabricated by diffuser lithography,” Microelectronic Engineering, Vol. 87, No. 5-8, pp. 1420-1423, 2010.
[15]M. Xu, Z. Zhou, Z. Wang, and H. Lu, “Self-Assembled Microlens Array with Controllable Focal Length Formed on a Selective Wetting Surface,” American Chemical Society Appl Mater Interfaces, Vol. 12, No. 6, pp. 7826-7832, Feb 12, 2020.
[16]C. H. Park, J. G. Kim, S. G. Jung, D. J. Lee, Y. W. Park, and B. K. Ju, “Optical characteristics of refractive-index-matching diffusion layer in organic light-emitting diodes,” Scientific Reports, Vol. 9, No. 1, pp. 8690, Jun 18, 2019.
[17]I. Mondal, N. Awasthi, M. K. Ganesha, A. K. Singh, and G. U. Kulkarni, “Cost-Effective Smart Window: Transparency Modulation via Surface Contact Angle Controlled Mist Formation,” American Chemical Society Appl Mater Interfaces, Vol. 15, No. 2, pp. 3613-3620, Jan 18, 2023
[18]C. Wu, Z. Shao, W. Zhai, X. Zhang, C. Zhang, C. Zhu, Y. Yu, and W. Liu, “Niobium Tungsten Oxides for Electrochromic Devices with Long-Term Stability,” American Chemical Society NaNo, Vol. 16, No. 2, pp. 2621-2628, Feb 22, 2022.
[19]"File:Snells law4.svg.18 June 2012." [Online].Available: https:// commons.wikimedia.org/wiki/File:Snells_law4.svgaccessed.
[20]余志成,"矽基非等向性濕蝕刻" [Online].Available: http://www2. nkfust.edu.tw/~jcyu/Course/MEMS%20Lab/ML6_bulk_micromachining.pdf. 國立高雄第一科技大學機械系.
[21]陳靖函(工研院), "半導體用光阻劑之發展概況" 2020. [Online]. Available:https://www.moea.gov.tw/MNS/doit/industrytech/IndustryTech.aspx?menu_id=13545&it_id=322. DOIT經濟部技術處.
[22]志宸科技. [Online]. Available: http://www.chiefdom-tek.com.tw/ edcontent.php?lang=tw&tb=5&id=313
[23]C. Kuan-Yu, L. Hoang Yan, W. Mao-Kuo, L. Jiun-Haw, H. Yu-Ting, L. Ciao-Ci, H. Yu-Hsuan, L. Hung-Yi, and T. Jen-Hui, “Enhancement and Saturation PheNomena on LumiNous Current and Power Efficiencies of Organic Light-Emitting Devices by Attaching Microlens Array Films,” Journal of Display TechNology, Vol. 7, No. 5, pp. 242-249, 2011.
[24]D. D. S. Pereira, P. Data, and A. P. monkman, “Methods of Analysis of Organic Light Emitting Diodes,” Display and Imaging, Vol. 2, pp. 323–337, 2016.
[25]"File:CIE1931xy blank.svg," 2009. [Online]. Available: https://commons.wikimedia.org/wiki/File:CIE1931xy_blank.svg.
[26]W. Kern, "The Evolution of Silicon Wafer Cleaning Technology " Electrochem p. Soc. 137 1887, 1990
(此全文20280825後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *