帳號:guest(3.140.195.206)          離開系統
字體大小: 字級放大   字級縮小   預設字形  

詳目顯示

以作者查詢圖書館館藏以作者查詢臺灣博碩士論文系統以作者查詢全國書目勘誤回報
作者:陳佳彥
作者(英文):CHIA-YEN CHEN
論文名稱:以溶膠凝膠法製備銳鈦礦/金紅石混相的氮摻雜二氧化鈦之可見光光觸媒
論文名稱(英文):Visible-light photocatalyst of anatase/rutile mixed-phase nitrogen-doped TiO2 prepared by sol-gel method
指導教授:陳怡嘉
指導教授(英文):Yi-Jia Chen
口試委員:傅彥培
楊天賜
陳怡嘉
口試委員(英文):Yen-Pei Fu
Tien-Syh Yang
Yi-Jia Chen
學位類別:碩士
校院名稱:國立東華大學
系所名稱:材料科學與工程學系
學號:611022111
出版年(民國):112
畢業學年度:111
語文別:中文
論文頁數:106
關鍵詞:二氧化鈦可見光光觸媒氮摻雜二氧化鈦
關鍵詞(英文):Titanium dioxidevisible lightphotocatalystnitrogen doped titanium dioxide
相關次數:
  • 推薦推薦:0
  • 點閱點閱:7
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏收藏:0
本實驗利用溶膠凝膠法製備含氮前驅物之二氧化鈦不定型粉體,再將其以不同溫度下分別在空氣與氮氣氣氛中煅燒,最終形成氮摻雜光觸媒粉末。另一方面將部分鍛燒後的粉末與純金紅石相的商用二氧化鈦進行研磨混合,並利用XRD、UV-vis與XPS等對樣品進行各種特性分析。
我們從UV-vis光譜圖得知在鍛燒溫度400°C~500°C是最佳摻雜溫度。在此溫度的粉體是呈現淡黃色的,具有良好的可見光活性。且在氮氣中鍛燒的粉體能在較高溫度下仍然保有可見光吸收特性,至600°C後粉體依然保持淡黃色色澤。
最後藉由光降解實驗讓我們知道,可見光的吸收對降解效果是有很大的幫助,呈現淡黃色的粉體都有著較佳的光催化效果。並且藉由自製粉體與商用純rutile粉末混合讓我們得知,粉體在具有可見光活性的前提之下,如果再具備anatase與rutile的混相結構,能抑止照光後產生的電子-電洞對之複合。讓光催化效果有著更顯著的提升。
關鍵字:二氧化鈦,可見光,光觸媒,氮摻雜二氧化鈦
In this experiment, amorphous TiO2 powder containing nitrogen precursors was prepared using the sol-gel method. The powder was then calcined at different temperatures in both air and nitrogen atmospheres to form nitrogen-doped photocatalyst powder. Additionally, a portion of the calcined powder was mixed with commercially available TiO2 in the pure rutile phase. Various characterization techniques such as XRD, UV-vis, and XPS were employed to analyze the samples.
From the UV-vis spectra, it was observed that the optimal doping temperature was in the range of 400°C to 500°C. The powder obtained at this temperature exhibited a light yellow color and showed good visible light activity. Furthermore, the powder calcined in nitrogen retained its visible light absorption characteristics even at higher temperatures, and it maintained a light yellow color even after reaching 600°C.
Finally, through photocatalytic degradation experiments, it was discovered that the absorption of visible light greatly aided in the degradation process, and powders with a light yellow color exhibited better photocatalytic performance. Moreover, the mixing of self-prepared powder with commercially available pure rutile powder revealed that, under the condition of visible light activity, the presence of a mixed phase structure of anatase and rutile suppressed the recombination of electron-hole pairs generated after light irradiation. This resulted in a significant enhancement of the photocatalytic effect.
Key words: titanium dioxide, visible light, photocatalyst, nitrogen-doped titanium dioxide 

第一章 序論 1
1.2 研究動機與目標 3
第二章 文獻回顧 5
2.1 二氧化鈦光觸媒簡介 5
2.1.1 二氧化鈦的物理性質 5
2.1.2 二氧化鈦的製備方法 9
2.2 二氧化鈦光觸媒原理 13
2.3 二氧化鈦添加氮 17
第三章 實驗方法 23
3.1 實驗規劃 23
3.2 實驗藥品 25
3.3 實驗儀器 27
3.4 實驗樣品製備 29
3.4.1 粉體製備流程 29
3.4.2 粉體的鍛燒與樣品名稱 31
3.4.3 自製粉體與商用二氧化鈦研磨混合 33
3.5 實驗分析方法 35
3.5.1 X-ray繞射儀 35
3.5.2 紫外光/可見光吸收光譜儀分析(UV-visible) 37
3.5.3 比表面積與孔隙度分析儀(BET) 39
3.5.4 電子順磁共振儀(EPR) 41
3.5.5 X射線光電子能譜儀 (XPS) 43
3.5.6 光觸媒於可見光下分解亞甲基藍實驗 45
第四章 結果與討論 47
4.1 自製光觸媒粉體之性質 47
4.1.1 紫外光/可見光吸收光譜儀分析 47
4.1.2 電子順磁共振分析(EPR) 59
4.1.3 X-ray繞射分析 63
4.1.4 BET分析 67
4.1.5 光觸媒粉末分解亞甲基藍實驗 71
4.1.6 XPS分析 75
4.2 自製粉體與商用二氧化鈦研磨混合之性質 87
4.2.1 紫外光/可見光吸收光譜儀分析 89
4.2.2 X-ray繞射分析 91
4.2.3 光觸媒粉末分解亞甲基藍實驗 93
第五章 結論 97
第六章 未來工作 99
References 101
1.A. Fujishima, and K. Honda, “Electrochemical Photolysis of Water at a Semiconductor Electrode”, Nature 238 (1972) 37.
2.Sakamaki, K., et al. (1990). "Surface density of states of TiO2(110) single crystal and adsorbed molecular observation by scanning tunneling microscopy and tunneling spectroscopy." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 8(1): 614-617.
3.A.L. Linsebigler, G. Lu, and J.T. Yates, “Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results”, Chem. Rev. 95 (1995) 735.
4.M. Dusi, C.A. Muller, T. Mallat, and A. Baiker, “Novel amine-dified TiO2–SiO2 aerogel for the demanding epoxidation of substituted cyclohexenols”, Chem. Commun. 2 (1999) 197.
5.J.K. Burdett, T. Hughbands, J.M. Gordon, J.W. Richardson, and J.V. Smith, “Structural-Electronic Relationships in Inorganic Solids: Powder Neutron Diffraction Studies of the Rutile and Anatase Polymorphs of Titanium Dioxide at 15 and 295 K”, J. Am. Chem. Soc. 109 (1987) 3639
6.M.R. Hoffmann, S.T. Martin, W. Choi, and D.W. Bahnemannt, “Environmental Applications of Semiconductor Photocatalysis” Chem. Rev. 95 (1995) 69-96
7.H. Tang, H. Berger, P.E. Schmid, and G..Burri, “Photoluminescence in TiO2 anatase single crystals” 87 (1993) 847.
8.A. Sclafani, and J.M. Herrmann “Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions” J. Phys. Chem. 100 (1996) 13655
9.Tang, H., et al. (1994). "Electrical and optical properties of TiO2 anatase thin films." Journal of Applied Physics 75(4): 2042-2047
10.D. Beydoun,and R. Amal,(2002)“Implications of heat treatment on the properties of a magnetic iron oxide-/titanium dioxide photocatalyst” Material Science and Engineering B, 94,p.71-81
11.D. Dvoranová, V. Brezová, M. Mazúr, and M. A. Malati, (2002), “Investigations of metal-doped titanium dioxide photocatalysts” Applied Catalysis B:Environmental,37(2), p.91-105.
12.Sung-Suh, H. M., et al. (2004). "Comparison of Ag deposition effects on the photocatalytic activity of nanoparticulate TiO2 under visible and UV light irradiation." Journal of Photochemistry and Photobiology A: Chemistry 163(1-2): 37-44.
13.Zaleska, A., et al. (2008). "Preparation and photocatalytic activity of boron-modified TiO2 under UV and visible light." Applied Catalysis B: Environmental 78(1-2): 92-100.
14.D. Chen, D. Yang, Q. Wang, and Z. Jiang, (2006), “Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles” Industrial & Engineering Chemistry Rearch, 45(12),p.4110-4116
15.R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki and Y. Taga, (2001), "Visible-light photocatalysis in nitrogen-doped titanium oxides." Science, 293(5528), p.269-271
16.X. B. Chen, and C. Burda, (2004), "Photoelectron spectroscopic investigation of nitrogen-doped titania nanoparticles." The Journal of Physical Chemistry B, 108(40), p.15446-15449
17.X. B. Chen, and C. Burda, (2008), "The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO2 nanomaterials." Journal of the American Chemical Society, 130(15), p.5018-5019
18.Di Valentin, C. and G. Pacchioni (2013). "Trends in non-metal doping of anatase TiO2: B, C, N and F." Catalysis Today 206: 12-18.
19.G. Li, N. M. Dimitrijevic, L. Chen, J. M. Nichols, T. Rajh, and K. A. Gray, "The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites. " J. Am. Chem. Soc. 130, 5402 (2008).
20.G. Agrios, K. A. Gary, and E. Weitz, "Narrow-band irradiation of a homologous series of chlorophenols on TiO2: charge-transfer complex formation and reactivity. " Langmuir 20 (2004) 5911.
21.Buchanan Relva C and Park, and Taeun. Materials Crystal Chemistry, New York:Marcel Dekker, Ins., 1997
22.A. Stepanov, X. Xiao and F. Ren, "Implantation of titanium dioxide with transition metal ions. " Wuhan University (2013)
23.林澤珊, “在以火焰法製備二氧化鈦粉末中調控anatase/rutile相形成的研究及其對可見光光觸媒效應的影響” 國立東華大學,材料科學與工程研究所,碩士論文 (2011)
24.Chen, Y.-J. and T.-S. Lin (2020). "Enhancement of Visible-Light Photocatalytic Efficiency of TiO2 Nanopowder by Anatase/Rutile Dual Phase Formation." Applied Sciences 10(18).
25.A. Sclafani, and J.H. Herrmann, "Comparison of the Photoelectronic and Photocatalytic Activities of Various Anatase and Rutile Forms of Titania in Pure Liquid Organic Phases and in Aqueous Solutions" J.Phys. Chem. 100 (1996) 13655.
26.Pillai, S. C., & Hehir, S. (Eds.). (2017). "Sol-Gel Materials for Energy, Environment and Electronic Applications. Advances in Sol-Gel Derived Materials and Technologies. " p271-283.
27.Linsebigler, A. L., Lu, G., & Yates, J. T. (1995). "Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results. " Chemical Reviews, vol. 95, p735–758
28.Hoffmann, M. R., Martin, S. T., Choi, W., & Bahnemann, D. W. (1995)."Environmental Applications of Semiconductor Photocatalysis. " Chemical Reviews, vol.95, p69–96.
29.K. Doenelles, M. Roriz, and V.F.Roriz, 2011, "Thermal Performance of White Solar-Reflective Paints for Cool Roofs and the Influence on the Thermal Comfort and Building Energy Use in Hot Climates" Conference:ISES Solar World Congress.
30.Yang, G., Jiang, Z., Shi, H., Xiao, T., & Yan, Z. (2010). " Preparation of highly visible-light active N-doped TiO2 photocatalyst. " Journal of Materials Chemistry,20(25), 5301.
31.林麗娟,1994,“X光繞射原理及其應用, ” X光材料分析技術與應用專題.
32.汪建民, 材料分析, [中國材料科學學會(1998)]
33.Mayerhöfer, T. G., Pahlow, S., & Popp, J. (2020). "The Bouguer‐Beer‐Lambert Law: Shining Light on the Obscure." ChemPhysChem, p2025
34.Nishi, Y., & Inagaki, M. (2016). " Gas Adsorption/Desorption Isotherm for Pore Structure Characterization. Materials Science and Engineering of Carbon, " p227–247.
35.Butcher, D. J. (2005)."Interferences and Background Correction. " Encyclopedia of Analytical Science, p157–163
36.Huang, J., et al. (2021). "Excellent visible light responsive photocatalytic behavior of N-doped TiO2 toward decontamination of organic pollutants." J Hazard Mater 403: 123857
37.Jadhav, P. S., et al. (2021). "Structural and optical properties of N-doped TiO2 nanomaterials." Materials Today: Proceedings 43: 2763-2767.
38.Tauc, J., Grigorovici, R., & Vancu, A. (1966). "Optical Properties and Electronic Structure of Amorphous Germanium. " Physica Status Solidi:15, p627–637.
39.J. Tauc (F. Abeles ed.) (1972). "Optical Properties of Solids. "North-Holland.
40.E. A. Davis and N. F. Mott, Philos.(1970) "Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors." Mag., 22, 903
41.Makuła, P., Pacia, M., & Macyk, W. (2018). " How To Correctly Determine the Band Gap Energy of Modified Semiconductor Photocatalysts Based on UV–Vis Spectra. "The Journal of Physical Chemistry Letters, 9(23), 6814–6817.
42.Ansari, S. A., Khan, M. M., Ansari, M. O., & Cho, M. H. (2016)." Nitrogen-doped titanium dioxide (N-doped TiO2) for visible light photocatalysis. " New Journal of Chemistry, 40(4), 3000–3009.
43.Li, Y., Peng, Y.-K., Hu, L., Zheng, J., Prabhakaran, D., Wu, S., … Tsang, S. C. E. (2019). " Photocatalytic water splitting by N-TiO2 on MgO (111) with exceptional quantum efficiencies at elevated temperatures. " Nature Communications.
44.羅新璽, “電子順磁共振與紫外至可見光吸收圖譜於二氧化鈦摻雜氮之特性研究”國立東華大學,物理研究所,碩士論文 (2011)
45.Minnekhanov, A. A., Le, N. T., Konstantinova, E. A., & Kashkarov, P. K. (2017). "Influence of Defects on Photoconductivity and Photocatalytic Activity of Nitrogen-Doped Titania. Applied Magnetic Resonance, " 48(4), p335–345.
46.Byrne, C., Fagan, R., Hinder, S., McCormack, D. E., & Pillai, S. C. (2016). " New approach of modifying the anatase to rutile transition temperature in TiO2 photocatalysts. " RSC Advances, 6(97), p95232–95238.
47.Kumar, K. V., et al. (2019). "Characterization of the adsorption site energies and heterogeneous surfaces of porous materials." Journal of Materials Chemistry A 7(17): 10104-10137.
48.Zhao, W., Liu, S., Zhang, S., Wang, R., & Wang, K. (2019). "Preparation and visible-light photocatalytic activity of N-doped TiO2 by plasma-assisted sol-gel method. " Catalysis Today.
49.Zhao, B., Wang, X., Zhang, Y., Gao, J., Chen, Z., & Lu, Z. (2019). "Synergism of oxygen vacancies, Ti3+ and N dopants on the visible-light photocatalytic activity of N-doped TiO2. Journal of Photochemistry and Photobiology " A: Chemistry, 111928.
(此全文20260802後開放外部瀏覽)
01.pdf
 
 
 
 
第一頁 上一頁 下一頁 最後一頁 top
* *